

Continuing Education Credits

- NWFA = Registered Provider, AIA/CES, IDCEC
 - AIA = 1 LU
 - IDCEC = 1 CEU
 - ASID
 - IIDA
 - IDC
- AIA/IDCEC does not endorse content
- Questions answered at end of presentation

Copyright Materials

This presentation is protected by US and International Copyright laws. Reproduction, distribution, display, and use of the presentation without written permission of the speaker is prohibited.

© National Wood Flooring Association (NWFA) 2019

Course Description

This seminar explores how to specify the right wood flooring for a successful installation. Architect and design professionals will become more familiar with wood and its use as a flooring material in an effort to properly specify the correct product for their client projects.

- Describe how wood differs from other flooring options
- Understand the different types of wood flooring available
- Explain how each type of wood flooring will perform based on where it is installed
- Discuss the impact of radiant heat systems & other extreme conditions on wood flooring

nwfa

Wood as a Flooring Option

Wood as a Flooring Option

- Wood is renewable
- Other flooring options are not
- Trees are a natural resource
- Trees regenerate
- No replanting required
- No human intervention needed

Sustainability

- USDA Forest Service
 - 1.6 trees planted per tree harvested
 - Standing volume more than double since 1950s
 - Responsible forest management
- 40-60 years to mature
- National Association of Home Builders
 - Wood floors last 100+ years
- Inventory not needed for 40-60 years
- Rapidly renewable for life cycle

Wood as a Flooring Option

Life Cycle Inventory

Sapling Mature Tree Finished Product

Environmental Impacts

- Renewable flooring material
- Sustainably managed forests in North America
- Low environmental impact
 - Factory: forest naturally regenerates raw material
 - Sun: renewable energy source
- Carbon neutral
 - Produce oxygen during growth
 - Store carbon during service life
- Less water, energy used manufacturing
- End of service = fuel, recycled
- Last 100+ years
 - Less replacement, raw material

- Improves indoor air quality
- US EPA
 - Wood doesn't harbor allergens, microorganisms
 - Doesn't collect dust, animal dander, outdoor pollutants, etc.
- Low VOC colorants, finishes
- US formaldehyde laws
- Research your supplier

- Low VOC, formaldehyde emissions
- CA = CARB
- CARB establishes strict VOC regulations
- Model for rest of country
- Reviewing for federal standard

Wood as a Flooring Option

Laminate

nwfa

Wood Flooring
Types

Types of Hardwood Floors

- Solid
 - Solid wood top to bottom

- Engineered
 - Several layers of wood veneer/slats bonded together with an adhesive

Engineered Construction

- Top layer = wear layer
- Wear layer is species selected
- Lower layers = core, backing
- Core, backing layers can be same species as wear layer, different species, composite material

- Solid can be resanded, refinished numerous times
- The "sandability" of engineered depends on wear layer thickness
- Solid cannot be installed below grade
- Engineered can be installed above, on, below grade
- Because of their cross ply construction, engineered floors are more dimensionally stable
- Engineered can be installed on wood, concrete subfloors
- Solid can be installed on wood subfloors, on concrete subfloors if recommended by the manufacturer

Wood Flooring Types

Solid

Engineered

Saw Cuts

- Plainsawn
- Quartersawn
- Riftsawn
- Livesawn

Plainsawn

- Traditional choice
- 2"-3" boards
- Red oak most common
- Homes built early to mid 1900s

Plainsawn

- Series of parallel cuts
- Remaining cuts perpendicular to first set
- Produces wider boards than rift, quartered
- Board length varies

- Board face has "cathedral" grain
- Contains flat-grain, some vertical-grain
- Contains more variation within, among boards than other cuts
- End grain growth rings between 0-45°

Quartersawn

- Vibrant flecks
- Tight, wavy grain
- Flecks caused by medullary rays
- Medullary rays are trees' life veins
 - Transport sap from pith to outer parts of tree
 - Perpendicular to growth rings
 - Parallel to board surface
 - Pronounced in white oak

Medullary Rays

nwfa

- Medullary rays perpendicular to growth rings
- Annual growth rings appear as circles
- Medullary rays appear as vertical white lines from roots to leaves

Growth Ring Medullary Ray

Medullary Rays

nwfa

- Several cuts possible
- Quartersawn annual rings grow perpendicular to surface, medullary rays grow parallel to surface
- Medullary rays create fleck effect
- Pronounced in white oak

Medullary Rays

- Quarter the log
- Remaining cuts perpendicular to growth rings
- Produces narrow boards
- Vertical grain
- More waste

