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PREFACE

The first edition of the Radiofrequency Radiation Dosimetry Handbook, SAM-TR-76-35
(September 1976), was published with the objective of providing the best information then
available about electromagnetic energy absorption. In that edition the dosimetric data were
limited mostly to the lower part of the electromagnetic spectrum, principally in the 10 kHz-1.5
GHz range, and also to homogeneous spheroidal and ellipsoidal models of humans and other
animals. The data clearly demonstrated the importance of frequency, geometric configuration,
and orientation in the assessment of biological effects induced by radiofrequency (RF) radiation.

The second edition of the handbook, SAM-TR-78-22 (May 1978), provided expanded dosimetric
data. The frequency range was broadened to the 10 MHz-100 GHz band. The data included
absorption of models irradiated by planewaves in free space, absorption of models on or near
ground planes, heat-response calculations, and some scattering data. Empirical relations for
calculating the rate of energy absorption; some rules of thumb for electromagnetic absorption;
and data from the literature for metabolic rates, dielectric constants, and conductivities were also
included as well as tables summarizing the experimental data and theoretical techniques found in
the literature.

The third edition of the handbook, SAM-TR-80-32 (August 1980), was published mainly to
provide new data on near-field absorption, which up until that time was scarce because near-field
calculations are so difficult to make. The data consisted of specific absorption rates (SARs) for
spheroids and cylinders irradiated by short dipoles and small loops, and a block model of man
irradiated by simple aperture fields. Also included were absorption data for spheroidal models
irradiated by circularly polarized planewaves, multilayered cylindrical models irradiated by
planewaves, and spheroidal models irradiated in K polarization by planewaves for frequency
ranges in which calculations had not been possible for the second edition. Tables in the second
edition that summarized experimental data and theoretical techniques found in the literature were
updated; although generally speaking, material contained in the first and second editions was not
included in the third edition.

The third edition also had a section on dosimetric techniques, which included a history of
electromagnetic dosimetry and a section on qualitative near-field dosimetry. The material on
qualitative explanations of near-field SARs is especially important because near-field SARs
cannot be normalized to incident-power density, as planewave SARs can be. Since near-field
radiation fields vary so much from one radiation source to another, near-field dosimetric data for
specific sources could not be given; only near-field SAR data for simple illustrative -radiation
fields were presented.

The purpose of this fourth edition is to provide a convenient compilation of information
contained in the previous editions, including updated tables of published data, and to add new
information.
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Chapter 1. Introduction

The radiofrequency portion of the electromagnetic spectrum extends over a wide range of
frequencies, from about 10 kHz to 300 GHz. In the last two or three decades, the use of devices
that emit radiofrequency radiation (RFR) has increased dramatically. Radiofrequency devices
include, for example, radio and television transmitters, military and civilian radar systems,
extensive communications systems (including satellite communications systems and a wide
assortment of mobile radios), microwave ovens, industrial RF heat sealers, and various medical
devices.

The proliferation of RF devices has been accompanied by increased concern about ensuring the
safety of their use. Throughout the world many organizations, both government and
nongovernment, have established RFR safety standards or guidelines for exposure. Because of
different criteria, the USSR and some of the Eastern European countries have more stringent
safety standards than most Western countries. The Soviet standards are based on central-
nervous-system and behavioral responses attributed to RFR exposure in animals. In Western
countries the standards are based primarily on the calculated thermal burden that would be
produced in people exposed to RFR. In each case, better methods are needed to properly
extrapolate or relate effects observed in animals to similar effects expected to be found in people.
(The development of new RFR safety guidelines is discussed in Chapter 11.) Safety standards
will be revised as more knowledge is obtained about RFR effects on the human body.

An essential element of the research in biological effects of RFR is dosimetry--the determination
of energy absorbed by an object exposed to the electromagnetic (EM) fields composing RFR.
Since the energy absorbed is directly related to the internal EM fields (that is, the EM fields
inside the object, not the EM fields incident upon the object), dosimetry is also interpreted to
mean the determination of internal EM fields. The internal and incident EM fields can be quite
different, depending on the size and shape of the object, its electrical properties, its orientation
with respect to the incident EM fields, and the frequency of the incident fields. Because any
biological effects will be related directly to the internal fields, any cause-and-effect relationship
must be formulated in terms of these fields, not the incident fields. However, direct measurement
of the incident fields is easier and more practical than of the internal fields, especially in people,
so we use dosimetry to relate the internal fields (which cause the effect) to the incident fields
(which are more easily measured). As used here, the term "internal fields" is to be broadly
interpreted as fields that interact directly with the biological system and include, for example, the
fields that, in perception of 60-Hz EM fields, move hair on the skin as well as fields that act on
nerves well inside the body. In general, the presence of the body causes the internal fields to be
different from the incident fields (the fields without the body present).

Dosimetry is important in experiments designed to discover biological effects produced by RFR
and in relating those effects to RFR exposure of people. First, we need dosimetry to determine
which internal fields in animals cause a given biological effect. Then we need dosimetry to
determine which incident fields would produce similar internal fields in people, and therefore a
similar biological effect. Dosimetry is needed whether the effects are produced by low-level
internal fields or the higher level fields that cause body temperature to rise.
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In small-animal experiments dosimetry is especially important because size greatly affects
energy absorption. For example, at 2450 MHz the average absorption per unit mass in a medium
rat could be about 10 times that in an average man for the same incident fields. Thus at 2450
MHz at the same average energy absorption per unit mass, a hypothetical biological effect that
occurred in the rat should not be expected to occur in man unless the incident fields for the man
were much higher than those irradiating the rat. Similarly, an effect observed in one animal in
some given incident fields may not be observed in a different-size animal in the same incident
fields, only because the internal fields could be quite different in the two animals. Another
possibility is that the physiological response to the internal fields of the two species could be
quite different. For example, different species often respond differently to the added heat burden
of applied EM fields. The dosimetric data are presented here in terms of the specific absorption
rate (SAR) in watts per kilogram. Adoption of the term "SAR" was suggested by the National
Council on Radiation Protection and Measurement and has been generally accepted by the
engineering and scientific community. The terms "dose rate" and "density of absorbed power"
(often called absorbed-power density), which commonly appear in the engineering literature, are
equivalent to SAR. Each of these terms refers to the amount of energy absorbed per unit time per
unit volume, or per unit time per unit mass. In this document we give the SAR in watts per
kilogram by assuming that the average tissue density is 1 g/cm?’. The total power absorbed in
comparison with the body surface is also of interest. In many animals heat is dissipated through
the surface by evaporation or radiative heat transfer; thus power density in watts per square
meter of body surface area may indicate the animal's ability to dissipate electromagnetic power.
This is not a rigorous indicator of hazard for animals, however, as many other heat-dissipation
mechanisms specific to species are also important, as well as environmental temperature and
humidity effects.

The rigorous analysis of a realistically shaped inhomogeneous model for humans or experimental
animals would be an enormous theoretical task. Because of the difficulty of solving Maxwell's
equations, which form the basis of analysis, a variety of special models and techniques have been
used, each valid only in a limited range of frequency or other parameter. Early analyses were
based on plane-layered, cylindrical, and spherical models. The calculated dosimetric data
presented in this handbook are based primarily on a combination of cylindrical, ellipsoidal,
spheroidal, and block models of people and experimental animals. Although these models are
relatively crude representations of the size and shape of the human body, experimental results
show that calculations of the average SAR agree reasonably well with measured values.
Calculations of the local distribution of the SAR, however, are much more difficult and are still
in early stages of development.

13



Chapter 2. How To Use Dosimetric Data
In This Handbook

The material in this section is intended to help the reader interpret and use the quantitative
dosimetric information contained in this handbook. Readers not familiar with some of the
concepts or terms used in this chapter may wish to read Chapter 3 (background and qualitative
information about dosimetry) in conjunction with this material.

Although the dosimetry data are given in terms of SAR, the internal E-field can be obtained
directly from the SAR by solving for the internal E-field from Equation 3.49 (Section 3.3.6):

o SAER

E_=- |-&B —
1 WmE £
(Equation 2.1)

For a given frequency, the internal fields in irradiated objects are a strong function of the size of
the object (see Chapters 6 and 8). In extrapolating results obtained from an experimental animal
of one size to an animal of another size or from an experimental animal to a man, it is often
important to determine what incident fields would produce the same (or approximately the same)
internal fields in these different-size animals. For example, a person studying biological effects
in rats irradiated at 2450 MHz may want to relate those to effects expected to occur in humans
exposed to the same radiation. Since the rat and man are very different in size, exposing them to
the same incident fields would result in quite different internal fields. Therefore, if their internal
fields are to be similar, the incident fields irradiating each must be different. We have two
general ways to adjust the incident fields to get similar internal fields:

1. Change the power density of the incident radiation.
2. Change the frequency of the incident radiation.

The first might be called power extrapolation; the second, frequency extrapolation. Under either
condition, the internal-field patterns in the two cases would differ even if the average SARs were
the same. The internal distributions can be made similar in a very approximate sense, however,
by relating the wavelength of the incident radiation to the length of the object.

When biological effects are due to heat generated by the radiation, combined power and
frequency extrapolation is probably the better course; it makes the average SARs nearly the same
and results in a similar distribution of internal fields, which depends strongly on the relationship
of absorber size to wavelength. For studying effects that might be strongly frequency dependent,
such as a molecular resonance of some kind, frequency extrapolation would not be appropriate.

The following examples will illustrate both kinds of extrapolation and generally how the
dosimetric data in this handbook might be used.

EXAMPLE 1

Suppose that in a study of RF-induced biological effects a 320-g rat is being exposed to E-
polarized RF radiation at 2450 MHz with an incident-power density of 20 mW/cm . The

14



researcher desires to know what exposure conditions would cause approximately the same
average SAR and internal-field distribution in an average man that the 20 mW/cm” at 2450 MHz
produces in the rat. Since the physiological characteristics of rats differ significantly in many
respects from those of people, any interpretation of the rat's biological responses in terms of
possible human responses must be made with great care. By this example we are not implying
that any such interpretation would be at all meaningful; that must be left to the judgment of the
researcher for a particular experiment. On the other hand, knowing exposure conditions that
would produce similar average SARs and internal-field distributions in rats and people is
desirable for many experiments. The following information is provided for such cases.

First, because the rat is much smaller than a man, at 2450 MHz their internal field patterns will
differ considerably. One indication of this difference can be obtained from Equation 3.46
(Section 3.3.4). The skin depth () at 2450 MHz is about 2 cm. From Tables 5.2 and 5.4, the
values of the semiminor axis (b) for prolate spheroidal models of an average man and a 320-g rat
are 13.8 and 2.76 cm respectively; thus the ratio 6/b for an average man is 0.14; for the rat, 0.72.
These ratios indicate that any RF heating would be like surface heating for the man but more like
whole-body heating for the rat. Consequently, comparing RF effects in humans and smaller
animals may not be meaningful at 2450 MHz. Comparison might be more meaningful at a lower
frequency, where the internal field patterns in the man and the rat would be more similar. A
simple way to choose an approximate frequency for human exposure is to make A/2a, the ratio of
the free-space wavelength to length, the same for both the man and the rat. This approximation
neglects the change in permittivity with frequency, which is acceptable for these approximate
calculations. (more precise methods that include the dependence of permittivity are described in
Section 7.2.6.) Since A = c¢/f (Equation 3.29, Section 3.2.8), requiring 2af to be the same for the
rat and the man would be equivalent. Thus, we can calculate the frequency for the human
exposure to be:

O A
“h'h ety (Equation 2.2)
Za o0
£ = _tf = =" ousoMHz = 280 MHz
h 2ah r  175cm

(Equation 2.3)

where subscripts h and r stand for human and rat respectively. This result shows that we should
choose a frequency in the range 200-400 MHz for human exposure to compare with the rat
exposure at 2450 MHz. Permittivity changes with frequency, so the A/2a ratio does not
correspond to the 6/b ratio; however, since both ratios are approximations and the A/2a ratio is
easier to calculate, it seems just as well to use it. Another point regarding frequency
extrapolation is that meaningful comparisons can probably be made when the frequency for both
absorbers is below resonance; but if the frequency for one absorber is far above resonance and
the frequency for the other absorber is below resonance, comparisons of SAR will not be
meaningful.

Now that we have completed the frequency extrapolation, we can calculate the incident-power
density required at 280 MHz to provide the same average SAR in an average man that is
produced in a 320-g rat at 2450 MHz with 20-mW/cm? incident-power density. The average
SAR in the rat for 1-mw/cm® incident-power density is 0.22 W/kg (Figure 6.16); thus the average
SAR in the rat for 20-mw/cm? incident-power density is 4.4 W/kg. The average SAR in the
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average man at 280 MHz is 0.041 W/kg for | mW/cm” (Figure 6.3); thus to produce an average
SAR of 4.4 W/kg in the average man would require an incident-power density of (4.4/0.041)(1
mW/cm?), or 107 mW/cm?).

Our frequency extrapolation resulted in similar relative positions with respect to resonance on
the SAR curves for the rat and the man. Yet because the SAR curve for the rat is generally higher
than that for man, equivalent exposure of man requires considerably higher incident-power
density. The generally higher level of the SAR curve in the rat is due to the combination of size
and variation of permittivity with frequency.

EXAMPLE 2

An average man is exposed to an electromagnetic planewave with a power density of 10
mW/cm? at 70 MHz with E polarization. What radiation frequency would produce the same
average SAR in a small rat as was produced in the man?

Here, as in the previous example, comparing SARs may be meaningful only at frequencies for
which the A/2a ratios are similar. From the relation developed in the last example, we find that

2a
P o= hf =17"5|:m

r Ear h 14 cm

J0MHz = 575 MHz

(Equation 2.4)

Since 70 MHz is approximately the resonant frequency for man (Figure 6.3) and 875 MHz is
close to the resonant frequency (900 MHz) for the small rat (Figure 6.15), let's use 900 MHz for
the rat. At 70 MHz the average SAR for the average man exposed to 10 mW/cm? is 2.4 W/kg
(Figure 6.3). For the small rat, the average SAR for 1 mW/cm2 at 900 MHz is 1.1 W/kg. Hence
at 900 1\/2[Hz, the incident power density for the rat should be (2.4/1.1)(1 mW/cm? ), or 2. 18
mW/cm”.

