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Abstract 11 

This single center observational study measured a relative polygenic risk score for two oral health 12 

conditions from 27 dental patients. Calculating an individual’s polygenetic risk score is an emerging 13 

tool in genetics. Its potential to focus on preventative healthcare in populations has allowed it to be 14 

implemented by health systems like the UK’s National Health Services (Genome UK). There are 15 

several oral health conditions that have a genetic basis including dental caries and periodontal 16 

disease. Despite good oral hygiene habits, some individuals may have an increased genetic 17 

predisposition to certain dental problems. The Canadian Dental Association reported that an 18 

estimated 2.26 million school-days are missed each year due to dental-related illness and tooth decay 19 

accounts for one-third of all day surgeries performed on children between the ages of 1 and 5. In the 20 

United States, a child is five times more likely to seek emergency room treatment for dental problems 21 

than for asthma, often because they are unable to see a dentist, are uninsured or cannot afford routine 22 

dental care. Upon review of the literature, we identified common genetic variants with evidence for 23 

association with periodontal disease and dental caries and developed a genotyping panel coupled with 24 

a relative polygenic risk score.  We assessed  the performance of this assay in a cohort of 27 dental 25 

clinic patients by running polygenic risk scores against a baseline derived from the publicly available 26 

1000 Genomes Project dataset as a reference population. The baseline score distribution was used to 27 

define categories of relative risk. Evaluation of the relative-polygenic risk score in larger case control 28 

cohorts should be considered to weigh the utility of the proposed relative risk scoring model; 29 

allowing for the stratification of patients  who  may benefit from enhanced monitoring or proactive 30 

oral health care regimens at the discretion of dental healthcare providers.  31 

1 Introduction 32 

It is well established that many diseases and conditions have an underlying genetic component, 33 

however, determination of genetic etiology can be challenging especially for multifactorial diseases 34 

(Dudbridge, 2016; Chasioti et al., 2019). Multifactorial, or complex diseases, arise from a 35 

combination of genetic predisposition and extrinsic factors such as environmental exposures or 36 

lifestyle choices. Unlike Mendelian (monogenic) disorders where variation in a single gene can give 37 
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rise to a particular phenotype, multifactorial (polygenic) disorders are often influenced by many 38 

genes, each of small effect (Manolio et al., 2009; Golan et al., 2014; Chasioti et al., 2019; Cano-39 

Gamez and Trynka, 2020). The development of polygenic risk scores enables a deeper understanding 40 

of the impact genetics has on the development of diseases and conditions (Torkamani et al., 2018; 41 

Chasioti et al., 2019; Klarin and Natarajan, 2022). A polygenic risk score (PRS) illustrates how an 42 

individual’s risk of developing a disease or condition compares to the broader population baseline. A 43 

PRS is comprised of genetic variants that have been identified to be associated with a particular 44 

disease or condition, typically as a result of large Genome-Wide Association Studies (GWAS) (Choi 45 

et al., 2021). Using statistical models and scoring algorithms, it is possible to evaluate how an 46 

individual’s unique genetic profile contributes to their overall risk for a disease or condition of 47 

interest (Dudbridge, 2013; Chang et al., 2015; Choi et al., 2021).  48 

PRS is an emerging tool in genetics. Its potential to focus on preventative healthcare in populations 49 

has allowed it to be implemented by health systems such as the UK’s National Health Services 50 

(Genome UK). PRS for common diseases like coronary artery disease and type 2 diabetes have been 51 

developed and analyzed (Khera et al., 2018). Despite good oral hygiene habits, some individuals may 52 

have an increased genetic predisposition to certain dental problems. There are several oral health 53 

conditions that have a genetic basis including periodontal disease, dental caries (cavities) resistance, 54 

and oral cancers (Michalowicz et al., 2000; Bretz et al., 2005; Sarode et al., 2018; Shungin et al., 55 

2019). Two of these conditions, periodontitis and dental caries, were estimated to be the eleventh and 56 

first most prevalent diseases respectively in a global study (Vos et al., 2017). Global economic 57 

impact of dental diseases amounted to $442 billion USD in 2010 (Listl et al., 2015).  58 