Quartersawn

- Board face has fleck pattern
- Contains tight, wavy grain
- End grain annual growth rings 45-90° to surface

- Similar to quartersawn
- Accentuated, vertical grain
- Minimal fleck
- Saw angle adjusted for fewer cuts parallel to medullary rays
- Produces more waste

- Quarter the log
- Remaining cuts from center face, work out
- Boards 30-60° to growth rings
- Comes from smaller part of wedge, produces more waste
- Hard to produce only wide-width rift

- Board face has vertical grain
- Contains minimal fleck
- End grain annual growth rings 30-60° to surface

Livesawn

 Combination of plainsawn, quartersawn, riftsawn

Livesawn

- First cut straight through log's center
- Remaining cuts parallel to first
- Yields extremely wide boards
- Produces very little waste

- Board face growth rings work from parallel in center to perpendicular at edges
- End grain annual growth rings 0-90° to surface

- Allows more fleck effect
- Wider planks show more knots holes, natural characteristics
- Saw blade marks show
- Rustic look increasingly popular

Livesawn

- Wider boards
- Random widths
- More fleck
- More knot holes, character marks
- Saw blade marks
- Natural beauty shows through

Performance

- Wood is hygroscopic
- Absorbs, loses moisture depending on environment
- Swells = moisture gain
- Shrinks = moisture loss
- Direction of movement based on growth rings

Plainsawn

- Quartersawn
- Riftsawn

- Expands, contracts through width
- Less dimensionally stable

- Expands, contracts through thickness
- More dimensionally stable

- Expands, contracts through thickness
- More dimensionally stable

nwfa

Job Site Performance

Job Site Elevation

- Solid
 - Above grade
 - On grade
- Engineered
 - Above grade
 - On grade
 - Below grade
 - Soil ≤ 3" above floor

Job Site Conditions

- Windows installed
- HVAC installed, running
- Wet trades completed
 - Masonry
 - Drywall
 - Tile
 - Painting
- Introduces moisture to environment
- Can affect wood flooring

Subfloor Conditions

- Wood or concrete
 - Flat
 - Clean
 - Dry
 - Structurally sound

Acclimation

- Wood flooring must acclimate to job site
- Normal living conditions
 - 60-80°F
 - 30-50% RH
- Acclimation can take several days, months
 - Species
 - Thickness of wood
 - Environmental conditions

Moisture Testing

- Floor, subfloor
- Average moisture content varies by region
- First number in range = January
- Second number in range = July
- Can vary within regions
- Moisture testing critical to success

Installation Method

nwfa

Nail-down

- Wood
- Solid, engineered

Glue-down

- Wood, concrete
- Engineered, solid if recommended

Floating

- Wood, concrete, existing flooring
- Engineered

nwfa

Radiant Heat & Extreme Conditions

Radiant Heat

- Heat source directly under floor
- Super-efficient system
- Poses challenges for wood flooring
 - Expands with moisture
 - Contracts without moisture
- Wood can dry out faster than convention heating systems
- Supplemental humidification typically required
- Recommended
 - Engineered
 - Dimensionally stable species
 - Quartersawn, riftsawn
 - Narrow boards

- Humid areas = expansion
- Dry areas = contraction

Extreme Environments

- Temptation to specify engineered
- Not always best solution
- If manufacturer specifies 30-50% RH, material won't perform well in area with 15-30% RH
- Follow manufacturer guidelines

Summary

- Wood is renewable raw material that regenerates
- Wood floors can last 100+ years
- Uses fewer natural resources than other flooring options
- Laminate flooring is not made using wood
- · Saw cuts include plainsawn, quartersawn, riftsawn, livesawn
 - Cut affects appearance, performance of wood
- Flooring types include solid, engineered
 - Solid wood floors should be installed only above, on grade
 - o Engineered wood floors can be installed above, on, below grade
- Wood floors should be acclimated to job site
- Installation methods include nail-down, glue-down, floating
- Radiant heat, other extreme conditions, can affect floor performance

This concludes this course for:

American Institute of Architects Continuing Education Systems
Interior Design Continuing Education Council

CEU Events® Paperless Attendance Recording

To ensure your attendance, please complete one of the steps below

Enter the Event Code via the CEU Events Mobile App

OR

at www.ceuevents.com/attendance

By registering electronically, you help save an average of 12.3 sheets of paper (per event) by replacing paper sign-in sheets and certificates.
Powered by ceuevents.com