EXAMPLE 3

A 420-g rat (22.5 cm long) is irradiated with an incident planewave power density of 25 mW/cm
? at a frequency of 400 MHz with E polarization. What incident planewave power density and
frequency would be expected to produce a similar internal-field distribution and average SAR in
an average man?

Again, frequency extrapolation should be used because 400 MHz is above resonance for the man
and below resonance for the rat. The approximate equivalent exposure frequency for man is

e 2250Mm 0 WHz = 51 MHz
175 cm (Equation 2.5)

Since a curve for a 420-g rat is not included in the dosimetric data, we will calculate the average
SAR for the rat by using the empirical formula given in Equation 5.1. The first step is to
calculate b for the rat. Since 2a = 22.5 cm and the volume of the rat is 420 cm’ (assuming a
density of 1 g/lcm’), we can solve for b from the relation for the volume of a prolate spheroid:
v =2l
3 (Equation 2.6)
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3 3 (4207 cm’
b= = JW= 29%cm = 00299 m
4 ma 411,25 cm (Equation 2.7)

Now, substituting a=0.1125 m and b = 0.0299 m into Equations 5.2 through 5.6 gives us
f, =567 MHz
fo1 = 860 MHz
for = 1579 MHz
A=717
Ar=1226

Since f, and f; are both larger than 400 MHz, we need not calculate As, A4, and As because u (f
- fo1 ) = u(f - f, ) = 0. Substituting into Equation 5.1 results in SAR = 0.44 W/kg for the rat
exposed to 1 mW/cm?at 400 MHz. The average SAR for the rat exposed to 25 mW/cm® at 400
MHz is 11.0 W/kg. For the average man at 51 MHz for 1-mW/cm” incident-power density, the
average SAR is 0.11 W/kg (Figure 6.3); hence, to produce 11 W/kg in the man would require
11/0.11 mW/cmz, or 100 mW/cm?

EXAMPLE 4

With E polarization, what incident-power density at resonance would produce in a small rat an
average SAR equal to twice the resting metabolic rate? Compare this with the incident-power
density at resonance that would produce in an average man an average SAR equal to twice the
resting metabolic rate.

For a small rat the resting metabolic rate is 8.51 W/kg (Table 10.4), and the average SAR at
resonance is 1.1 W/kg for 1-mW/cm? incident-power density (Figure 6.15). The incident-power
density to produce an average SAR of 2 x 8.51 W/kg is therefore 17.02/1.1 mW per cm?, or 15.5
mW/cm®. For an average man the resting metabolic rate is 1.26 W/kg (Table 10.2), and the
average SAR at resonance is 0.24 W/kg for 1-mW/cm ? incident-power density (Figure 6.3). The
incident-power density required to produce an average SAR equal to twice the resting metabolic
rate is therefore 2.52/0.24 mW per cm?, or 10.5 mW/cm®. Even though the resting metabolic rate
for the rat is nearly 7 times larger than that for the man, the incident-power density required for
the rat is only 1.5 times that required for the man because the average SAR for the rat is higher
than for the man. In general, since smaller animals have higher metabolic rates and also higher
values of average SAR at resonance, the ratio of resting metabolic rate to average SAR at
resonance probably does not vary by more than an order of magnitude for most animal sizes.

EXAMPLE 5

Suppose that experiments were conducted in which a 200-g rat (16 cm long) was irradiated with
an incident planewave power density of 10 uW/cm® at a frequency of 2375 MHz, with
experimental conditions similar to those of Shandala et al. (1977). Since the incident E- and H -
field vectors were parallel to a horizontal plane in which the rat was free to move, the rat was
irradiated with a random combination of E and H polarizations. What incident-power density
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would produce a similar average SAR and internal-field distribution in an average man at 70
MHz, for E polarization?

Even though the internal-field pattern may be quite different in the man at 70 MHz than in the rat
at 2375 MHz, let's calculate the incident-power density required to produce the same average
SAR in man at 70 MHz, since that is the resonant frequency. Dosimetric data are not given for a
200-g rat and the empirical relation is given only for E polarization, so we will interpolate
between the values for a 110- and 320-g rat. From Figures 6.15 and 6.16, we find the following
values of average SAR for an incident-power density at 1 mw/cm’:

E H
110-g rat 0.36 W/kg 0.25 W/kg
320-g rat 0.225 W/kg 0.185 W/kg

By assuming that the SAR varies approximately linearly with weight and by using linear
interpolation for E polarization in a 200-g rat, we get

(200 - 110) _

036 - (036 - 0225 030°W /[ kg
(320-_110) (Equation 2.8)
and for H polarization,
025 -(0.25- 0185 (sl 0.22W /[ kg
(320 - 110

(Equation 2.9)

Averaging these two values to account for the random polarization gives us 0.26 W/kg for the rat
for 1-mW/cm? incident-power density, and 0.0026 W/kg for 10 pW/cm?2 incident-power density.
The average SAR for an average man irradiated at 70 MHz with 1 mW/cm? is 0.24 W/kg (Figure
6.3); hence the incident power density required to produce an average SAR of 0.0026 W/kg in
the man is 0.0026/0.24 mW/cm?® , or 11 uW/cm?.
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Chapter 3. Some Basics of Electromagnetics

A number of concepts are important to understanding any work that involves electromagnetic
(EM) fields. The purpose of this chapter is to summarize the most important of these concepts as
background for the specific applications described in this handbook. So that they can be
understood by readers without an extensive background in electrical engineering or physics, the
concepts are explained without complicated mathematical expressions where practical. This
material is intended not to encompass all of EM theory but to provide a convenient summary.

3.1. TERMS AND UNITS
3.1.1. Glossary

The following terms are used in this section and throughout this handbook. The list is more an
explanation of terms than precise definitions. Boldface symbols indicate vector quantities (see
Section 3.1.3 for an explanation of vectors and vector notation).

antenna: A structure that is designed to radiate or pick up electromagnetic fields efficiently.
Individual antennas are often used in combinations called antenna arrays.

dielectric constant: Another name for relative permittivity.

electric dipole: Two equal charges of opposite sign separated by an infinitesimally small
distance.

electric field: A term often used to mean the same as E-field intensity, or strength.
electric-field intensity: Another term for E-field strength.

electric-field strength: A vector-force field used to represent the forces between electric
charges. E-field strength is defined as the vector force per unit charge on an infinitesimal charge
at a given place in space.

electric-flux density (displacement): The electric flux passing through a surface, divided by the
area of the surface. The total electric flux passing through a closed surface is equal to the total
charge enclosed inside the surface, also equal to the E-field intensity times the permittivity.

electric polarization: Separation of charges in a material to form electric dipoles or alignment of
existing electric dipoles in a material when an E-field is applied. Usually designated P, the units
of polarization are dipole moments per cubic meter.

energy density: Electromagnetic energy in a given volume of space divided by the volume. The
units are joules per cubic meter (J/m”).

far fields: Electromagnetic fields far enough away from the source producing them that the
fields are approximately planewave in nature.

field: A correspondence between a set of points and a set of values. That is, a value is assigned
to each of the points. If the value is a scalar, the field is a scalar field; if the value is a vector, the
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field is a vector field. The temperature at all points in a room is an example of a scalar field. The
velocity of the air at all points in a room is an example of a vector field.

field point: A point at which the electric or magnetic field is being evaluated.

frequency: The time rate at which a quantity, such as electric field, oscillates. Frequency is
equal to the number of cycles through which the quantity changes per second.

impedance, wave: The ratio of the electric field to magnetic field in a wave. For a planewave in
free space, the wave impedance is 377 ohms. For a planewave in a material, the wave impedance
is equal to 377 times the square root of the permeability divided by the square root of the
permittivity.

magnetic field: A term often used to mean the same as magnetic-flux density, also commonly
used to mean the same as magnetic-field intensity. The term has no clear definition or pattern of
usage.

magnetic-field intensity: A vector field equal to the magnetic-flux density divided by the
permeability. H is a useful designation because it is independent of the magnetization current in
materials.

magnetic-flux density: A vector-force field used to describe the force on a moving charged
particle, and perpendicular to the velocity of the particle. Magnetic-flux density is defined as the
force per unit charge on an infinitesimal charge at a given point in space: F/q = v x B, where F is
the vector force acting on the particle, q is the particle's charge, v is its velocity, and B is the
magnetic-flux density.

near fields: Electromagnetic fields close enough to a source that the fields are not planewave in
nature. Near fields usually vary more rapidly with space than far fields do.

nodes: Positions at which the amplitude is always zero in a standing wave.

permeability: A property of material that indicates how much magnetization occurs when a
magnetic field is applied.

permittivity: A property of material that indicates how much polarization occurs when an
electric field is applied. Complex permittivity is a property that describes both polarization and
absorption of energy. The real part is related to polarization; the imaginary part, to energy
absorption.

planewave: A wave in which the wave fronts are planar. The E and H vectors are uniform in the
planes of the wave fronts; and E, H, and the direction of propagation (k) are all mutually
perpendicular.

polarization: Orientation of the incident E- and H-field vectors with respect to the absorbing
object.

Poynting vector: A vector equal to the cross product of E and H. The Poynting vector
represents the instantaneous power transmitted through a surface per unit surface area. It is
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usually designated as S, is also known as energy-flux (power) density, and has units of watts per
square meter (W/m?).

propagation constant: A quantity that describes the propagation of a wave. Usually designated
k, it is equal to the radian frequency divided by the phase velocity, and has units of per meter
(m™). A complex propagation constant describes both propagation and attenuation. The real part
describes attenuation; the imaginary part, propagation.

radian frequency: Number of radians per second at which a quantity is oscillating. The radian
frequency is equal to 2mf, where f'is the frequency.

radiation: Electromagnetic fields emitted by a source.

reflection coefficient: Ratio of reflected-wave magnitude to incident-wave magnitude.
relative permittivity: Permittivity of a material divided by the permittivity of free space.
scalar field: See field.

specific absorption rate (SAR): Time rate of energy absorbed in an incremental mass, divided
by that mass. Average SAR in a body is the time rate of the total energy absorbed divided by the
total mass of the body. The units are watts per kilogram (W/kg).

spherical wave: A wave in which the wave fronts are spheres. An idealized point source radiates
spherical waves.

standing wave: The wave pattern that results from two waves of the same frequency and
amplitude propagating in opposite directions. Destructive interference produces nodes at
regularly spaced positions.

standing-wave ratio: Ratio of E,,x to Eyin where E 1,5« 1s the maximum value, and E,;, the
minimum, of the magnitude of the E-field intensity anywhere along the path of the wave. A
similar definition holds for other quantities that have wave properties.

vector: A quantity having both a magnitude and a direction. Velocity is an example of a vector:
Direction of motion is the direction of the velocity vector, and speed is its magnitude.

vector field: See field.

velocity of propagation: Velocity at which a wave propagates. Units are meters per second
(m/s). It is equal to how far one point on the wave, such as the crest or trough, travels in 1s.

wave impedance: (See impedance, wave).

wave length: The distance between two crests of the wave (or between two troughs or other
corresponding points). Units are meters (m).

3.1.2 Measurement Units

The SI system of units was adopted by the Eleventh General Conference on Weights and
Measures, held in Paris in 1970. SI is an internationally agreed-upon abbreviation for Systéme
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International d'Unites (International System of Units). Some units we use are listed in Tables 3.1

and 3.2.

Table 3.1 The SI Basic Units

Quantity
Length

Mass

Time

Electric current

Temperature

Unit Symbol
meter m

kilogram kg

second s
ampere A
Kelvin K

Luminous intensity candela cd
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Quantity

Name

capacitance
charge
conductance

conductivity

current density

electric-field intensity

electric-flux density
(displacement)

energy

energy-flux density (power
density)

frequency

impedance
inductance
magnetic-field intensity
magnetic-flux density
permeability
permittivity

power

reactance

resistance

resistivity

voltage (potential
difference)

Common

wn

Table 3.2. Some Derived SI Units

Symbol

Name of Unit

farad

coulomb

Siemens

siemens per meter

ampere per square
meter

volts per meter

coulomb per
square meter

joule

watt per square
meter

hertz

ohm

henry

ampere per meter
tesla

henry per meter
farad per meter
watt

ohm

ohm

ohm meters

volt

Measurement
Term

Symbol for
Unit

S/m
A/m?
V/m

C/m?

A/m

H/m

F/m

Expression
in
Terms of
Other
Units

C/V
A-s
Q'lor AV

Q' m’!

V/A

Wb/A

Wb/m?

J/s
V/A

V/A

W/A

Expression in Terms of SI
Base Units

m? kgl - st A
s A
m?- kg'l s A?

m—3 . kg—l . S3 'A2
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3.1.3 Vectors and Fields

Vector Algebra--Vectors are used extensively in descriptions of electric and magnetic fields, so
in this section we briefly explain vectors and vector notation. A scalar is a quantity that has only
a magnitude; in contrast, a vector is a quantity that has a direction and a magnitude. A familiar
example of a vector quantity is velocity of a particle. The direction of movement of the particle is
the vector's direction, and the speed of the particle is the vector's magnitude. Vectors are
represented graphically by directed line segments, as illustrated in Figure 3.1. The length of the
line represents the vector's magnitude, and the direction of the line represents its direction.

A

Figure 3.1. A vector quantity represented by a directed line segment.

In this handbook, vectors are represented by boldface type; e.g., A. The magnitude of a vector is
represented by the same symbol in plain type; thus A is the magnitude of vector A.

A summary of vector calculus, or even vector algebra, is beyond the scope of this handbook, but
we will describe the basic vector addition and multiplication operations because they are
important in understanding electromagnetic-field characteristics described later. Because vectors
have the two properties, magnitude and direction, algebraic vector operations are more
complicated than algebraic scalar operations.

Addition of any two vectors A and B is defined as
A +B=2C (Equation 3.1)
where C is the vector along the parallelogram shown in Figure 3.2. The negative of a vector A is

defined as a vector having the same magnitude as A but opposite direction. Subtraction of any
two vectors A and B is defined as

A -B=A+ (-B) (Equation 3.2)

where -B is the negative of B.