Periodontal disease (PD) is a chronic inflammatory disease that leads to the degradation of tooth-59 

supporting structures (Shungin et al., 2019). At first a patient might present with gingivitis, which is 60 

characterized by swollen and red gums that tend to bleed. Gingivitis can progress to periodontitis, 61 

which can result in bone or tooth loss as the gum detaches from the tooth (Kinane et al., 2017). It has 62 

been found that PD may increase the risk of cardiovascular disease by 19%. In addition, Type 2 63 

diabetic individuals with severe PD have three times greater mortality risk compared to those with no 64 

or mild periodontitis. Periodontal therapy has also been shown to improve glycemic control in type 2 65 

diabetic individuals (Nazir, 2017). PD is the main cause of tooth loss and is one of the most common 66 

oral conditions in the human population (Nazir, 2017; Vos et al., 2017).   67 

Tooth decay results from destruction of the tooth’s enamel. Tooth decay can be caused by the acid 68 

produced by the bacteria responsible for breaking down food in the mouth. The acid-induced enamel 69 

erosion creates a hole (cavity) in the tooth. If left untreated, infection or more severe outcomes such 70 

as tooth loss can occur (National Institute of Dental and Craniofacial Research, 2019). Worldwide, 71 

more than two billion people have cavities of the permanent teeth, and 520 million children have 72 

cavities in their primary teeth (Vos et al., 2017). There has been an increase in prevalence in 73 

developing countries due to the growing consumption of sugary foods, poor tooth brushing habits, 74 

and absence of adequate dental services (Teshome et al., 2021).  75 

 76 

Oral disease prevention strategies should be incorporated in chronic systemic disease preventative 77 

initiatives to lessen the burden of disease in the population. Mitigating the incidence and prevalence 78 

of PD can reduce its associated systemic diseases (Liccardo et al., 2019). Overall improvements in 79 

oral health may lead to significant economic benefit with respect to decreased cost of treatment and 80 

labour resource allocation in dental clinics (Listl et al., 2015). Based on the existing literature, we 81 
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identified common genetic variants with evidence for association with PD and tooth decay/cavities 82 

and developed a genotyping panel coupled with a relative polygenic risk score. In this study we 83 

assessed the performance of the assay in a cohort of 27 dental clinic patients. A genotyping panel that 84 

integrates a relative-polygenic risk score can be utilized by dental professionals to identify 85 

individuals’ genetic contribution to the overall predisposition to common oral health conditions.    86 

2 Materials and Methods 87 

2.1 Patient Enrolment  88 

Participants were required to be 18 years old or older for inclusion in this study. Participant selection 89 

occurred independent of sex, ethnicity, and of any diagnosis or epidemiological indices. Informed 90 

consent was obtained from each of the 29 participants. The cohort consisted of 11 males, 15 females, 91 

and 3 individuals whose biological sex was not reported. Participants ranged in age from 21-87 years 92 

old. Enrolment took place over the course of one day (December 11th, 2021).  93 

2.2 Study Design  94 

Participant recruitment occurred at a single site (private dental office) in Ontario, Canada. The study 95 

was designed as a cohort study whereby individuals were approached during routine practice, under 96 

the dental clinic’s natural settings. Written informed consent was obtained from study participants. 97 

Consented participants provided a buccal (cheek) swab for genetic testing. Select demographic 98 

information including biological sex and age was recorded. Genetic data was deidentified. Individual 99 

genetic testing reports were generated based on genetic variants associated with the two oral health 100 

indications (periodontal disease and cavities/tooth decay). Reports were issued to the study 101 

investigator and unblinded for the dental healthcare provider for discussion at a subsequent regularly 102 

scheduled visit. The study protocol was reviewed and approved by an independent ethics review 103 

board.  104 

2.3 Variant Selection/Panel Design 105 

Genetic variants to be included in an oral health-based genetic panel were first identified following a 106 

thorough review of the literature encompassing genetic risk and susceptibility for PD and dental 107 

cavities/tooth decay. Risk-associated variants were selected from a combination of case-control, 108 

meta-analyses, and GWAS publications. The list of candidate variants was narrowed down by 109 

considering study design/phenotype criteria, statistical significance, availability of effect alleles and 110 

weights in the original publications, and availability of coordinates in the Genome Reference 111 

Consortium Human GRCh38.p13 (GRCh38) reference genome assembly. After quality control (QC), 112 

a total of 25 single nucleotide polymorphisms (SNPs) were selected for PD, and 35 SNPs for 113 

cavities/tooth decay. These SNPs were included in the design of the proprietary Oral Health Panel for 114 

downstream application with the Agena Bioscience MassARRAY® System with Chip Prep Module 115 

