

Sinks-Sources-Sugars-Starches: The 4S's of Pumpkin Growth

Presented by:

Joe Ailts (Joze on BP.com)

GPC Big Show, 2017

-Competitive grower since 2000 (PB 1422lbs)

- –Founder & President of the St. Croix Grower's Association & Stillwater HarvestFest
- –B.S. Biotechnology (plant science emphasis)
- -M.S. Nutrition
- –Professional Certificate in crop science (soil fertility emphasis)
- -Certified Crop Advisor (WI)_2

Explore the mechanisms of carbon partitioning (sink/source relations) to help us grow bigger pumpkins

-understand the process
 -understand what affects the process
 -identify what you can do to impact the process

The Big Picture

- 1. Leaves make sugar
- 2. Sugar moves to the pumpkin
- 3. Pumpkin converts sugar to starch

More of this = bigger pumpkins.

A pumpkin is >90% water Of the remaining ~10%, ~85% is starch

2000lb Pumpkin= 1800lbs water 170lbs starch 30lbs other stuff

Starch & Water get stored here:

How the heck do we get a marble to turn into a small car in ~100 days???

Let's start with some terminology

-Sources: Leaves- Make sugar

-Sinks: Roots, Shoots, Froots- eat sugar

Fruit growth boils down to three fundamental variables:

- Source strength
 - (enough leaves, photosynthesis, sugar production?)
- Vascular transport volume/speed
 - (enough pipes with fast enough flow to move sugar?)
- Sink strength
 - (enough consumption of water/sugar?)

Source Strength is tied to plant health

- Pumpkins do not appear to be "source limited" under healthy conditions
- Keeping leaves greener for longer ensures limiting factor is not source-related
- Promote plant youth with auxin-friendly pruning strategies
- Promote root growth

Vascular transport capacity is inherently genetically built in

- The plumbing is apparently not a limiting factor in pumpkin growth
- AG's have larger vascular area cross-section
- Small pipes-faster flow.
- Large pipes-slower flow.

Sink Strength is where the action is

Sink Strength=sink size x sink activity

 Sink activity is taking sugar out of phloem and converting to starch

What drives sugar>starch conversion?

Fruit Cell number & cell expansion

Increasing Cell Number (more balloons)

Superior crosses? (high cross-weight ave)

Plant Growth Regulators (Anthesis)

Maximize cell number by selecting top genetics: Cross Weight Average

- 2pt formula= female weight + male weight/2
 - 1944 Connolly (2230 Wal + 2145 Mc/2=2187 CWA)

- 3pt formula= female weight + male weight + progeny weight/3
 - 2624 Wil (2145 Mc + 1872 Wil + 2624/3=2214 CWA)

 Plant breeders have been practicing this for centuries (best x best)

GPC place	weight	grower	F	M	2pt CWA	3pt CWA
1	2,624.60	Willemijns, Mathias	2145	1872	2009	2214
2	2,261.00	Wallace, Dick	2009	1790	1900	2020
3	2,252.30	Paton, Ian & Stuart	1975	1781	1878	2003
EXH	2,157.00	Paton, Ian & Stuart	2096	1781	1939	2011
4	2,106.00	Schmit, Mike	1385.5	Open	-	-
5	2,095.50	Willemijns, Mathias	1684	1872	1778	1884
6	2,075.50	Connolly, Steve	1961	2230.5	2096	2089
7	2,066.00	Geddes, Steve	2145	1727.5	1936	1980
8	2,063.50	Willemijns, Mathias	1872	2145	2009	2027
9	2,058.50	Rose, Jerry	1585	1730	1658	1791
10	2,048.10	Willemijns, Mathias	1861	1872	1867	1927
11	2,047.00	Sippel, Dereck	1338	1756	1547	1714
12	2,004.00	Vander Wielen, Pete	2145	2017	2081	2055
13	1,986.40	Wuersching, Matthias	1781	2096	1939	1954
14	1,969.00	Haist, Karl	1985	1725	1855	1893
15	1,964.50	Haist, Karl	1806	1725	1766	1832
EXH	1,949.50	Paton, Ian & Stuart	1781	2096	1939	1942
16	1,948.50	Werner, Quinn	1585.5	1461	1523	1665
17	1,944.50	Pugh, Russ	2145	2109	2127	2066
18	1,944.00	Conolly, Steve	2230	2145	2188	2106
19	1,938.00	Zywiec, Lorelee	2230	2109	2170	2092
20	1,937.00	Urena, Leonardo	2145	2230	2188	2104

Applied plant growth regulators may increase cell number

What is "Anthesis"?