Figure 3.2. Vector addition.

There are two kinds of vector multiplication. One is called the vector dot product. If A and B are
any two vectors, their vector dot product is defined as
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A -B=2AB cos 0 (Equation 3.3)

where is the angle between A and B, as shown in Figure 3.3. The dot product of two vectors is a
scalar. As indicated in Figure 3.3, A ‘B is also equal to the projection of A on B, times B. This
interpretation is often very useful. When two vectors are perpendicular, their dot product is zero
because the cosine of 90° is zero (the projection of one along the other is zero).

Figure 3.3. Vector dot product A - B

The other kind of vector multiplication is called the vector cross product and is defined as
A xB=C (Equation 3.4)
where C is a vector whose direction is perpendicular to both A and B and whose magnitude is
given by
C =ADB sin 0 (Equation 3.5)
As shown in Figure 3.4, the direction of C is the direction a right-handed screw would travel if

turned in the direction of A turned into B. The cross product of two parallel vectors is always
zero because the sine of zero is zero.

C B

A

A«B=C
Figure 3.4. Vector cross product A x B.

Fields--Two kinds of fields are used extensively in electromagnetic field theory, scalar fields and
vector fields. A field is a correspondence between a set of points and a set of values; that is, in a
set of points a value is assigned to each point. When the value assigned is a scalar, the field is
called a scalar field. Temperature at all points in a room is an example of a scalar field. When
the value assigned to each point is a vector, the field is called a vector field. Air velocity at all
points in a room is an example of a vector field. Electric potential is a scalar field. Electric and
magnetic fields are vector fields.

Scalar fields are usually represented graphically by connecting points of equal value by lines, as
illustrated in Figure 3.5. In a temperature field, these lines are called isotherms. In a potential
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field, the lines are called equipotential lines. In the general three-dimensional field, points of
equal potential form equipotential surfaces.

Figure 3.5. Graphical representation of a scalar field, such as temperature.
Each line represents all points of equal value.

Vector fields are more difficult to represent graphically because both the magnitude and
direction of the vector values must be represented. This is done by drawing lines tangent to the
direction of the vector field at each point, with arrowheads showing the direction of the vector.
The magnitude of the field is represented by the spacing between the lines. When the lines are far
apart, the magnitude is small. An example of air velocity for air flowing between two plates is
shown in Figure 3.6. Since many vector fields represent a physical flow of particles, such as fluid
velocity, the field lines often represent a flux density. Hence, the field lines have come to be
called flux lines, even for fields like electric and magnetic fields that do not represent a flow of
particles, and fields are said to be a flux density. In electromagnetic-field theory, the flux passing
through a surface is often calculated by finding the component of the flux density normal to the
surface and integrating (summing) it over the surface.

-

—

Bl

T

Figure 3.6. Graphical representation of a vector field,
such as air velocity between two plates.

3.2. FIELD CHARACTERISTICS
3.2.1. Electric Fields

All of electromagnetics is based on the phenomenon of the forces that electric charges exert on
each other. The mathematical statement of the force on one charge, q, due to the presence of
another charge, Q, is called Couloumb's law:

26



F= qQRf-’-l?rguRg (Equation 3.6)

where R is a unit vector along a straight line from Q to q and painting toward q, and R is the
distance between the two charges, as shown in Figure 3.7. In the SI system of units, &, is a
constant called the permittivity of free space. The units of charge are coulombs, and the units of
permittivity are farads per meter (see Section 3.1). When both q and Q have the same sign, the
force in Equation 3.6 is repulsive. When the charges have opposite signs, the force is attractive.
When more than one charge is present, the force on one charge is the summation of all forces
acting on it due to each of the other individual charges. Keeping track of all the charges in a
complicated electrical system is not always convenient, so we use a quantity called electric-field
strength vector (E-field) to account for the forces exerted on charges by each other.

F

Q

Figure 3.7. Force on a charge, q, due to the presence of another charge, Q.

The E-field is defined in terms of a very simple and idealized model experiment. A point test
body charged to a very small net positive charge, q, is brought into a region of space where an E-
field exists. According to Coulomb's law, the force, F, on the test charge is proportional to q. The
E-field strength vector is defined as

E = F/q (Equation 3.7)
where it is understood that q is infinitesimally small, so it does not affect the measurement. The
units of E are volts per meter. Thus we could, in principle, determine whether an E-field existed
at a given point in space by placing a small charge at that point and measuring the force on it. If
no force, the E-field would be zero at that point. If a force were on it, the force's direction would
be the direction of the E-field at that point, and the magnitude of the E-field would be equal to
the force's magnitude divided by the charge. Although not a practical way to detect or measure

E-field intensity, this idealized "thought" experiment is valuable for understanding the basic
nature of E-fields.

From the definition of electric field, it follows that the force on a charge, q, placed in an E-field
is given by
F=qgE (Equation 3.8)

Thus if E is known, the force on any charge placed in E can easily be found.
3.2.2. Magnetic Fields

When electric charges are moving, a force in addition to that described by Coulomb's law
(Equation 3.6) is exerted on them. To account for this additional force, we defined another force
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field, analogous to the E-field definition in the previous section. This second force field is called
the magnetic-flux-density (B-field) vector, B. It is defined in terms of the force exerted on a
small test charge, q. The magnitude of B is defined as

B = F./qv (Equation 3.9)

where F, is the maximum force on q in any direction, and v is the velocity of q. The units of B
are webers per square meter. The B-field is more complicated than the E-field in that the
direction of force exerted on q by the B-field is always perpendicular to both the velocity of the
particle and to the B-field. This force is given by

F = g(v x B) (Equation 3.10)

(which is analogous to Equation 3.7). The quantity in parentheses is called a vector cross
product. The direction of the vector cross product is perpendicular to both v and B and is in the
direction that a right-handed screw would travel if v were turned into B (see Section 3.1.3).
When a moving charge, q, is placed in a space where both an E-field and a B-field exist, the total
force exerted on the charge is given by the sum of Equations 3.8 and 3.10:

F = g(E + v x B) (Equation 3.11)

Equation 3.11 is called the Lorentz force equation.
3.2.3. Static Fields

The basic concepts of E- and B-fields are easier to understand in terms of static fields than time-
varying fields for two main reasons:

1. Time variation complicates the description of the fields.

2. Static E- and B-fields are independent of each other and can be treated separately, but
time-varying E- and B-fields are coupled together and must be analyzed by
simultaneous solution of equations.

Static Electric Fields--Perhaps the simplest example of an E-field is that of one static point
charge, Q, in space. Let q be a small test charge used to determine the field produced by Q. Then
using the definition of E in Equation 3.7 and the force on q from Equation 3.6, we see that the E-
field due to Q is

F = qQR / 4wz, R (Equation 3.12)
A graphical representation of this vector E-field is shown in Figure 3.8(a). The direction of the
arrows shows the direction of the E-field, and the spacing between the field lines shows the
intensity of the field. The field is most intense when the spacing of the field lines is the closest.
(See Section 3.1.3 for a discussion of vector-field representations.) Thus near the charge, where
the field lines are close together, the field is strong; and it dies away as the reciprocal of the
distance squared from the charge, as indicated by Equation 3.12. The E-field produced by an
infinitely long, uniform line of positive charge is shown in Figure 3.8(b). In this case the field
dies away as the reciprocal of the distance from the line charge. Note that, in every case, the
direction of the E-field line is the direction of the force that would be exerted on a small positive
test charge, q, placed at that point in the field. For a negative point charge, the E-field lines
would point toward the charge, since a positive test charge would be attracted toward the
negative charge producing the field.
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Figure 3.8. (a) E-field produced by one point charge, Q, in space. (b)E-field produced by a
uniform line of charge (looking down at the top of the line charge).

The sources of static E-fields are charges. For example, E-fields can be produced by charges
picked up by a person walking across a deep pile rug. This kind of E-field sometimes produces
an unpleasant shock when the person touches a grounded object, such as a water faucet. The
charge configurations that produce E-fields are often mechanical devices (such as electric
generators) or electrochemical devices (such as automobile batteries).

Figure 3.9 depicts E-field lines between a pair of parallel infinite plates. This field could be
produced by connecting a voltage source across the plates, which would charge one plate with
positive charge and the other plate with negative charge.

EREREREREERERYRE
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I

Figure 3.9. Field lines between infinite parallel conducting plates. Solid lines are E-field
lines. Dashed lines are equipotential surfaces.

An important characteristic of E-fields is illustrated in Figure 3.10(a); a small metallic object is
placed in the field between the parallel plates of Figure 3.9. The sharp corners of the object
concentrate the E-field, as indicated by the crowding of the field lines around the corners. Figure
3.10(b) shows how the edges of finite plates also concentrate the field lines. Generally, any sharp
object will tend to concentrate the E-field lines. This explains why arcs often occur at corners or
sharp points in high-voltage devices. Rounding sharp edges and corners will often prevent such
arcs. Another important principle is that static E-field lines must always be perpendicular to
surfaces with high ohmic conductivity. An approximate sketch of E-field lines can often be made
on the basis of this principle. For example, consider the field plot in Figure 3.10(a). This sketch
can be made by noting that the originally evenly spaced field lines of Figure 3.9 must be
modified so that they will be normal to the surface of the metallic object placed between the
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plates, and they must also be normal to the plates. This concept is often sufficient to understand
qualitatively the E-field behavior for a given configuration.

TR T A= -
AL ..mw!:!, f@ﬂ {_m“ T 1}'

Figure 3.10 (a) E-field lines when a small metallic object is placed between the plates. (b) E-
field lines between parallel conducting plates of finite size.
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Figure 3.11. B-field produced by an infinitely long, straight dc element out of the paper.

Static Magnetic Fields--Perhaps the simplest example of a static B-field is that produced by an
infinitely long, straight dc element, as shown in Figure 3.11. The field lines circle around the
current, and the field dies away as the reciprocal of the distance from the current.

Figure 3.12 shows another example, the B-field produced by a simple circular loop of current. A
simple qualitative rule for sketching static B-field lines is that the field lines circle around the
current element and are strongest near the current. The direction of the field lines with respect to
the direction of the current is obtained from the right-hand rule: Put the thumb in the direction of
the positive current and the fingers will circle in the direction of the field lines.

——

current loop

Iooking at the edge of the current |D0p

Figure 3.12. B-field produced by a circular current loop.
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3.2.4. Quasi-Static Fields

An important class of electromagnetic fields is quasi-static fields. These fields have the same
spatial patterns as static fields but vary with time. For example, if the charges that produce the E-
fields in Figures 3.8-3.10 were to vary slowly with time, the field patterns would vary
correspondingly with time but at any one instant would be similar to the static-field patterns
shown in the figures. Similar statements could be made for the static B-fields shown in Figures
3.11 and 3.12. Thus when the frequency of the source charges or currents is low enough, the
fields produced by the sources can be considered quasi-static fields; the field patterns will be the
same as the static-field patterns but will change with time. Analysis of quasi-static fields is thus

much easier than analysis of fields that change more rapidly with time, as explained in Section
3.2.7.

3.2.5. Electric Potential

Because of the force exerted by an electric field on a charge placed in that field, the charge
possesses potential energy. If a charge were placed in an E-field and released, its potential
energy would be changed to kinetic energy as the force exerted by the E-field on the charge
caused it to move. Moving a charge from one point to another in an E-field requires work by
whatever moves the charge. This work is equivalent to the change in potential energy of the
charge. The potential energy of a charge divided by the magnitude of the charge is called
electric-field potential. E-field potential is a scalar field (see Section 3.1.3). This potential scalar
field is illustrated in Figure 3.13 for two cases:

a. Fields produced by a point charge
b. Fields between two infinite parallel conducting plates

The equipotential surfaces for (a) are spheres; those for (b) are planes. The static E-field lines are
always perpendicular to the equipotential surfaces.

For static and quasi-static fields, the difference in E-field potential is the familiar potential
difference (commonly called voltage) between two points, which is used extensively in electric-

circuit theory. The difference of potential between two points in an E-field is illustrated in Figure
3.13.
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Figure 3.13. Potential scalar fields (a) for a point charge and (b) between infinite parallel
conducting plates. Solid lines are E-field lines; dashed lines are equipotential surfaces.
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In each case the potential difference of point P, with respect to point P, is positive: Work must
be done against the E-field to move a test charge from P; to P, because the force exerted on a
positive charge by the E-field would be in the general direction from P, to P;. In Figure 3.13(b)
the E-field between the plates could be produced by charge on the plates transferred by a dc
source, such as a battery connected between the plates. In this case the difference in potential of
one plate with respect to the other would be the same as the voltage of the battery. This potential
difference would be equal to the work required to move a unit charge from one plate to the other.

The concepts of potential difference (voltage) and current are very useful at the lower
frequencies, but at higher frequencies (for example, microwave frequencies) these concepts are
not useful and electromagnetic-field theory must be used. More is said about this in Section
3.2.7,

3.2.6. Interaction of Fields with Materials

Electric and magnetic fields interact with materials in two ways. First, The E- and B-fields exert
forces on the charged particles in the materials, thus altering the charge pattern that originally
existed. Second, the altered charge patterns in the materials produce additional E- and B-fields
(in addition to the fields that were originally applied). Materials are usually classified as being
either magnetic or nonmagnetic. Magnetic materials have magnetic dipoles that are strongly
affected by applied fields; nonmagnetic materials do not.

Nonmagnetic Materials--In nonmagnetic materials, mainly the applied E-field has an effect on
the charges in the material. This occurs in three primary ways:

a. Polarization of bound charges
b. Orientation of permanent dipoles
c. Drift of conduction charges (both electronic and ionic)

Materials primarily affected by the first two kinds are called dielectrics; materials primarily
affected by the third kind, conductors.

The polarization of bound charges is illustrated in Figure 3.14 (a). Bound charges are so tightly
bound by restoring forces in a material that they can move only very slightly. Without an applied
E-field, positive and negative bound charges in an atom or molecule are essentially
superimposed upon each other and effectively cancel out; but when an E-field is applied, the
forces on the positive and negative charges are in opposite directions and the charges separate,
resulting in an induced electric dipole. A dipole consists of a combination of a positive and a
negative charge separated by a small distance. In this case the dipole is said to be induced
because it is caused by the applied E-field; when the field is removed, the dipole disappears.
When the charges are separated by the applied E-field, the charges no longer cancel; in effect a
new charge is created, called polarization charge, which creates new fields that did not exist
previously.