(CPM) 96 (CP1603036).  116 

2.4 Relative-Polygenic Risk Score (R-PRS) Development  117 

The candidate SNPs were subsequently evaluated for utility in the development of a PRS in a 118 

background (baseline) control population. The 1000 Genomes Project (1000G) reference data set was 119 

selected as the control cohort for this purpose. The 1000G cohort consists of genetic data from over 120 

2500 consented subjects from 26 global populations (Auton et al., 2015). The distribution of risk 121 

scores obtained from the control cohort thus served as the baseline against which all subsequent 122 
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genotyping results can be compared to, enabling the derivation of an individual’s polygenic risk 123 

score relative to the general population, referred to as the relative polygenic risk score (R-PRS). An 124 

assessment of specificity and sensitivity was not performed as the intent of the relative polygenic risk 125 

score outlined herein is to discern where an individual’s risk score lies with respect to the distribution 126 

observed in a population of self-reported healthy individuals.  127 

A subset of candidate variants was selected for inclusion in the construction of the R-PRS based on 128 

the following criteria: (1) presence of the SNP in the 1000 Genomes Phase 3 Integrated Variant Calls 129 

dataset and (2) presence of effect (risk) alleles in either the reference or the alternative allele in the 130 

1000 Genomes dataset. A separate R-PRS baseline was constructed for each oral health condition. 131 

Bioinformatic processing was achieved using PLINK 1.9, an open-source whole genome association 132 

analysis toolkit (Purcell et al., 2007). Development of each R-PRS followed a clumping and 133 

thresholding approach adapted from Choi et al. (Choi et al., 2021). The subset of SNPs that passed 134 

QC criteria were used in the final risk score calculations to establish the baseline distribution. Score 135 

calculation followed an additive model, whereby the SNP effect size (logarithm of the reported odds 136 

ratio), Si, was multiplied by the dosage (copies of the effect allele), Gij, and summed across all SNPs. 137 

To account for missing genotypes, the sum is divided by the number of non-missing SNPs, Mj, 138 

multiplied by the ploidy, P. 139 

𝑃𝑅𝑆𝑗 = (∑
𝑖

𝑁
𝑆𝑖 ∗ 𝐺𝑖𝑗) / (𝑃 ∗ 𝑀𝑗)  140 

Where Gij is the genotype for the ith individual and jth SNP 141 

Risk scores for each of the 1000G subjects were plotted on a curve and the data assessed for 142 

normality for each condition tested. The risk score distributions were divided into percentiles, 143 

corresponding to categories of relative risk. These categories were used to assign relative risk to the 144 

participants of the study based on their personal risk scores.  145 

2.5 Genotyping and Quality Control 146 

Buccal swabs were obtained from 29 subjects using the ORAcollect•DNA (OCR-100) kit (DNA 147 

Genotek). Genomic DNA was extracted using the prepIT®•L2P protocol for 0.5mL of sample (DNA 148 

Genotek). Quantity and purity of DNA was determined using absorbance at wavelengths of 260 and 149 

280nm (NanoDrop™ One, Thermo Scientific™). Sample identification and authentication was 150 

performed using the iPLEX® Pro Sample ID Panel (Agena Bioscience). The Sample ID Panel is 151 

comprised of 44 SNPs that are used to generate a unique genetic fingerprint for each sample, in 152 

addition to three biological sex markers and five copy number quality markers. This panel also serves 153 

as a secondary metric for DNA quality assessment. Samples are flagged as QC failures if any of the 154 

following criteria are met: (i) gender mismatch identified (discrepancy between detected and reported 155 

gender), (ii) ≥ 14 unsuccessful SNP calls, (iii) >11 low quality calls, (iv) ≤ 500 amplifiable copies of 156 

DNA, or (v) an unexpected match between two presumably unrelated patient samples. Samples that 157 

passed QC were prepared for genotyping with the oral health panel and QC failures were re-158 

processed. 159 

Forward and reverse primers targeting the candidate SNPs were designed in multiplex by Agena 160 

Bioscience for the Oral Health Panel. A total of 2 μl of genomic DNA (20 ng/μl concentration) was 161 

loaded in 96 well PCR plates along with the PCR master mix. The PCR amplification steps were 162 

performed on the T100 Thermal Cycler (Bio-Rad). Post-PCR processing with shrimp alkaline 163 

phosphatase (SAP), single base extension reactions, and SNP genotyping was performed as per the 164 
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manufacturer’s protocol for custom MassARRAY® panels using iPLEX Pro chemistry (Agena 165 