Anthesis is a combination of two plant hormones selected to increase the rate and duration of cell division in a pumpkin or tomato to result in a larger fruit at harvest.

Increasing Cell Volume (larger balloons)

Genetically?

Environmentally

Superior crosses? (high cross-weight ave)

Fertility
Hydration
Pruning
PGRs

Weight Gain=Increasing Cell Volume

x 10,000 Size increase

Water, Sugar, Starch

Pumpkin Volume increases ~2.2 million fold (assuming 200" circ)

Volume= 1 CM3

Volume= 2,210,000 CM3

Increasing Cell Volume (larger balloons)

Genetically

Superior crosses (high cross-weight ave)

Biggest Pumpkins have genetic blueprint for biggest pumpkin progeny

Increasing Cell Volume (larger balloons)

Environmentally

Variables we control

Fertility
Hydration
Pruning
PGRs

Fertility-Liebig's law: lowest level nutrient caps pumpkin's potential

arameter	Range	Raise with	Decrease with	Notes
Н	6.5-7.0	Lime	Sulfur	Itotes
Organic Matter	3-10%	manure, compost, leaves	Surui	
Cation Exchange Capacity (CEC)	10-20 meq/100g	organic matter, humic acid		
Base Saturation				
6 K	5-9%	See Potassium		
6 Mg	12-18%	See Magnesium		
% Ca	66-75%	See Calcium		
% H	0-12%			
% Na	<1.5%		Leaching	
Nitrogen (N)	60-100lbs/acre (30-50ppm)	Urea, ammonia, N- fixing bacteria	Leaching	
Phosphorous (P)	150-400 lbs/acre	Rock Phosphate		
Potassium (K)	1000 lbs/acre			
Calcium (Ca)	2500-4500 lbs/acre	Lime, Gypsum		Lime increases pH, gypsum does not, gypsum will also raise S
Magnesium (Mg)	300-600 lbs/acre	Magnesium Sulfate	Boost Calcium	Also raises S
Sulfur (S)	40-100(bs/acre (20-50ppm)	Sulfur, Gypsum		Gypsum will also raise Ca
Zinc (Zn)	20-40lbs/acre (10-20ppm)			
Manganese (Mn)	50-80fbs/acre (25-40ppm)	Foliar MnSO4, decrease pH	increase pH	non-foliar application not recommended
Iron (Fe)	100-400lbs/acre (50-200ppm)	Foliar, decrease pH		non-foliar application not recommended
Copper (Cu)	2-5ppm			
Boron (B)	1-2ppm	Borax		
Sodium (Na)	The prices			No Supplement Necessary

Hydration: Goldilocks Principle

Pruning Strategies

Sources preferentially allocate sugar to closest sink

Main Vine: To prune or not to prune?

Joe says "no"

MV Tip is a primary source of the hormone Auxin for the plant and fruit

Scientific perspective on pruning:

Generally, when sink activity is decreased by removing active sinks or introducing nutrient deficiency, carbohydrates accumulate in leaves and photosynthesis becomes inhibited (Paul and Pellny, 2003)

Auxin acts as "fountain of youth"

- Auxin in main vine tip is moved to fruit sinks, promoting growth
- Auxin in main vine tip is moved to buds (read: rogue tertiaries), inhibiting their growth
- Auxin delays leaf aging
- Auxin in MVT signals demand for water/nutrient flow from root system
- Auxin promotes growth of adventitious roots

Auxin regulates fruit growth

So what about Auxin application?

–We're a long ways off from using exogenous auxin to enhance fruit growth

For now, let microbes do the work

- Azospirillum brasilense bacterial inoculant
 - Secretes auxin, gibberellic acid, cytokinin
 - Fixes nitrogen
 - Enhances germination
 - Growth Promoter
 - Effects well substantiated by science

-Disclaimer: I am not paid or incentivized to endorse this product

A. Brasilense application resulted in 14% increase in dry root matter

- Design: 32 seeds, 16 treatment & 16 control
- 2 week growth time
- Seed inoculated & two drench apps @ recommended rate
- Roots washed, dried, & weighed

A. brasilense Garden Tactics

- Inoculate seed prior to planting
- Drench apply @ crown ~2-3 weeks
- Include in trench mix and/or drench app

Rate of Yearly Increase: Top 10 Ave, 4.9%, If 2624=2450, then #1 Pumpkin, 6.0%