The orientation of permanent dipoles is illustrated in Figure 3.14(b). The arrangement of charges
in some molecules produces permanent dipoles that exist whether or not an E-field is applied to
the material. With no E-field applied, the permanent dipoles are randomly oriented because of
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thermal excitation. With an E-field applied, the resulting forces on the permanent dipoles tend to
align the dipole with the applied E-field (Figure 3.14(b)).

T Farce up
E
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Figure 3.14. (a) Polarization of bound charges. (b) Orientation of permanent dipoles.

The orientation of each dipole is slight because the thermal excitation is relatively strong, but on
the average there is a net alignment of dipoles over the randomness that existed without an
applied E-field. Like induced dipoles, this net alignment of permanent dipoles produces new
fields.

The drift of conduction charges in an applied E-field occurs because these charges are free
enough to move significant distances in response to forces of the applied fields. Both electrons
and ions can be conduction charges. Movement of the conduction charges is called drift because
thermal excitation causes random motion of the conduction charges, and the forces due to the
applied fields superimpose only a slight movement in the direction of the forces on this random
movement. The drift of conduction charges amounts to a current, and this current produces new
fields that did not exist before E-fields were applied.

Permittivity--The two effects--creation of new charges by an applied field and creation of new
fields by these new charges--are both taken into account for induced dipoles and orientation of
permanent dipoles by a quantity called permittivity. Permittivity is a measure of how easily the
polarization in a material occurs. If an applied E-field results in many induced dipoles per unit
volume or a high net alignment of permanent dipoles per unit volume, the permittivity is high.
The drift of conduction charges is accounted for by a quantity called conductivity. Conductivity
is a measure of how much drift occurs for a given applied E-field. A large drift means a high
conductivity. For sinusoidal steady-state applied fields, complex permittivity is defined to
account for both dipole charges and conduction-charge drift. Complex permittivity is usually
designated as
e’ = e (e - 3e") F/m

o (Equation 3.13)
where ¢, is the permittivity of free space; €' - j&", the complex relative permittivity; €', the real
part of the complex relative permittivity (&' is also called the dielectric constant); and €", the
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imaginary part of the complex relative permittivity. This notation is used when the time variation
of the electromagnetic fields is described by ¢, where j = V-1 and o is the radian frequency.
Another common practice is to describe the time variation of the fields by ¢ where i =V-1. For
this case complex permittivity is defined by e* = ¢, (&' +1g"). €" is related to the effective
conductivity by

g" = u/weo
(Equation 3.14)

where G is the effective conductivity, &, is the permittivity of free space, and

w = 2nf radians/s (Equation 3.15)

is the radian frequency of the applied fields. The €' of a material is primarily a measure of the
relative amount of polarization that occurs for a given applied E-field, and the &" is a measure of
both the friction associated with changing polarization and the drift of conduction charges.

Generally ¢ is used to designate permittivity; €* is usually used only for sinusoidal steady-state
fields.

Energy Absorption--Energy transferred from applied E-fields to materials is in the form of
kinetic energy of the charged particles in the material. The rate of change of the energy
transferred to the material is the power transferred to the material. This power is often called
absorbed power, but the bioelectromagnetics community has accepted specific absorption rate
(SAR) as a preferred term (see Section 3.3.6).

A typical manifestation of average (with respect to time) absorbed power is heat. The average
absorbed power results from the friction associated with movement of induced dipoles, the
permanent dipoles, and the drifting conduction charges. If there were no friction in the material,
the average power absorbed would be zero.

A material that absorbs a significant amount of power for a given applied field is said to be a
lossy material because of the loss of energy from the applied fields. A measure of the lossiness of
a material is €": The larger the ", the more lossy the material. In some tables a quantity called
the loss tangent is listed instead of €". The loss tangent, often designated as tan 0, is defined as

= o1l |
tan § = ¢"/¢e (Equation 3.16)

The loss tangent usually varies with frequency. For example, the loss tangent of distilled water is
about 0.040 at 1 MHz and 0.2650 at 25 GHz. Sometimes the loss factor is called the dissipation
factor. Generally speaking, the wetter a material is, the more lossy it is; and the drier it is, the
less lossy it is. For example, in a microwave oven a wet piece of paper will get hot as long as it is
wet; but when the paper dries out, it will no longer be heated by the oven's electromagnetic
fields.
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For steady-state sinusoidal fields, the time-averaged power absorbed per unit volume at a point
inside an absorber is given by
- 2 - 1 2
P = cr|E| = ﬂJEDE E|

(Equation 3.17)

where |E| is the root-mean-square (rms) magnitude of the E-field vector at that point inside the
material. If the peak value of the E-field vector is used, a factor of 1/2 must be included on the
right-hand side of Equation 3.17.' The rms and peak values are explained in Section 3.2.8. Unless
otherwise noted, rms values are usually given. To find the total power absorbed by an object, the
power density given by Equation 3.17 must be calculated at each point inside the body and
summed (integrated) over the entire volume of the body. This is usually a very complicated
calculation.

Electric-Flux Density--A quantity called electric-flux density or displacement-flux-density is
defined as

D=¢E (Equation 3.18)

An important property of D is that its integral over any closed surface (that is, the total flux
passing through the closed surface) is equal to the total free charge (not including polarization or
conduction charge in materials) inside the closed surface. This relationship is called Gauss's law.
Figure 3.15 shows an example of this. The total flux passing out through the closed mathematical
surface, S, is equal to the total charge, Q, inside S, regardless of what the permittivity of the
spherical shell is. Electric-flux density is a convenient quantity because it is independent of the
charges in materials.

integral of P
over =0

mathamolical elosed
surfoce 5

Figure 3.15. Charge Q inside a dielectric spherical shell. S is a closed mathematical surface.

Magnetic Materials--Magnetic materials have magnetic dipoles that tend to be oriented by
applied magnetic fields. The resulting motion of the magnetic dipoles produces a current that
creates new E- and B-fields. Both the effect of the applied fields on the material and the creation
of new fields by the moving magnetic dipoles in the material are accounted for by a property of
the material called permeability.

For sinusoidal steady-state fields, the complex permeability is usually designated as
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* t aq I
o=y (v - ju")
G (Equation 3.19)

where p' - ju" is the complex relative permeability and L, is the permeability of free space. For

the general case, permeability is usually designated by p.

Another field quantity, H, or magnetic field intensity, is defined by
H = B/

(Equation 3.20)

The magnetic-field intensity is a useful quantity because it is independent of magnetic currents in
materials. The term "magnetic field" is often applied to both B and H. Whether to use B or H in
a given situation is not always clear, but since they are related by Equation 3.20, either could
usually be specified.

Since biological materials are mostly nonmagnetic, permeability is usually not an important
factor in bioelectromagnetic interactions.

3.2.7. Maxwell's Equations

Four equations, along with some auxiliary relations, form the theoretical foundation for all
classical electromagnetic-field theory. These are called Maxwell's equations, named for James
Clerk Maxwell, the famous Scotsman who added a missing link to the electromagnetic-field laws
known at that time and formulated them in a unified form. These equations are very powerful,
but they are also complicated and difficult to solve. Although mathematical treatment of these
equations is beyond the stated scope of this document, for background information we will list
the equations and describe them qualitatively. Maxwell's equations for fields are

¥ x E = -aB/5t

(Equation 3.21)

? xH=J+ D/t

(Equation 3.22)
(Equation 3.23)

(Equation 3.24)
where

B =puH

D =cE

J is free-current density in A/m >

p is free-charge density in C/m °

V x stands for a mathematical operation involving partial derivatives, called the curl

V - stands for another mathematical operation involving partial derivatives, called the
divergence
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O0B/ot and 0D/ot are the time rate of change of B and D respectively.
The other quantities have been defined previously.

Any vector field can be completely defined by specifying both the curl and the divergence of the
field. Thus the quantities equal to the curl and the divergence of a field are called sources of the
field. The terms on the right-hand side of Equations 3.21 and 3.22 are sources related to the curl
of the fields on the left-hand side, and the terms on the right-hand side of Equations 3.23 and
3.24 are sources related to the divergence of the fields on the left-hand side.

Equation 3.21 thus means that a time-varying B-field produces an E-field, and the relationship is
such that the E-field lines so produced tend to encircle the B-field lines. Equation 3.21 is called
Faraday's law.

Equation 3.22 states that both current density and a time-varying E-field produce a B-field. The
B-field lines so produced tend to encircle the current density and the E-field lines. Since a time-
varying E-field acts like current density in producing a B-field, the last term on the right in
Equation 3.22 is called displacement current density.

Equation 3.23 states that charge density produces an E-field, and the E-field lines produced by
the charges begin and end on those charges.

Equation 3.24 states that no sources are related to the divergence of the B-field. This means that
the B-field lines always exist in closed loops; there is nothing analogous to electric charge for the
B-field lines either to begin or end on.

Equations 3.21 and 3.22 show that the E- and B-fields are coupled together in the time-varying
case because a changing B is a source of E in Equation 3.21 and a changing D is a source of H in
Equation 3.22. For static fields, however, 0B/ot = 0 and 0D/ot = 0 and the E- and B-fields are not
coupled together; thus the static equations are easier to solve.

Since Maxwell's equations are generally difficult to solve, special techniques have been
developed to solve them within certain ranges of parameters. One class of solutions,
electromagnetic waves, is discussed next. Techniques useful for specific frequency ranges are
discussed in Section 3.2.9.

3.2.8. Wave Solutions to Maxwell's Equations

One class of solutions to Maxwell's equations results in wave descriptions of the electric and
magnetic fields. When the frequency of the source charges or currents is high enough, the E- and
B-fields produced by these sources will radiate out from them. A convenient and commonly used
description of this radiation is wave propagation. Although a wave description of
electromagnetic fields is not necessary, it has many advantages. The basic ideas of wave
propagation are illustrated in Figures 3.16 and 3.17. Electromagnetic wave propagation is
analogous to water waves rolling in on a beach. As shown in Figure 3.16, the distance from one
crest to the next (in meters or some other appropriate unit of length) is defined as the wavelength,
which is usually designated as A. The velocity of propagation is the velocity at which the wave is
traveling and (from Figure 3.16) is equal to the distance traveled divided by the time it took to
travel:
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Figure 3.16 and Figure 3.17 Figure 3.16. Snapshots of a traveling wave at two instants of
time, t; and t,. Figure 3.17. The variation of E at one point in space as a function of time.

A detector at one point in space would observe a function that oscillated with time as the wave
passed by. This is like someone standing on the beach and watching the wave go by. The height
of the water above some reference plane would change with time, as in Figure 3.17. The peak
value of the crest is called the wave's amplitude; in Figure 3.17, the peak value (amplitude) is 10
V/m.

Another important value is that of the period, T, of the oscillation, which is defined as the time
between corresponding points on the function (see Figure 3.17). The frequency, f, is defined as

f=1T (Equation 3.26)

The units of T are seconds; those of f are hertz (equivalent to cycles per second). The frequency
of a water wave could be obtained by standing in one place and counting the number of crests (or
troughs) that passed by in 1 s.

For convenience in power relationships (as explained in Section 3.2.6), the rms value of a
function is defined. For a given periodic function, f(t), the rms value, F, is
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where T is the period of the function and t, is any value of t. Equation 3.27 shows that the rms
value is obtained by squaring the function, integrating the square of the function over any period,
dividing by the period, and taking the square root. Integrating over a period is equivalent to
calculating the area between the function, f°, and the t axis. Dividing this area by T is equivalent
to calculating the average, or mean, of f over one period. For example, the rms value of the f(t)
shown in Figure 3.18 is calculated as follows: The area between the f* (t) curve and the t axis
betweent,andt,+ T is (25 x 30) + (4 x 10) = 790; hence the rms value of fis

1 750
F= \Iﬁ[(zﬁx 30) + (42 10)] = fﬁ = 4.44

(Equation 3.27)
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Figure 3.18 (a) A given periodic function [ f ( t) ] versus time (t). (b) The square of the
function [ f* (t)] versus time.

The rms value of a sinusoid is given by
& =gP;’J§ (Equation 3.28)
where gj, is the peak value of the sinusoid.

The quantities defined above are related by the following equation:
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L=
£ (Equation 3.29)

In free space, v is equivalent to the speed of light (c). In a dielectric material the velocity of the
wave is slower than that of free space.

Two idealizations of wave propagation are commonly used: spherical waves and planewaves.

Spherical Waves--A spherical wave is a model that represents approximately some
electromagnetic waves that occur physically, although no true spherical wave exists. In a
spherical wave, wave fronts are spherical surfaces, as illustrated in Figure 3.19. Each crest and
each trough is a spherical surface. On every spherical surface, the E- and H-fields have constant
values everywhere on the surface. The wave fronts propagate radially outward from the source.
(A true spherical wave would have a point source.) E and H are both tangential to the spherical
surfaces.

point
L]

source

Figure 3.19. A spherical wave. The wave fronts are spherical surfaces. The wave
propagates radially outward in all directions.

Spherical waves have several characteristic properties:
1. The wave fronts are spheres.

2. E, B, and the direction of propagation (k) are all mutually perpendicular.

3. E/H= YHA (called the wave impedance). For free space, E/H = 377 ohms. For the

sinusoidal steady-state fields, the wave impedance, s , 1s a complex number that
includes losses in the medium in which the wave is traveling.

4. Both E and H vary as 1/r, where r is the distance from the source.

. L _ YHE o
5. Velocity of propagation is given by v=1/ .The velocity is less and the

wavelength is shorter for a wave propagating in matter than for one propagating in free
space. For sinusoidal steady-state fields, the phase velocity is the real part of the complex
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number 1/ " © . The imaginary part describes attenuation of the wave caused by

losses in the medium.

