
Fan Coil
Thermostat

• 12 to 24VAC/DC or 110 to 240VAC
• 3.5” TFT color touch screen
• Ambient light sensor
• Humidity sensor
• Wi-Fi connective(option)
• GEO-fence
• Boost output
• 3 speed or 0-10VAC fan control
• On/Off relay or 0-10VAC valve control
• 2/4 pipes HVAC system
• On/off or 0-10v valve

for heating and cooling.
• Manual or auto changeover
• 7 day, weekday/weekend,

24hours schedule
• Four or six events per day
• Auto sync time and date
• Automatically adjusts to

daylight saving time
• Defrost protection
• Modbus RS485,

modbus TCP(option)
• Holiday mode
• Multi-language (9 languages)
• C/F temperature display
• Touch sceen lockout

Purpose Of Control 2/4 Fan Coil Unit
Supply Voltage 12 to 24VAC/DC or 110 to 240VAC
Relay Rating 5 Amp maximum per relay
Output Relay SPST – NO

Display 320x480 pixels TFT,
Capacitive touch screen

Communications Modbus RTU, Modbus TCP
Displayed Temperature
Resolution 0.1°C

Control Temperature Step 0.2°C (default = 0.5°C)
Wire Size, Terminals Current ≤5 A – 1.5 mm2, solid core wire
Smart Schedule Type 7days, weekday/weekend, 24hours
Schedule Per Day Up to 7 different 4- or 6-event program
Standby Consumption ≤0.5 w
Wifi(Option) IEEE 802.11 b/g/n – 2.4ghz
Security WPA/WPA2
Operating Temperature 1° c - 85° c
Dimensions (W/H/D) 96 * 86 * 13.8 (mm)
Build-In Depth 24.5 mm
Weight ≤200 g
Enclosure Rating IP 21
Enclosure Material PC + ABS plastic
Alexa Optional
Google Home Optional
Approval CE, FCC, RoHS,CA65

FAN COIL THERMOSTAT

MAIN FEATURE TECHNICAL DATA

MAIN FEATURE CONFIGURATION SETTINGS

Language
English, Chinese, Spain, Italian, Russian,
Polish, Czech, German, French, Slovenski,
Swedish, Portuguese

Date & Time
01) Time Zone
02) Date & Time
03) Daylight saving Time(DST)

Display Brightness Ambient Light Diming

Screen Saver
Standby Screen
01) Time: 3min, 10min, Just night
02) Type: Clock , default, Off screen

Lock screen 4 number PIN; Disable/enable

Network Settings

01) WiFi Setup
02) Pair to App(Smart Config)
03) QR Code
04) Mac Address
05) Modbus Address(Option)

Feature Settings

01) Temperature Format
02) Temperature Limit
03) Switch differential
04) Output delay
05) Defrost: Defrost temperature;

Enable/disable
06) Build-in sensor calibration
07) Humidity sensor calibration
08) Optimum Start
09) Energy Tariff: KW/H, $/kwh
10) Open Window function
11) Fan setting: 0-10v Fan; 3 speed Fan; EC,

Fan work mode
12) Valve setting: Switch on/off valve 0-10v valve
13) Input signal setting: Disable/enable input,

Input signal type

Schedule Weekday/Weekend, 7 Days,
24 Hours, None

Hold Temperature Hold time, Hold setpoint
System Information Version number, QR code
Factory reset Reset to factory settings

1. Wi-Fi indicator 2. History data diagram 3. Adjusting
the optional settings 4. Day indicator & clock 5. System
mode: heat, cool ,auto, off 6. Fan :auto, high, med, low
7. Humidity 8. Power on/off 9. Holiday 10. Schedule
11. Configuration settings 12-13. Adjusting the setting
temperature 14. Setting temperature display 15. Room
temperature display 16. “C” or “F”display 17. “heating/
cooling/vent” symbol

OUTLINE DIMENSION

PRODUCT MODEL

FAN COIL THERMOSTAT

White Black on special order

WIRING
DIAGRAM

CONNECTION BOARD

FAN COIL THERMOSTAT

OPERATION EXAMPLE

L N

Neutral

Line

COM
Hum

Fan

FH

FM

FL

F1

G

S1

HVC

HVO

CVC

Heat valve

Cool valveCVO

Fan output(0-10vdc)

GND

external sensor input

External Jumper

Terminal Description Terminal Description
L Line CVO Cool Valve NO
N Neutral CVC Cool Valve NC
FL Fan Low Hum Humidity relay
FM Fan Med COM Common for valve
FH Fan High F1 Fan 0-10vdc
HVO Heat Valve NO G Ground
HVC Heat Valve NC S1 External sensor