Bioscience). The 29 samples were genotyped in two separate batches. A subset (n=3) of DNA 166 

samples were randomly selected to test inter-run reproducibility. Three non-template, negative 167 

controls were loaded onto each plate. Biological samples were flagged as QC failures if the high-168 

quality genotype call rate was ≤ 80%. Samples failing QC criteria were not assigned an R-PRS. 169 

3 Results 170 

3.1 Oral Health Panel PRS Show Normal Population Distribution  171 

The original genotyping panel design included 25 and 35 SNPS for PD and cavities/tooth decay 172 

respectively. These SNPs were selected on the basis of having published evidence for statistically 173 

significant disease association and coordinates in the GRCh38 reference genome assembly. Summary 174 

statistics were obtained from the corresponding publications for downstream application in the 175 

development of the PRS algorithm.  176 

PRS analyses and baseline scoring was performed with PLINK 1.9, using the publicly available 177 

1000G dataset as a reference population baseline (Purcell et al., 2007; Chang et al., 2015; Fairley et 178 

al., 2020). The baseline data (summary statistics) was first subjected to QC, whereby SNPs with two 179 

or more alleles or ambiguous alleles were removed. For the target data (1000G cohort data), SNPs 180 

were removed if (i) the minor allele frequency is <0.01, (ii) Hardy-Weinberg equilibrium is <1E-6, or 181 

(iii) if the SNP exhibited a rate of missingness >0.01 in the 1000G cohort. Additional QC filters were 182 

applied to remove samples with a high rate of genotype miss-calls, sex discordance, or close 183 

biological relatedness. After performing QC, 11 PD-associated SNPs and 8 cavities-associated SNPs 184 

were removed from the PRS algorithm. A total of 2548 and 1863 subjects were retained for PD and 185 

cavities respectively. Next, clumping was performed to remove SNPs if the r2 linkage disequilibrium 186 

threshold is >0.1 with the index SNP. After clumping, 11 SNPs for PD and 27 SNPs for cavities 187 

remained for baseline scoring. The oral health conditions were scored separately using the additive 188 

dosage weighted model (Choi et al., 2021). 189 

The resulting distribution of polygenic risk scores was approximately normally distributed (Figures 190 

1, 2). PD showed stronger evidence of normality with points following a nearly linear line while 191 

cavities showed a poorer fit with skewing towards its low and high ranges. (Figures 1 and 2 in 192 

Supplementary Material). The median polygenic risk score was 0.1462235 for PD and -0.00203701 193 

for cavities. The risk categories were calculated based on the 5th, 15th, 50th, 85th, and 95th percentiles 194 

as the cut-offs for low, intermediate-low, average, intermediate-high, and high-risk categories 195 

respectively (Figures 3, 4, and Table 1 in Supplementary Material). The risk categories observed in 196 

the control cohort thus serve as the baseline against which an individual’s risk can be assessed. All 197 

subsequent individual risk assessment is hence relative to that of the general population.  198 

3.2 Independent  Cohort Exhibits Normal Distribution  199 

An assessment of the MassARRAY genotyping call rate revealed four underperforming SNP assays 200 

across the cohort. These SNPs had significant low quality or missing genotype calls and/or 201 

indistinguishable genotype call clusters. These SNPs are to be removed from the PRS algorithm and 202 

the 1000G baseline moving forward. The assessment of inter-run reproducibility revealed a mean 203 

genotype call concordance rate of 98% across the three tested samples. A total of 27 out of 29 DNA 204 

samples passed QC, with a 93.5% mean high quality call rate, and were assigned an R-PRS.  205 



Validation of Oral Health Panel 

 
6 

Relative risk scores were calculated for each subject using the same approach as the 1000G control 206 

cohort such that each individual score could be placed in the context of the baseline distribution. The 207 

poor performing SNPs were labelled as missing genotypes and accounted for in the PRS calculation 208 

using the conservative substitute formula (2 ∗ 𝑚𝑖𝑛𝑜𝑟 𝑎𝑙𝑙𝑒𝑙𝑒 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ∗ 𝑒𝑓𝑓𝑒𝑐𝑡 𝑠𝑖𝑧𝑒), enabling a 209 

direct comparison to the baseline risk scores. The distribution of risk scores observed in the study 210 

cohort closely followed the distributions of the 1000G cohort for both conditions. The quantile plots 211 

exhibited data normality (Figures 3 and 4 in Supplementary Material). As expected, most relative risk 212 

scores fell in the 50th percentile (average relative risk) for both conditions (Figure 5). One high risk 213 

categorization was obtained for each condition. Despite the small sample size, this preliminary 214 

evaluation of the distribution of risk scores and relative risk categorizations suggest that the SNPs 215 

included in the final PRS algorithm can effectively stratify individuals into distinct relative risk bins.  216 