Planewaves--A planewave is another model that approximately represents some electromagnetic
waves, but true planewaves do not exist. Planewaves have characteristics similar to spherical
waves:

1. The wave fronts are planes.

2. E, H, and the direction of propagation (k) are all mutually perpendicular.

3. E/H= YHA (called the wave impedance). For free space, E/H = 377 ohms. For the
sinusoidal steady-state fields, the wave impedance, |.L";f£*) is a complex number that
includes losses in the medium in which the wave is traveling.

4. E and H are constant in any plane perpendicular to k.

g
5. Velocity of propagation is given by v =1/ = The velocity is less and the wavelength
is shorter for a wave propagating in matter than for one propagating in free space. For
sinusoidal steady-state fields, the phase velocity is the real part of the complex number 1/

3* -3
W The imaginary part describes attenuation of the wave caused by losses in the

medium.

Figure 3.20 shows a planewave. E and H could have any directions in the plane as long as they
are perpendicular to each other. Far away from its source, a spherical wave can be considered to
be approximately a planewave in a limited region of space, because the curvature of the spherical
wavefronts is so small that they appear to be almost planar. The source for a true planewave
would be a planar source, infinite in extent.
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Figure 3.20. A planewave.
3.2.9. Solutions of Maxwell's Equations Related to Wavelength

Maxwell's equations apply over the entire electromagnetic frequency spectrum. They apply from
zero frequency (static fields) through the low frequencies, the RF frequencies, the microwave
region of the spectrum, the infrared and visible portions of the spectrum, the ultraviolet
frequencies, and even through the x-ray portion of the spectrum. Because they apply over this
tremendously wide range of frequencies, Maxwell's equations are powerful but are generally
very difficult to solve except for special cases. Consequently, special techniques have been
developed for several ranges of the frequency spectrum. The special techniques are each valid in
a particular frequency range defined by the relationship between wavelength and the nominal
size of the system or objects to which Maxwell's equations are being applied. Let the nominal
size of the system (some general approximate measure of the size of the System) be L. For
example, if the system included a power transmission line 500 km long, then L would be 500
km; if the system were an electric circuit that would fit on a 1- x 2-m table, then L would be the

Y12 + 22 =\'%m

diagonal of the table,

Three main special techniques are used for solving Maxwell's equations--according to the
relationship between A (the wavelength of the electromagnetic fields involved) and L:

A>>L electric circuit theory (Kirchhoff's laws)
A~L microwave theory or electromagnetic-field theory
A <<L optics or ray theory

When A >> L, Maxwell's equations may be approximated by circuit-theory equations, principally
Kirchhoff's laws, which are much easier to solve than Maxwell's equations. Since the free-space
wavelength at 1 MHz is 300 m, any system that will fit in an ordinary room can usually be
treated by circuit theory at frequencies of 1 MHz and below. Historically, circuit theory did not
evolve as an approximation to Maxwell's equations--the laws of circuit theory were formulated
independently--but it is indeed an approximation to the more general Maxwell's equations.
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Fortunately we do have circuit theory; in comparison, having to solve Maxwell's equations for
such applications would be very difficult and cumbersome,

When the nominal size of the system and the wavelength are of the same order of magnitude,
microwave theory must be used. This essentially amounts to solving Maxwell's equations
directly, with a minimum of approximations. From frequencies of 300 MHz to 300 GHz, the
corresponding wavelengths range from 1 m to 1 mm. Hence in this part of the electromagnetic
spectrum, most systems must be treated by microwave theory.

When A << L--such as above frequencies of 3000 GHz, where the wavelength is smaller than
100 um--the theory of optics can be used for most systems. The equations of optics also
approximate Maxwell's equations, but optical theory did not historically evolve as such
approximations; it was formulated independently from physical observations. In the frequency
ranges beyond the visible and ultraviolet light regions, ray theory and particle theory are usually
used.

Wavelength boundaries that define the regions where these techniques are valid are not sharply
defined; as the wavelength changes in the transitional regions, the technique becomes a poorer
and poorer approximation until it finally becomes useless and another technique must be used.
Combinations of those techniques are often used in the transitional regions between circuit
theory and microwave theory; and in the transitional regions between microwave theory and
optics, hybrid techniques are frequently used.

Important qualitative understanding can often be obtained by considering the size of an object
compared to the wavelength of the electromagnetic fields. For example, if a particle small
compared to a wavelength is irradiated by an electromagnetic wave, the particle will have little
effect on the wave; that is, it will not produce much scattering of the wave and will probably
absorb relatively little energy. On the other hand, a particle of approximately the same size as a
wavelength will usually produce significant scattering and will absorb relatively larger amounts
of energy. Likewise, a metallic screen with a mesh size small compared to a wavelength will
reflect a wave almost as well as a solid metallic plate; only small amounts of energy will be
transmitted through the holes in the screen. If the mesh size is large compared to a wavelength,
though, the screen will appear semitransparent, as ordinary window screen does to visible light.

3.2.10. Near Fields

In regions close to sources, the fields are called near fields. In the near fields the E- and H-fields
are not necessarily perpendicular; in fact, they are not always conveniently characterized by
waves. They are often more nonpropagating in nature and are therefore called fringing fields or
induction fields. The near fields often vary rapidly with space. The mathematical expressions for
near fields generally contain the terms 1/, 1/ r2, 1/ r3, ..., where r is the distance from the
source to the field point (point at which the field is being determined). Objects placed near
sources may strongly affect the nature of the near fields. For example, placing a probe near a
source to measure the fields may change the nature of the fields considerably.
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3.2.11. Far Fields

At larger distances from the source, the 1 /1%, 1 /1, and higher-order terms are negligible
compared with the 1 /r term in the field variation; and the fields are called far fields. These fields
are approximately spherical waves that can in turn be approximated in a limited region of space
by planewaves. Making measurements is usually easier in far fields than in near fields, and
calculations for far-field absorption are much easier than for near-field absorption.

The boundary between the near-field and far-field regions is often taken to be
d=21%/n (Equation 3.30)

where

d is the distance from the source
L is the largest dimension of the source antenna
A is the wavelength of the fields

The boundary between the near-field and far-field regions is not sharp because the near fields
gradually become less important as the distance from the source increases.

3.2.12. Guided Waves

Electromagnetic energy often must be transmitted from one location to another and can be
transmitted through space without any transmission lines whatsoever. Communication systems
of many kinds are based on signals transmitted through space. At frequencies below the GHz
range, however, electromagnetic energy cannot be focused into narrow beams. Beaming
electromagnetic energy through space, therefore, is very inefficient in terms of the amount of
energy received at a location compared to the amount of energy transmitted. The transmitted
energy simply spreads out too much as it travels. This is not a serious problem in communication
systems, such as broadcast radio, where the main objective is transmission of information, not
energy. For many applications, though, transmitting electromagnetic energy through space
without a transmission line is not practical because of either poor efficiency, poor reliability, or
poor signal-to-noise ratios. For these applications, guiding structures (transmission lines) are
used.

At very low frequencies, like the 60 Hz used in many power systems, transmission lines can be
simply two or more wires. At these frequencies quasi-static-field theory and voltage and current
relationships can be used to analyze and design the systems. At higher frequencies, however,
transmission along a guiding structure is best described in terms of wave propagation. In the
MHz range two-conductor lines such as twin-lead or coaxial cables are commonly used for
transmission. In the GHz range the loss in two-conductor transmission lines is often too high,
and waveguides are usually used as guiding structures.

Two-Conductor Transmission Lines--Twin-lead line (often used for connecting antennas to

television sets) and coaxial cables are the two most commonly used two-conductor transmission
lines. The E- and H-fields' configuration that exists on most two-conductor transmission lines is
called the TEM (transverse electromagnetic) mode. It means that no component of the E- or H-
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field is in the direction of wave propagation on the transmission line. Examples of the field
patterns in the TEM mode are shown in Figure 3.21.

granay

W=

Coaxiol coble Twin lead
E-field
— — — H-field

Figure 3.21. Cross-sectional views of the electric- and magnetic-field lines in the TEM mode
for coaxial cable and twin lead.

Voltage and current concepts are valid for the TEM mode, even at the higher frequencies. The
potential difference between the two conductors and the current in each conductor both form
wave patterns that propagate along the transmission line. These traveling waves of voltage and
current have the same form as the traveling wave shown in Figure 3.16. An infinitely long two
conductor transmission line excited by a generator with an impedance Z, is shown in Figure
3.22(a). On an infinitely long line, the voltage will be a wave propagating only to the right. The
current also will consist of a wave propagating only to the right. The ratio of the voltage to the
current when all waves propagate in only one direction is called the characteristic impedance of
the transmission line. The characteristic impedance, usually designated Z, is an important
parameter of the transmission line. Coaxial cables are manufactured with a variety of
characteristic impedances, but the most common are 50 Q and 75 Q.

Zg
Vg
(a]) Infinitely long transmission line
Lo
i
I
Vg L

T

{ -

(b} Transmission line of length { and load impedance Z

Figure 3.22. Schematic diagrams of two-conductor transmission lines.
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A transmission line of finite length with a load impedance at the end is shown in Figure 3.22(b).
If the load impedance is not exactly equal to the characteristic impedance of the transmission
line, reflected waves of voltage and current will occur so that at the end of the line the ratio of
the total voltage in both waves to the total current in both waves will be equal to the load
impedance, as it must be. In other words, the total voltage and current must satisfy the boundary
conditions at the load impedance. Since the voltage-to-current ratio in one wave is the
characteristic impedance, one wave alone could not satisfy the boundary condition unless the
load impedance were exactly equal to the characteristic impedance. In the special case where
they are exactly equal, there is no reflected wave, the transmission line is said to be terminated,
and the load is said to be matched to the transmission line. For best transmission of energy from
a generator to a load, having the load matched to the line is usually desirable; also, having the
generator impedance matched to the line--that is, Z, = Z, --is usually best.

Standing Waves--When the load impedance is either zero (a perfect short circuit) or infinite (a
perfect open circuit), the reflected and incident waves are equal in magnitude and their
combination forms a special pattern called a standing wave. A graph of total voltage, V, and
current, I, on a transmission line with a perfect short at the end is shown in Figure 3.23. The total
voltage as a function of position for two times (t; and t;) is shown in Figure 3.23(a). At any
instant of time, the variation of the field with position is sinusoidal; and at any position, the
variation of the voltage with time is sinusoidal. Figure 3.23(b) shows the envelope of voltage
variation with position through a full cycle in time. At certain positions the voltage is zero for all
values of time; these positions are called nodes. The voltage is zero at the shorted end, and the
nodes for the voltage occur at multiples of one-half wavelength from the shorted end. The
current is not zero at the shorted end, but the nodes for current are still spaced a half-wavelength
apart (Figure 3.23(c)).

Figure 3.23. Total waves, incident plus reflected. (a) Total voltage as a function of position at two
different times, t; and t,. (b) Total voltage as a function of position for various times through a full cycle, and
the envelope of the standing wave. (c) Total current as a function of position at various times through a full
cycle, and the envelope of the standing wave.

46



A standing wave is always produced by the combination of a wave traveling to the right (incident
wave) and a wave of equal magnitude traveling to the left (reflected wave). When the load
impedance is not zero or infinite and is not equal to the characteristic impedance, the magnitude
of the reflected wave is not equal to the incident wave. The pattern formed is similar to a
standing wave pattern except the waves do not add to form nodes, but rather minima. Figure 3.24
shows the top half of the envelope of the voltage pattern produced by the sum of an incident
wave and a wave reflected by the load impedance. The voltage at each position is a sinusoidal
function of time. The graph shows only the magnitude of the sinusoid at each position. Since the
magnitude of the reflected wave is smaller than that of the incident wave, there are no nodes;
however, maximum and minimum values of the sinusoid occur at specific positions along the
line. The maximum values are spaced one-half wavelength apart, and the minimum values are
spaced likewise. A suitable voltage probe that measures the magnitude of the voltage could be
used to obtain a graph like the one shown in Figure 3.24.

Figure 3.24 Top half of the envelope resulting from an incident and reflected voltage wave.

For any wave pattern the standing-wave ratio (often designated by S) is defined as the ratio of
the maximum value of the sinusoid at any position to its minimum value at any position. For the
wave pattern shown in Figure 3.24, the definition of the standing-wave ratio is

S = Viax /Vin (Equation 3.31)

The values of S range from unity to infinity. For the standing wave shown in Figure 3.23(b),

S = 0. A wave pattern is called a standing wave only when nodes exist, so the minimum value of
the sinusoid is zero.

The standing-wave ratio is a measure of reflection. With no reflection, S = 1; with total
reflection, S = . In terms of the reflection coefficient, S is given by

S=10+p)/(1-p) (Equation 3.32)
where p is the magnitude of the reflection coefficient--the ratio of the reflected wave's magnitude

to the incident wave's magnitude. For a terminated transmission line (the load impedance is equal
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to the characteristic impedance), the reflection coefficient is zero and the standing-wave ratio is
unity.

Waveguides--Two-conductor transmission lines are not usually used in the GHz frequency
range because they are too lossy at higher frequencies. Instead, hollow conducting structures
called waveguides are used. Electromagnetic waves propagate inside hollow conductors much
like water flows in pipes. Although hollow conductors of any shape will guide electromagnetic
waves, the two most commonly used waveguides are rectangular and circular.

Electromagnetic fields that propagate in waveguides are described as the sum of a series of
characteristic field patterns called modes. Waveguides have two kinds of modes, TE and TM. TE
stands for transverse electric, which means that no E-field component is in the direction of
propagation. TM stands for transverse magnetic, which means that there is no H-field component
along the direction of propagation.