D003
Snapshot

D003
Snapshot

D003
Line

D003
Line

D003
Line

D003
Line

D003
Line

D003
Line

D003
Text Box
A

D003
Text Box
B

D003
Text Box
B

D003
Text Box
Bacnet Terminal

D003
Text Box
Bacnet Terminal

D003
Text Box
A

D003
Text Box
B

D003
Snapshot

D003
PolyLine

API MQTT INTEGRATION

Device connection process
We are going to use TLS securely sockets for connection between devices and server part as a transport for MQTT
protocol. Amazon recommends this. So, before we can connect our devices to server, we have to receive private key
and certificate. For doing this we just publish a special kind of message - {} in the topic with predefined name: “$aws/
certificates/create/json” . Message Broker from AWS IoT Core has already subscribed to this topic, so it reads message
and starts Lambda. Lamdba uses AWS IoT fleet provisioning. It generates device certificate and private key that signed
by the Amazon Root certificate.

This mechanism we use when device don’t have its own device certificates. This mechanism can be extended, for in-
stance Lambda can implement some additional device verification logic.
When certificate and private key are ready Lambda publish them in predefined topic with name “$aws/certificates/
created/json/accepted”. Device subscribed to this topic, so it receives key and certificate and stores it in secure storage.
That’s all, now our device can work with server.

API MQTT INTEGRATION

How it works
As an example, for the architecture explanation, we will use a building with 1 Apollo device and 1 Fan. We executed
connection process for both devices.

Our apollo device sends temperature and humidity values to the server every 10 seconds, for instance. It publishes
them to the topics named “building1/apollo1/temp” and “building1/apollo1/hymid” respectively. Rules Engine, anoth-
er AWS IoT Core component is subscribed to both these topics. Rules Engine reads humidity value and starts Lambda
that writes this value to Database. In this example we don’t have rule for humidity value. Rules Engine reads temper-
ature value and check if it belongs to some interval. If temperature value higher than high bound of the interval Rules
Engine will start Lambda that publish message with command for Fan in appropriate topic. Fun device is subscribed to
this topic, it receives command and turns on. In any case temperature value will be written in DB.

We don’t specify which DB will be used. It depends on what you are going to do with gathered data.

API MQTT INTEGRATION

KEY COMMENT TYPE SAMPLE
mac mac address String 3 ways

temp display temperature(upload
after multiplying by 10) int 0-10v

{“temp”:200} means the current room
temperature is 20, all the multiplied by 10

are the similar case

humi display humidity(upload after
multiplying by 10) int 0-10v

settemp setting temperature(upload
after multiplying by 10) int 2 ways

mode mode(1 cool, 2 heat, 3 vent,
4 auto) int 2 ways

onoff status (1 on, 2 off) int 2 ways cool / electric heat

frost frost temperature(upload after
multiplying by 10) int 2 ways

delay output delay time int 0-10v

diff switch difference(upload after
multiplying by 10) int 2 ways

holdtime hold temperature time int 2 ways

holdtemp hold temperature(upload after
multiplying by 10) int 2 stage compressor

1 stageHeating
kb screen lock(1 no, 2 yes) int

kbkey lock pin(four numbers) String
cf temperature format(0 °C, 1 °F) int

holiday holiday (0 no, 1 yes) int
standby standby (1 no, 2 yes) int

fan fan speed(1 high, 2 medium, 3
low, 4 auto) int

prog schedule(0 none, 1 weekday/
weekend, 2 7 days, 3 24 hours) int

opt optimum start(1 on, 2 off) int
timezone time zone int
version version int

temp_prog

Program mode: t-the time
in the period, 1440 means
that the period is not used;

s-setting temperature

String[]

Taking 2 7-day mode as the example, where the temperature is
multiplied by 10, and the time unit is minute, such as “t”: 360,
“s”: 160; it means that the setting temperature is 16℃ at 06:00

o’clock. In the 7-day mode, not all data are uploaded from Monday
to Sunday, and the data of only one or several days may be

uploaded, however, the data of all four time periods in the day
must be uploaded.

{ “temp_prog”: { “sun”: [{ “t”: 280, “s”: 250 }, { “t”: 360, “s”: 160 }, { “t”:
420, “s”: 250 }, { “t”: 720, “s”: 220 }], “mon”: [{ “t”: 160, “s”: 250 }, { “t”:
850, “s”: 160 }, { “t”: 680, “s”: 250 }, { “t”: 1440, “s”: 220 }], “tues”: [{
“t”: 1440, “s”: 250 }, { “t”: 1440, “s”: 160 }, { “t”: 1440, “s”: 250 }, { “t”:

1440, “s”: 220 }], “wed”: [{ “t”: 1440, “s”: 250 }, { “t”: 1440, “s”: 160 }, {
“t”: 1440, “s”: 250 }, { “t”: 1440, “s”: 220 }], “thur”: [{ “t”: 1440, “s”: 250
}, { “t”: 1440, “s”: 160 }, { “t”: 1440, “s”: 250 }, { “t”: 1440, “s”: 220 }],
“fri”: [{ “t”: 480, “s”: 210 }, { “t”: 1440, “s”: 160 }, { “t”: 1440, “s”: 250
}, { “t”: 1440, “s”: 220 }], “sat”: [{ “t”: 1440, “s”: 250 }, { “t”: 1440, “s”:

160 }, { “t”: 1440, “s”: 250 }, { “t”: 1440, “s”: 220 }] } }

In the 1 weekday/weekend mode, not
all data are uploaded on Saturday and

Sunday, and it may upload one day data,
however, the data of all four time periods

in the day must be uploaded.
{ “temp_prog”: { “weekday”: [{ “t”: 1230, “s”:
820 }, { “t”: 1380, “s”: 630 }, { “t”: 480, “s”:

700 }, { “t”: 570, “s”: 610 }], “weekend”: [{ “t”:
990, “s”: 790 }, { “t”: 1380, “s”: 620 }, { “t”:

480, “s”: 700 }, { “t”: 570, “s”: 610 }] } }

Take 3 24 hours mode
as the example.
{ “temp_prog”: {

“24hrs”: [{ “t”: 480, “s”:
210 }, { “t”: 570, “s”:
160 }, { “t”: 990, “s”:

220 }, { “t”: 1380, “s”:
170 }] } }

timer_prog
Hot water mode: n-on time,

1440 means not used in this
period; f-off time

String[]

Taking 2 7-day mode as the example, and the time unit is minute,
for example, “n”: 360, “f”: 385; it means that the timer starts at
06:00 and ends at 06:25. In the 7-day mode, not all data are

uploaded from Monday to Sunday, and the data of only one or
several days may be uploaded, however, the data of all four time

periods in the day must be uploaded.
{ “timer_prog”: { “sun”: [{ “n”: 420, “f”: 480 }, { “n”: 540, “f”: 560 }, { “n”:
1020, “f”: 1050 }, { “n”: 1320, “f”: 1400 }], “mon”: [{ “n”: 420, “f”: 480 },
{ “n”: 540, “f”: 560 }, { “n”: 1020, “f”: 1040 }, { “n”: 1320, “f”: 1380 }] } }

In the 1 weekday/weekend mode, not
all data are uploaded on Saturday and

Sunday, and it may upload one day data,
however, the data of all four time periods

in the day must be uploaded.
{ “timer_prog”: { “weekday”: [{ “n”: 120,

“f”: 125 }, { “n”: 0, “f”: 0 }, { “n”: 420, “f”: 540
}, { “n”: 960, “f”: 1200 }], “weekend”:

[{ “n”: 425, “f”: 545 }, { “n”: 960, “f”: 1200 },
{ “n”: 1440, “f”: 1440 }, { “n”: 1440,

“f”: 1440 }] } }

Take 3 24 hours mode
as the example.
{ “timer_prog”:

{ “24hrs”: [{ “n”: 480,
“f”: 560 }, { “n”: 570,
“f”: 580 }, { “n”: 990,

“f”: 1020 }, { “n”: 1380,
“f”: 1400 }] } }

How dos thermostat work with mqtt server
1) mc6 publish topic: updData/MacAddress
2) MC6 subscibe topic: MACaddress
server sends command(setpoint, turn on/off) from cloud server to MQTT broker:
server should publish msg(settings) to this topic is only the mac address , so that thermostat could subscribe msg(settings) from this
topic “mac address”

The red part is controlable keys
{“msgid”:4,”mac”:”308398abea7d”,”version”:5,”temp”:210,”humi”:350,”settemp”:260,”mode”:5,”onoff”:1,”frost”:70,”delay”:0,”dif-
f”:10,”holdtemp”:260,”holdtime”:0,”kb”:1,”kbkey”:”0000”,”cf”:0,”holiday”:0,”holiday_startime”:0,”holiday_endtime”:0,”standby”:2,”-
fan”:4,”timezone”:13,”prog”:0,”temp_prog”:{}}

D003
Text Box
Thermostat integration with MQTT server

D003
Text Box
Unit

D003
Text Box
Unit

BACNET MS/TP INTEGRATION

Set BACnet parameters in MC6
(1) Home sreen->Configuration menu ->the APOLLO thermostat

(2) BACnet MSTP communication port default settings: Data Bits: 8; Parity: No; Stop Bits: 1;
 Below three items could be changed on MC6 :
 Address: 1 to 127 , 01(default);
 Data Rate : 1200, 2400, 4800, 9600, 19200, 38400, 57600. 19200 (default)

BACNET DATA FORMAT

BACNET MS/TP INTEGRATION

APOLLO Heat Pump
Apolloheatpumps.com

sales@apolloheatpumps.com
www.apolloheatpumps.com

888-301-0737

2411 N. American Street
Philadelphia. PA 19133, USA