4 Discussion 217 

The availability of GWAS data has made it possible to better understand and model genetic 218 

susceptibility for polygenic diseases and traits such as PD and cavities (Chasioti et al., 2019; Lambert 219 

et al., 2019; Shungin et al., 2019). Through the curation of disease-associated SNPs and development 220 

of PRS algorithms in a large, ethnically diverse control population, we demonstrated an approach that 221 

can be used to infer relative genetic risk for two common oral health conditions. The results of this 222 

study demonstrate the utility of an oral health genotyping panel coupled with a relative-PRS to 223 

stratify patients into one of five categories of genetic risk relative to that of the general population.  224 

 225 

One of the most challenging aspects of PRS is ensuring that the generated scores are equally 226 

applicable across all ethnic groups. Most existing data available within genome wide association 227 

studies are from individuals of European ancestry, as a result the current scores are most predictive 228 

for individuals within this population (Duncan et al., 2019; Lewis and Vassos, 2020). This issue 229 

needs to be highlighted as minority ethnic groups may be under-represented in research studies. This 230 

may possibly lead to a less predictive score for the under-represented ethnic groups (Lewis and 231 

Vassos, 2020). We (and others) within this space are addressing this gap as we continuously grow 232 

and diversify our population database (Morales et al., 2018). By doing so, our algorithm will in 233 

parallel be continuously updated to provide increasingly more accurate relative polygenic risk scores. 234 

We also acknowledge that our study lacked the incorporation of individuals’ clinical background, 235 

which was beyond the scope of the study. We are currently building our algorithm to include the 236 

effects of environmental and behavioral factors to better estimate individual risk. Future work will be 237 

centered on evaluating the sensitivity and specificity of the proposed risk scoring algorithm. These 238 

metrics can be used to assess the ability of the risk score to reliably stratify patients who are high risk 239 

for the two dental conditions tested. While this assessment could not be performed in the current 240 

analysis, the approach outlined provides a means to contextualize the effect of risk associated SNPs 241 

across individuals in the absence of an independent validation cohort of sufficient sample size.  242 

 243 

The need for genetic curriculum and education has been raised in the dental community in order to 244 

better understand how genetic testing can benefit patient care (Behnke and Hassell, 2004; Hart and 245 

Hart, 2016). It will be important to engage with the dental community and other healthcare providers 246 

to equip them with the knowledge needed to make informed decisions based on the outcomes of 247 

genetic testing, whether it be for Mendelian diseases or multifactorial conditions (Zimani et al., 248 

2021). The results of the relative-PRS assessment can be used at the discretion of dentists to identify 249 

patients that might benefit from enhanced surveillance. It will be important to weigh the genetic risk 250 

in the context of other clinical and lifestyle factors that play a role in these multifactorial conditions. 251 

While the R-PRS is not intended to be diagnostic, it offers a more comprehensive insight to the 252 
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personal genetic susceptibility for PD and cavities that cannot be gained from a report on singular 253 

risk variants at common polymorphic loci. Extensive testing and validation will be an essential 254 

prerequisite to adoption of polygenic risk scoring models in the clinic.  255 
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Figure 1 PRS distribution for periodontal disease in the reference population (n=2548) calculated 366 

using PLINK 1.9 PRS pipeline. 367 

Figure 2 PRS distribution for cavities in the reference population (n=1863) calculated using PLINK 368 

1.9 PRS pipeline. 369 

Figure 3 Risk score bins derived from the reference population used to define relative risk categories 370 

for cavities. 371 

Figure 4 Risk score bins derived from the reference population used to define relative risk categories 372 

for periodontal disease.  373 

Figure 5. Distribution of relative risk categorizations associated with polygenic risk scores observed 374 

in the study cohort (n=27). (A) Cavities distribution. (B) Periodontal disease distribution.  375 
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