Each TE and TM mode is labeled with two subscripts (TEm,, TMpmy, ) that indicate the variation
of the E- and H-field across the waveguide. Subscript m tells how many half-cycle variations of
the fields are in the x direction, and subscript n tells the same thing for the y direction. The field
variation of the TE;p mode is illustrated in Figure 3.25. The E-field goes to zero on the side walls
and is maximum in the center. The H-field is maximum on the walls and circles around the E-
field. The pattern reverses direction every half-wavelength down the waveguide and propagates
down the waveguide like the wave on a two-conductor transmission line. Thus in the TE;y mode,
the E-field has one one-half-cycle variation in the x direction and no variation in the y direction.
This means that the E-field is maximum in the center of the waveguide and goes to zero at each
of the side walls. In the TE;y mode, the E-field would have two half-cycle variations in the x
direction and none in the y direction, which means that the E-field is zero at both side walls and
in the center of the waveguide.

o 0 R e
B > |

Figure 3.25. Field variation of the TE;9 mode in a rectangular waveguide (a) as would be
seen looking down the waveguide and (b) as seen looking at the side of the waveguide. The
solid lines are electric field and the dotted lines are magnetic field.

z

In general, the electromagnetic fields inside a waveguide will consist of the sum of an infinite
number of both TE and TM modes. Depending on the frequency and dimensions of the
waveguide, however, some modes will propagate with low attenuation and some will attenuate
very rapidly as they travel down the guide. The modes that attenuate very rapidly are said to be
evanescent or cutoff modes. For each mode in a waveguide of given dimensions, the mode will
cut off below some particular frequency (the cutoff frequency). The cutoff frequency is related to
the dimensions of the waveguide by
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fenmn = (672) Y(ma)Z + (n/k)2 |
(Equation 3.33)

where

¢ =3 x 10® m/s (the velocity of propagation of a planewave in free space)
a and b are the inside dimensions of the waveguide in meters, as shown in Figure 3.25

The cutoff frequency for the TE o mode is given by f, = c¢/2a. Using the relation between
frequency and wavelength given in Equation 3.29, this cutoff frequency is the frequency at
which one-half wavelength just fits across the waveguide, i.e., A/2 = a.

For b = a/2, which is a typical case, the cutoff frequency is given by

foq mn = (c2a) f me+ 4n

The relative cutoff frequencies for a few modes are shown in Figure 3.26. Both m and n cannot
be zero for any mode, because that would require all the fields to be zero. For the same reason,
neither m nor n can be zero for the TM modes.

(Equation 3.34)
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Figure 3.26. Some relative cutoff frequencies for a waveguide with b = a/2, normalized to
that of the TE;, mode.

As indicated in the diagram, the TE ;o mode has the lowest cutoff frequency. Since having only
one mode propagating in a waveguide is usually desirable, the waveguide dimensions and the
frequency are often adjusted so that only the TE;o mode will be propagating and the higher-order
modes will be cut off. This requires that the bandwidth be limited to the separation between the
cutoff frequency for the TE;o mode and that of the TE(; and TE;y modes. This separation is a
maximum for waveguides with b = a/2.

Each mode in a waveguide has its own characteristic impedance, which is the ratio of the E- and
H-field components in a cross section of the waveguide for a wave propagating in only one
direction. Any discontinuity in a waveguide (such as an object placed in it or a change in its
dimensions) which does not have an impedance equivalent to the characteristic impedance of the
incident wave, will, when the incident wave strikes it, cause a reflected wave to be generated. If
all modes are cut off except one, the discontinuity will also generate all the cutoff modes. Since
these cutoff modes will attenuate very rapidly away from the discontinuity, they will exist only
in a small region around it. They must be present, however, to satisfy the boundary conditions at
the discontinuity. In single-mode waveguides, the incident and reflected waves of the mode will
produce wave patterns in the waveguide exactly like those on a two-conductor transmission line.
The reflection coefficient and the standing-wave ratio are defined just as they are for TEM
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modes in two-conductor transmission lines. Concepts of voltage and current are not useful for
waveguides in the same sense that they are for two-conductor transmission lines. In waveguides,
the E and the H form the wave patterns. These patterns are usually measured by putting E- or H-
field probes through narrow slots in the waveguide walls.

A highly conducting wall across the opening of the waveguide will produce a "short" in it. This
causes a standing-wave pattern, just as a short does in a TEM-mode transmission line. A lossy
tapered material in the waveguide will terminate it. The lossy material absorbs the energy in the
incident wave, and an appropriate taper causes essentially no reflection.

3.3. ABSORPTION CHARACTERISTICS

The previous section describes primarily the characteristics of the electromagnetic fields
themselves. This section describes how energy is absorbed by objects irradiated by
electromagnetic fields.

3.3.1. Poynting's Theorem (Energy Conservation Theorem)

Poynting's theorem is a powerful statement of energy conservation. It can be used to relate power
absorption in an object to incident fields but is often misunderstood and misinterpreted. Avoiding
complicated mathematical expressions (as stated in the beginning) is still a goal of this chapter,
but Poynting's theorem requires a mathematical statement for a satisfactory description. We will
explain enough to allow understanding with only a minimum knowledge of mathematics.
According to Poynting's theorem, if S is any closed mathematical surface and V is the volume
inside S, then

3
EI“J(WC+EE'E+HH'H]|d‘J+¢SEXH'dS=EI
(Equation 3.35)

where

Woe is the energy possessed by charged particles at a given point in V
¢E - E is the energy stored in the E-field at a given point in V
pH - H is the energy stored in the H-field at a given point in V.

A closed surface is any surface that completely encloses a volume. The integral over the volume
V corresponds to a sum of the terms in the integrand over all points inside V. Thus the integral
over V corresponds to the total energy inside V possessed by all charged particles and that stored
in the E- and H-fields. The term on the left, then, is the time rate of change of the total energy
inside V, which is total power. The term on the right is an integral over the closed mathematical
surface enclosing V. For convenience, let

P=ExH (Equation 3.36)

P, which is called the Poynting vector, has units of watts per square meter and is interpreted as a
power density. As explained in Section 3.1.3, the direction of the cross product of E and H is
perpendicular to both E and H, and the vector dot product of E x H and dS selects the
component of E x H that is parallel to dS (see Figure 3.27). P - dS is the power passing out
through the differential surface element (dS), and the surface integral is the sum of the power
passing through the dS elements over the entire surface (S), which is equal to the total power
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passing out through S. Thus Poynting's theorem is a statement of the conservation of energy: the
time rate of change of the total energy inside V is equal to the total power passing out through S.

The Poynting vector E x H is very useful in understanding energy absorption, but Poynting's
theorem applies only to a closed surface and the volume enclosed by that surface. Misapplying
Poynting's theorem to field relations at a given point, or to only part of a closed surface instead
of to an entire closed surface, can lead to serious misunderstanding of energy absorption
characteristics. We will illustrate this after considering Poynting's theorem for time-averaged
fields.

A=z Pegds

Figure 3.27. A volume (V) bounded by a closed surface (S). dS is the differential surface
vector. P -dS is the projection of P on dS, which corresponds to power passing out through
ds.

Poynting's theorem for time-averaged power and energy of steady-state sinusoidal E- and H-
fields is of special interest. Equation 3.35 is valid at any instant of time for fields of general time
variation. For sinusoidal fields, however, the time average of the energy stored in the E- and H-
fields is zero; this is analogous to storing energy in a frictionless spring. Over one part of the
cycle the spring is compressed so that it stores energy, but over the next part of the cycle the
spring extends and gives back the energy, so the average energy stored is zero. The time average
of energy possessed by charged particles is also zero if no friction (such as due to collisions) is
involved in the particles' motion. Friction, however, results in energy loss (usually transformed
to heat) that cannot be returned, which corresponds to a nonzero time-average change in energy.

In terms of average power, Poynting's theorem is

[v <R >dV+§s<P>edS =0
(Equation 3.37)

where the brackets designate the time average of the quantity inside. Equation 3.37 states that the
sum of the average power possessed by charged particles in V and the total average power
passing out through S is always equal to zero. Equation 3.38 shows this relationship in another
way:

<P >edS= (<P >4V
(Equation 3.38)
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The term on the left is the total average power passing in through S, which is equal to the total
average power transferred to the charged particles in V. Thus, if interpreted properly with
respect to a closed surface, the Poynting vector E x H can be a useful parameter in describing
radiation fields, but it must be used with considerable caution. Some examples will help clarify
this point.

Consider the case of a planewave incident on an absorbing object, as illustrated in Figure 3.28.
Using the impedance relationship for planewaves E/H = 377 (see Section 3.2.8), the magnitude
of the Poynting vector for planewave in free space is the familiar expression

P=FE’/377 (Equation 3.39)

When the incident fields impinge on the absorber, E- and H-fields are scattered by the absorber.
Poynting's theorem applied to this situation gives

§ CEw+E:>x<H +H, >edS= [ (P> dV
(Equation 3.40)

Since

(E, +E,) x(H,

1

K HS} ) {El XHI} * [El XHJ:I * [ES : H:) v (ES XHS) (EQuation 3.41)
integrating E; x Hj, the Poynting vector for the incident wave, over S would not give the total
power transferred from the incident wave to the absorber. Finding this total power from
integration of the Poynting vector over S would require knowing the scattered fields and
including them in the calculation according to Equation 3.40. Calculating the scattered fields is
generally very difficult. It is true that the power transferred to the absorber would be proportional
to the Poynting vector of the incident planewave. For a given absorber and a given planewave,
for example, the power transferred to the absorber would be twice as much if the incident-power
density (Poynting vector of the incident wave) were 2 mW/cm” as it would if that density were 1
mW/cm?. The actual amount of power transferred to the absorber in each case, however, would
depend on the characteristics of the absorber. Thus although the incident-power density of
planewaves is commonly used to indicate their ability to cause power absorption in objects they
irradiate, this is only a relative indication, not an absolute one.
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Figure 3.28. A planewave irradiating an absorber. S is a closed surface used with
Poynting's theorem. Scattered fields are produced by the incidence of the planewave on the
absorber.

The situation shown in Figure 3.29 further illustrates difficulties sometimes encountered in
applying Poynting's theorem. Suppose a planewave is incident on a perfectly conducting plane,
thus causing a reflected wave that combines with the incident wave to produce a standing wave
(see Sections 3.2.12, 3.3.2) . Then suppose that an absorber is placed in front of the conducting
plane at a position where the incident and reflected E-fields add to produce a field of twice the
magnitude as that of the incident wave. How would the power transferred to the absorber with
the reflector compare to the power transferred to the absorber without the reflector? The first
important point is that the Poynting vectors of the incident and reflected wave cannot be added,
as indicated by Equation 3.41. So it is not correct to say that the power density incident on the
absorber with the reflector would be twice that without it. The principle of superposition can be
used with the incident E and H but not with P. The second point is that we cannot draw
conclusions from the Poynting vector about power transmitted to the absorber without
considering the scattered fields and integrating over a closed surface. For example, suppose that
we were to use superposition to add the E-fields and add the H-fields of the incident and
reflected waves, and then calculate the Poynting vector from these total fields. Considering what
the P would be at a distance of A/2 from the reflector shows the incorrectness of this procedure.
As explained later (Section 3.3.2 and Figure 3.32), the total H at that distance is zero. A
calculation of P based on the total E and H at that distance would therefore give a value of zero
for P, which does not make sense.

In summary, the Poynting vector should not be used to draw conclusions about energy
absorption unless an integration over a closed surface is carried out. Furthermore, the principle of
superposition applies to E- and H-fields but not to P.
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Figure 3.29. Absorber placed between an incident planewave and a conducting plane.
3.3.2. Interaction of Fields with Objects
Boundary Conditions--At any boundary between different materials, the E and H-fields must

satisfy certain conditions. These boundary conditions, which can often be used to help explain
qualitatively the interaction of fields with objects, are

£1Ey = 8B (Equation 3.42)

=R

lp ap (Equation 3.43)
wiHy =0 Hy (Equation 3.44)
H_ =H

Ip I (Equation 3.45)

where subscript n stands for the component of E or H normal (perpendicular) to the boundary,
and subscript p stands for the component parallel to the boundary. Subscripts 1 and 2 stand for
the two different materials, as indicated in Figure 3.30 for two dielectrics. In each case the field
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is the fotal field in the material, which may consist of the fields in both an incident and a
reflected wave. These relations hold only at the boundary; with distance away from it, the fields
may vary rapidly.

“1 ‘2/
E]n E2n
</

E E 4
1p 2p

/

Figure 3.30. Electric-field components at a boundary between two materials.

The relationships contained in Equations 3.42-3.45 can sometimes be used to understand field
behavior qualitatively. For example, if a high-permittivity dielectric object were placed in a low-
frequency uniform E-field with the E-field essentially normal to the dielectric object, Equation
3.42 would require that the field inside the object be smaller than the field outside by the ratio of
the permittivities of the two materials, the object and its surrounding. This would be true only at
the boundary, but it would give a general idea of the field pattern. On the other hand, if the object
were placed parallel to the field, Equation 3.43 would require that the field inside the object be
equal to the field outside the object at the boundary.

At low frequencies the boundary conditions at the surface of a perfect conductor are that the
parallel component of the E-field must be zero. This was explained in Section 3.2.1.

Planar Conductors--When a propagating wave strikes an object, part of the wave is reflected or
scattered by the object and part penetrates into the object. The total E- and H-fields at any point
outside the object consist of the incident and the scattered fields. The simplest example of
scattering is a planewave incident on a planar object. Figure 3.31 shows a planewave normally
incident on a planar conductor. When the incident wave enters the conductor, it produces
currents that are sources of additional E- and H-fields, called scattered fields (or reflected fields).
If the conductor has infinite conductivity (perfect conductor), the sum of the incident and the
scattered fields is zero everywhere inside the conductor. A graph of the total E- and H-fields
(sum of the incident and scattered fields) to the left of the perfect conductor is shown in Figure
3.32: (a) shows the total E-field as a function of position for times t; and t;. At any instant of
time, the variation of the field with position is sinusoidal; and at any position, the variation of the
field with time is sinusoidal. As the field varies through a full cycle in time, the envelope of the
field varies with position (Figures 3.32(b) and (c)). These wave patterns are identical to those for
voltage and current on a two-conductor transmission line with a short at the end (Figure 3.23),
and the same definitions are made for nodes, standing wave, etc. The nodes for the E-field occur
at multiples of half a wavelength from the conductor, and the E-field is zero at the surface of the
conductor. The H-field is not zero at the surface of the conductor, but the nodes for H are still
spaced a half wavelength apart. Remember that E and H are constant everywhere in a plane
perpendicular to the direction of propagation. The patterns shown in Figure 3.32 thus represent
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the magnitudes of E and H in planes parallel to the conductor. At the nodes, the E and H are zero
everywhere in that plane.

AN

plarar
conductor

NN

Figure 3.31. Planewave incident on a planar conductor. The conductor produces a
scattered wave.
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Figure 3.32. Total fields, incident plus scattered. (a) Total E-field as a function of position

at two times, t; and t,. (b) Total E-field as a function of position at various times through a

full cycle, and the envelope of the standing wave. (c) Total H-field as a function of position
at various times through a full cycle, and the envelope of the standing wave.

Figure 3.33 is a diagram of a planewave obliquely incident on a perfect planar conductor. In this
case the angle of reflection is equal to the angle of incidence. The angles are defined as the
angles between the direction of propagation and the normal to the planar conductor. The sum of
the incident and scattered waves for oblique incidence is also a standing wave, but in this case
the nodes do not occur at half-wavelength spacing. Their spacing depends on the angle of
incidence. For large angles of incidence, the spacing between nodes is much smaller than half a
wavelength.

planar
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Figure 3.33. Planewave obliquely incident on a planar conductor.

Planar Dielectrics--When a planewave is incident on a planar dielectric, the incident wave
produces currents in the dielectric which produce additional fields, just as a conductor does.
Unlike the fields inside a conductor, however, the fields inside a dielectric do not necessarily add
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to zero. A planewave incident on a planar dielectric produces scattered fields outside the
dielectric and a wave inside the dielectric called the transmitted (refracted) wave, as shown
diagrammatically in Figure 3.34 for oblique incidence. With a lossy dielectric (see Section
3.2.6), the transmitted wave is attenuated as it travels into the dielectric, becoming essentially
zero at some depth related to the €" of the dielectric. For large €", the transmitted wave does not
penetrate very far into the dielectric.
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Figure 3.34. Planewave obliquely incident on a planar dielectric.

Nonplanar Objects--The scattering of E- and H- fields by nonplanar objects is more
complicated than that by planar objects. The scattering depends on the size, shape, and material
properties of the object and the frequency of the incident fields. If the object is very small
compared to a wavelength of the incident fields or if the object's relative permittivity is very
close to unity, not much scattering occurs. When the object's size is comparable to or larger than
a wavelength, significant scattering generally occurs. More specific information about scattering
and absorption by biological tissue is given next.

3.3.3. Electrical Properties of Biological Tissue

The permeability of biological tissue is essentially equal to that of free space; in other words,
biological tissue is essentially nonmagnetic. The permittivity of biological tissue is a strong
function of frequency. Figure 3.35 shows the average €' and €" for the human body as a function
of frequency. Calculations have shown that the average €' and €" for the whole human body are
equal to approximately two-thirds that of muscle tissue. At frequencies below about 1 MHz,
body tissue is anisotropic; i.e., conductivity in one direction is significantly different from the
conductivity in another direction.

Permittivity generally decreases with frequency. This manifests the inability of the charges in the
tissue to respond to the higher frequencies of the applied fields, thus resulting in lower
permittivity values.

In tissue the €" represents mostly ionic conductivity and absorption due to relaxational processes,
including friction associated with the alignment of electric dipoles and with vibrational and
rotational motion in molecules.
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3.3.4. Planewave Absorption Versus Frequency

The absorption of energy by an object irradiated by electromagnetic fields is a strong function of
frequency. Many calculations of absorbed energy, although generally very difficult, have been
made; and significant data, both calculated and measured, are available. Absorption
characteristics are explained below, first for planar models, which are the simplest but least
representative of humans, and then for more realistic models.

Planar Models--Although planar models do not represent humans well, analyses of these
models have provided important qualitative understanding of energy-absorption characteristics.
When a planewave is incident on a planar dielectric object, the wave transmitted into the
dielectric attenuates as it travels and transfers energy to the dielectric (as explained in Section
3.3.2). For very lossy dielectrics, the wave attenuates rapidly. This characteristic is described by
skin depth--the depth at which the E- and H- fields have decayed to ¢ (¢ = 0.368) of their
value at the surface of the dielectric. Skin depth is also the depth at which the Poynting vector
has decayed to e (e = 0.135) of its value at the surface. For a planewave incident on a planar
dielectric, skin depth is given by

, =(6?.52ff)[w_5]_% m

where f is the frequency in MHz. Figure 3.36 shows skin depth as a function of frequency for a
planar dielectric with a permittivity equal to two-thirds that of muscle tissue (see Figure 3.35).

(Equation 3.46)
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Figure 3.35. Average permittivity of the human body (equivalent to two-thirds that of
muscle tissue) as a function of frequency.
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At higher frequencies, the skin depth is very small; thus most of the energy from the fields is
absorbed near the surface. For example, at 2450 MHz the skin depth is about 2 cm; at 10 GHz,
about 0.4 cm.
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Figure 3.36. Skin depth versus frequency for a dielectric half-space with permittivity equal
to two-thirds that of muscle.

The results for planar models have a characteristic generally true for other objects as well: At
low frequencies the fields penetrate much deeper than at high frequencies. At very high
frequencies any lossy-material heating due to planewave irradiation will be primarily surface
heating.

Other Models--Other models--spheres, cylinders, prolate spheroids, block models (cubical
mathematical cells arranged in a shape like a human body)-have been used to represent the
human body in calculating and measuring energy absorbed during planewave irradiation. The
internal E and H are a function of the incident fields, the frequency, and the permittivity and size
and shape of the object. Some typical absorption results and characteristics are given in the
following sections. Especially important for nonplanar objects are the effects of polarization of
the incident fields.

3.3.5. Polarization

Orientation of incident E- and H-fields with respect to the irradiated object has a very strong
effect on the strength of fields inside the object. This orientation is defined in terms of
polarization of the incident fields.

Polarization for objects of revolution (circular symmetry about the long axis) is defined by the
incident-field vector--E, H, or k -- parallel to the long axis of the body. The polarization is called
E polarization if E is parallel to the long axis, H if H is parallel, and K if k is parallel. This
definition is illustrated in terms of prolate spheroids in Figure 3.37.
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E polarization H polarization K polarization

Figure 3.37. Polarization of the incident field with respect to an irradiated object.

For objects (like the human body) that are not objects of revolution, six polarizations are defined,
as illustrated in Figure 3.38 for ellipsoids . The ellipsoid has three semiaxes with lengths a, b,
and c, where a > b > c¢. The polarization is defined by which vector (E, H, or k) is parallel to
which axis. For example, EHK polarization is the orientation where E lies along a, H lies along

b, and k lies along c.
7
!

Y E
- - i
ey :b'—‘ b, H
I = r h
! .’://
a a
L

¥

s

FHY polorizaotion HOYE pulurizolion EKH p{ﬂuri:ulinn

KEH palarizarion KHE polarization HKE pelarizatien
Figure 3.38. Polarization for objects that do not have circular symmetry about the long
axis.

3.3.6. Specific Absorption Rate

Definition--In dosimetry, the transfer of energy from electric and magnetic fields to charged
particles in an absorber is described in terms of the specific absorption rate (SAR). "Specific"
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refers to the normalization to mass; "absorption," the absorption of energy; and "rate," the time
rate of change of the energy absorption. SAR is defined, at a point in the absorber, as the time
rate of change of energy transferred to charged particles in an infinitesimal volume at that point,
divided by the mass of the infinitesimal volume. From Equation 3.35

sar = (oW rat) /o,
(Equation 3.47)

where pn, is the mass density of the object at that point. For sinusoidal fields, the time-average
SAR at a point is given by the term <P.>/ p,, in Equation 3.38. This is also called the local SAR
or SAR distribution to distinguish it from the whole-body average SAR. The average SAR is
defined as the time rate of change of the total energy transferred to the absorber, divided by the
total mass of the body. From Poynting's theorem for the time-average sinusoidal steady-state
case (see Equation 3.38), the whole body average SAR is given by

Average SAR = | wiP hdV /ML
(Equation 3.48)

where M is the total mass of the absorber. In practice, the term "whole-body average SAR" is
often shortened to just "average SAR."

The local SAR is related to the internal E-field through Equation 3.17:

SAR =P /o, =0[E['Io, = wz,2' [E[io,
(Equation 3.49)

Thus if the E-field and the conductivity are known at a point inside the object, the SAR at that
point can easily be found; conversely, if the SAR and conductivity at a point in the object are
known, the E-field at that point can easily be found. Traditionally P has been called absorbed-
power density, and the relation in Equation 3.49 illustrates why SAR is also called absorbed
power density. The bioelectromagnetics community, however, has generally accepted SAR as
the preferred term.

SAR Versus Frequency--SAR is an important quantity in dosimetry both because it gives a
measure of the energy absorption that can be manifest as heat and because it gives a measure of
the internal fields which could affect the biological system in ways other than through ordinary
heat. The internal fields, and hence the SAR, are a strong function of the incident fields, the
frequency, and the properties of the absorber. Since any biological effects would be caused by
internal fields, not incident fields, being able to determine internal fields or SARs in people and
experimental animals for given radiation conditions is important. Without such determination in
both the animal and the person, we could not meaningfully extrapolate observed biological
effects in irradiated animals to similar effects that might occur in irradiated people.

The general dependence of average SAR on frequency is illustrated by Figures 3.39 and 3.40 for
models of an average-sized man and a medium-sized rat for the three standard polarizations. For
E polarization a resonance occurs at about 80 MHz for the man; at about 600 MHz for the rat.
From these two graphs the resonance frequency appears to be related to the length of the body,
and indeed it is. In general, resonance occurs for long thin metallic objects at a frequency for
which the object is approximately one-half of a free-space wavelength long. For biological
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bodies, resonance occurs at a frequency for which the length of the body is about equal to four-
tenths of a wavelength. A more accurate formula for the resonant frequency is given in Section

3.5. Below resonance the SAR varies approximately as f* ; and just beyond resonance, as 1/f.
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Figure 3.39. Calculated whole-body average SAR frequency for model of an average man

for three standard polarizations. The incident-power density is 1 mW/cm®.
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Figure 3.40. Calculated whole-body average SAR versus frequency for model of a medium-
sized rat for three standard polarizations. The incident-power density is 1 mW/cm®

Figures 3.39 and 3.40 also indicate that below resonance the SAR is generally higher for E
polarization, intermediate for K, and lower for H. Again, this is generally true. These
characteristics can be explained by two qualitative principles:

1. The SAR is higher when the incident E-field is more parallel to the body than
perpendicular.

2. The SAR is higher when the cross section of the body perpendicular to the incident H-
field is larger than when it is smaller.

The average SAR is higher for E polarization because the incident E-field is more parallel to the
body than perpendicular to it, and the cross section of the body perpendicular to the incident H-
field is relatively larger (see Figure 3.37). For H polarization, however, the incident E-field is
more perpendicular to the body than parallel to it, and the cross section of the body perpendicular
to the incident H-field is relatively smaller; both conditions contribute to a lower average SAR.
The average SAR for K polarization is intermediate between the other two because the incident
E-field is more perpendicular to the body, contributing to a lower SAR; but the cross section
perpendicular to the incident H-field is large, contributing to a larger SAR.

64



When a man is standing on a perfectly conducting ground plane, for E polarization the ground
plane has the effect of making the man appear electrically to be about twice as tall, which lowers
the resonant frequency to, approximately half of that in free space. For a man on a ground plane,
the graph of SAR versus frequency for E polarization would therefore be almost like the one in
Figure 3.39 but shifted to the left by approximately 40 MHz. This is generally true for objects on
ground planes for E polarization.

Another important qualitative characteristic is that when the incident E-field is mostly parallel to
the body, the average SAR goes up if the body is made longer and thinner. Some of these "rules
of thumb" are summarized in Section 3.5, More detailed information about SAR characteristics
is given in Section 5.1.

3.4. CONCEPTS OF MEASUREMENTS

Three kinds of electromagnetic measurement techniques are of primary interest: the electric
field, the magnetic field, and the SAR. The basic concepts underlying these measurement
techniques are discussed in this section. More detailed information is given in Chapter 7.

3.4.1. Electric-Field Measurements

Devices for measuring an E-field usually consist of two main components: a small antenna or
other pickup device that is sensitive to the presence of an E-field, and a detector that converts the
signal to a form that can be registered on a readout device such as a meter. The pickup is
typically a short dipole. The dipole can be two short pieces of thin wire (Figure 3.41(a)) or two
short strips of thin metal as on a printed circuit (Figure 3.41(b)). Sometimes the dipole is flared
out to look like a bow tie (Figure 3.41(c)) to improve the bandwidth of the dipole.

B

(a) (b) (c}

Figure 3.41. Short dipole used to sense the presence of an electric field.

The detector is usually a diode or a thermal sensor. A diode rectifies the signal so that it can
register on a dc meter. A thermal sensor responds to heat produced in some lossy material that
absorbs energy from the E-field. The heat produces a voltage or current that can be registered on
a meter. An example of a thermal sensor is a thermocouple, which consists of two junctions of
dissimilar metals. The two junctions produce a voltage proportional to the temperature difference
between them.

Leads are required to transmit the voltage or current from the detector to the meter or other
readout devices, as illustrated in Figure 3.42. The leads often cause problems because they
themselves can be sensitive to the presence of an E-field and may produce erroneous readings
through unwanted E-field pickup. To overcome this problem, high-resistance leads are often
used in E-field probes. The sensitivity of the pickup element is roughly proportional to its length
compared to a wavelength of the E-field to be measured. At low frequencies, where the
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wavelength is very long, short elements are sometimes not sensitive enough; however, if the
element is too long it may perturb the field to be measured. To avoid field perturbation, the
element should be short compared to a wavelength; thus the tradeoff between sensitivity and
perturbation is difficult.

dicde

line to metar

Figure 3.42. Simple electric-field probe with a diode detector.

The dipole element is sensitive only to the E-field component parallel to the dipole; an E-field
perpendicular to the dipole will not be sensed. This can be understood in terms of the force that
the E-field exerts on the charges in the dipole, for that is the basic mechanism by which the
dipole senses the E-field. An E-field parallel to the dipole produces forces on charges that tend
to make them move along the dipole from end to end, which amounts to a current in the dipole.
An E-field perpendicular to the dipole, however, tries to force the charges out through the walls
of the dipole, which produces essentially no current useful for sensing the E-field. In practice,
three orthogonal dipoles are often used, one to sense the E-field component in each direction. By
electronic circuitry, each component is then squared and the results are added to get the
magnitude of the E-field vector.

Although commercial instruments for measuring E-field are based on the simple concepts
described here, they are very sophisticated in their design and fabrication. Some of them are
described in Chapter 7.

3.4.2. Magnetic-Field Measurements

Devices for measuring B-field also consist of two basic components, the pickup and the detector.
For the B-field the pickup is usually some kind of loop, as shown in Figure 3.43. The loop is
sensitive only to the B-field component perpendicular to the plane of the loop, as indicated. A
time varying B-field produces a voltage in the loop that is proportional to the loop's area and the
rapidity (frequency) of the B-field's time variation. Thus at low frequencies the loop must be
large to be sensitive to weak fields. As with the E-field probe, making the probe large to improve
the sensitivity yet small enough to minimize the perturbation of the field being measured requires
a tradeoff.
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Figure 3.43. Loop antenna used as a pickup for measuring magnetic field.

Diode detectors are commonly used with B-field probes, although some thermal sensors have
been used. Leads can also cause unwanted pickup of fields in B-field measurements. Another
problem with the loop sensors is that they may be sensitive to E- as well as B-field. Special
techniques have been used to minimize the E-field pickup in loops used with commercial B-field
probes. Some of the available commercial B-field probes are described in Chapter 7.

3.4.3. SAR Measurements

Usually only research laboratories make SAR measurements because they are relatively difficult
and require specialized equipment and conditions (see Chapter 7). Three basic techniques are
used for measuring SARs. One is to measure the E-field inside the body, using implantable E-
field probes, and then to calculate the SAR from Equation 3.49; this requires knowing the
conductivity of the material. This technique is suitable for measuring the SAR only at specific
points in an experimental animal. Even in models using tissue-equivalent synthetic material,
measuring the internal E-field at more than a few points is often not practical.

A second basic technique for measuring SAR is to measure the temperature change due to the
heat produced by the radiation, and then to calculate the SAR from that. Probes inserted into
experimental animals or models can measure local temperatures, and then the SAR at a given
point can be calculated from the temperature rise. Such calculation is easy if the temperature rise
is linear with time; that is, the irradiating fields are intense enough so that heat transfer within
and out of the body has but negligible influence on the temperature rise. Generating fields
intense enough is sometimes difficult. If the temperature rise is not linear with time, calculation
of the SAR from temperature rise must include heat transfer and is thus much more difficult.
Another problem is that the temperature probe sometimes perturbs the internal E-field patterns,
thus producing artifacts in the measurements. This problem has led to the development of
temperature probes using optical fibers or high-resistance leads instead of ordinary wire leads.

A third technique is to calculate absorbed power as the difference between incident power and
scattered power in a radiation chamber. This is called the differential power method (see Section
7.2.5).

Whole-body (average) SAR in small animals and small models can be calculated from the total
heat absorbed, as measured with whole-body calorimeters. Whole-body SARs have also been
determined in saline-filled models by shaking them after irradiation to distribute the heat and
then measuring the average temperature rise of the saline.
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3.5. RULES OF THUMB AND FREQUENTLY-USED RELATIONSHIPS

This section contains a summary of some of the "rules of thumb" (Table 3.3) discussed in
previous sections as well as a summary of some of the more frequently used relationships of
electromagnetics (Table 3.4).

Table 3.3. Some Rules of Thumb

3. Wetter materials (muscle, high-water content tissues) are generally more lossy than drier
materials (fat, bone) and hence absorb more energy from electromagnetic fields.

4. The SAR is higher when the incident E-field is more parallel to the body than perpendicular
to it.

5. The SAR is higher when the cross section of the body perpendicular to the incident H-field
is higher than when the section is smaller.

6. Sharp corners, points, and edges concentrate E-fields. When placed perpendicular to E-
fields, conducting wires and plates cause minimum perturbation to the fields; when placed
parallel to them, maximum perturbation.

7. A uniform incident field does not generally produce a uniform internal field.
8. Depth of penetration decreases as conductivity increases, also as frequency increases.

9. Objects small compared to a wavelength cause little perturbation and/or scattering of
electromagnetic fields.

10. Below resonance, the SAR varies approximately as f .

11. For E polarization, SAR increases faster than f * just below resonance; just beyond
resonance, SAR decreases approximately as 1/f and then levels off. Variation of SAR with
frequency is most rapid near resonance.

12. Near resonance and below, SAR is greatest for E polarization, least for H polarization, and
intermediate for K polarization.

13. For E polarization, the SAR increases as an object becomes longer and thinner, and
decreases as an object gets shorter and fatter.
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Table 3.4. Some Frequently Used Relationships

G is conductivity in siemens/meter, €, = 8.85 x 102 F/m:

C=MEg¢&" permittivity of free space, €" is the imaginary part of
complex relative permittivity

o= 2ef o 1is radian frequency in radians/second, f is frequency in
hertz

tan 6 = &"/¢' tan O is the loss tangent
P is density of absorbed power at a point in watts/cubic

P=c|E[ meter, ¢ is conductivity in siemens/meter at the point, |E |
is rms electric-field intensity in rms volts/meter
D is electric-flux density in coulombs/square meter, € is

D =¢cE permittivity in farads/meter, E is electric-field intensity in
volts/meter

B=uH B is magnetic-flux density in tesla, | is permeability in

henry/meter, H is magnetic-field intensity in amperes/meter

£,=8.85 x 102 F/m

€, 1s the permittivity of free space

i =41 x 107 H/m

L, 1s the permeability of free space

f=1/T

f is frequency in hertz, T is period in seconds

A= v/f

A is wavelength in meters, v is velocity of propagation in
meters/second, f is frequency in hertz

EH=.u/lc¢

E/H is the wave impedance in ohms

E/H = 377 ohms in free space

E is the magnitude of the electric-field intensity in
volts/meter, H is the magnitude of the magnetic-field
intensity in amperes/meter

v=1\h;

v is the velocity of propagation in meters/second

v =3 x 10® m/s in free space

u is the permeability in henry/meter, ¢ is the permittivity in
farad/meter

<P> is the time-averaged Poynting's vector in watts/square

<P>=<E x H> meter, E is the electric-field intensity in rms volts/meter, H
is the magnetic-field intensity in rms amperes/meter
P = E¥377 P is the magnitude of the time-average Poynting vector for

a planewave in free space, E is the magnitude of the
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electric-field intensity in rms volts/meter, 377 is the wave
impedance of free space in ohms

S = EmaX/Emin

S is the standing-wave ratio (unitless), E max 1s the
maximum value of the magnitude of the electric-field
intensity anywhere along the wave, E n;, 1s the minimum
value of the magnitude of the electric-field intensity
anywhere along the wave

S=(1+p)/(1-p)

S is the standing-wave ratio (unitless), p is the magnitude
of the reflection coefficient (ratio of reflected E-field to
incident E-field)

- 67}52}{[W4I]—1f 2

O is the skin depth in meters, €' is the real part of the
permittivity, €" is the imaginary part of the permittivity, fis
the frequency in MHz

SAR =G|E|? / pm

SAR is the local specific absorption rate in watts/kilogram,
G is the conductivity in siemens/meter, |E| is the electric-
field strength in rms volts/meter, py, is the mass density in
lkilograms/cubic meter

) -142
£ =275 1(Fx |2£2 +1(32 +d?)
’ 4

f, is the resonant frequency in hertz of the SAR for E
polarization, £ is the average length of the absorbing object,
d is the average diameter of the absorbing object

F is the rms value of the periodic function f (t), T is the
period of the function

G is the rms value of a sinusoid, G, is the peak value of the

G =g 2 sinusoid
d is the approximate distance from an antenna at which the
4= 2120, n ear fields become negligible and the fields are

approximately far fields, L is the largest dimension of the
antenna, A is the wavelength

70




Chapter 4. Dielectric Properties

Information about the dielectric properties of biological systems is essential to RF dosimetry.
This information is important in both experiments and calculations that include the interaction of
electromagnetic fields with biological systems. This chapter describes the basic dielectric
properties of biological substances and summarizes methods used to measure these properties; it
includes a tabulated summary of the measured values.

4.1. CHARACTERISTICS OF BIOLOGICAL TISSUE

The material in this section was written by H. P. Schwan, Ph.D., Department of Bioengineering,
University of Pennsylvania. It was published in a paper titled "Dielectric Properties of Biological
Tissue and Physical Mechanisms of Electromagnetic Field Interaction" in Biological Effects of
Nonionizing Radiation, ACS Symposium Series 157, Karl H. Illinger, Editor, published by the
American Chemical Society, Washington, DC, 1981. It is presented here with minor changes by
permission of the author and the publisher.

4.1.1. Electrical Properties

We will summarize the two electrical properties that define the electrical characteristics, namely,
the dielectric constant relative to free space (€) and conductivity (o). Both properties change with
temperature and, strongly, with frequency. As a matter of fact, as the frequency increases from a
few hertz to gigahertz, the dielectric constant decreases from several million to only a few units;
concurrently, the conductivity increases from a few millimhos per centimeter to nearly a
thousand.

Figure 4.1 indicates the dielectric behavior of practically all tissues. Two remarkable features are
apparent: exceedingly high dielectric constants at low frequencies and three clearly separated
relaxation regions--a, 3, and y--of the dielectric constant at low, medium, and very high
frequencies. Dominant contributions are responsible for the a, B, and y dispersions. They include
for the a-effect, apparent membrane property changes as described in the text; for the B-effect,
tissue structure (Maxwell-Wagner effect); and for the y-effect, polarity of the water molecule
(Debye effect). Fine structural effects are responsible for deviations as indicated by the dashed
lines. These include contributions from subcellular organelles, proteins, and counterion relation
effects.
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Figure 4.1 Frequency dependence of the dielectric constant of muscle tissue (Schwan,
1975)

In its simplest form each of these relaxation regions is characterized by equations of the Debye
type as follows,

=i e
SR I
Lk
o2
gy weliis |
X (Equation 4.1)

where x is a multiple of the frequency and the constants are determined by the values at the
beginning and end of the dispersion changes. However, biological variability may cause the
actual data to change with frequency somewhat more smoothly than indicated by the equations.

The separation of the relaxation regions greatly aids in identifying the underlying mechanism.
The mechanisms responsible for these three relaxation regions are indicated in Table 4.1.
Inhomogeneous structure is responsible for the 3-dispersion--the polarization resulting from the
charging of interfaces, i.e., membranes through intra- and extracellular fluids (Maxwell-Wagner
effect). A typical example is presented in Figure 4.2 in the form of an impedance locus. The
dielectric properties of muscle tissue are seen to closely conform to a suppressed circle, i.e., to a
Cole-Cole distribution function of relaxation times. A small second circle at low frequencies
represents the o-dispersion effect. Rotation of molecules having a permanent dipole moment,
such as water and proteins, is responsible for the y-dispersion (water) and a small addition to the
tail of the B-dispersion resulting from a corresponding 3;dispersion of proteins. The tissue
proteins only slightly elevate the high-frequency tail of the tissue's B-dispersion because the
addition of thep,- effect caused by tissue proteins is small compared to the Maxwell-Wagner
effect and occurs at somewhat higher frequencies. Another contribution to the B-dispersion is
caused by smaller subcellular structures, such as mitochondria, cell nuclei, and other subcellular
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organelles. Since these structures are smaller in size than the surrounding cell, their relaxation
frequency is higher but their total dielectric increment smaller. They therefore contribute another

addition to the tail of the B-dispersion ().

Table 4.1. Electrical Relaxation Mechanism (Schwan, 1975)

Three categories of relaxation effects are listed as they contribute to gross and fine structure
relaxational effects. They include induced-dipole effects (Maxwell-Wagner and counterion) and
permanent-dipole effects (Debye).

Inhomogeneous structure (Maxwell-Wagner) B
Permanent-dipole rotation (Debye) v, P tail
Subcellular organelles (Maxwell-Wagner) o
Counterion relaxation o

Three categories of relaxation effects are listed as they contribute to gross and fine structure
relaxational effects. They include induced-dipole effects (Maxwell-Wagner and counterion) and
permanent-dipole effects (Debye).
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Figure 4.2. Dielectric properties of muscle in the impedance plane, with reactance X plotted
against resistance R and the impedance Z = R + jX (Schwan, 1957). The large circle results
from the B-dispersion and the small one from the a-dispersion. The plot does not include
the y-dispersion.

The y-dispersion is due solely to water and its relaxational behavior near about 20 GHz. A minor
additional relaxation ( &) between Pand y-dispersion is caused in part by rotation of amino acids,
partial rotation of charged side groups of proteins, and relaxation of protein-bound water which
occurs somewhere between 300 and 2000 MHz.
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The a-dispersion is presently the least clarified. Intracellular structures, such as the tubular
apparatus in muscle cells, that connect with the outer cell membranes could be responsible in
tissues that contain such cell structures. Relaxation of counterions about the charged cellular
surface is another mechanism we suggest. Last but not least, relaxational behavior of membranes
per se, such as reported for the giant squid axon membrane, can account for the a-dispersion
(Takashima and Schwan, 1974). The relative contribution of the various mechanisms varies, no
doubt, from one case to another and needs further elaboration.

No attempt is made to summarize conductivity data. Conductivity increases similarly in several
major steps symmetrical to the changes of the dielectric constant. These changes are in accord
with the theoretical demand that the ratio of capacitance and conductance changes for each
relaxation mechanism is given by its time constant, or in the case of distributions of time
constants, by an appropriate average time constant and the Kramers-Kronig relations.

Table 4.2 indicates the variability of the characteristic frequency for the various mechanisms--a.,
B, v, and o from one biological object to another. For example, blood cells display a weak
a-dispersion centered at about 2 kHz, while muscle displays a very strong one near 0.1 kHz. The
B-dispersion of blood is near 3 MHz, that of muscle tissue near 0.1 MHz. The considerable
variation depends on cellular size and other factors. The variation may not be as strong in the
d-case as in the a- and B-dispersion frequencies. The y-dispersion, however, is always sharply
defined at the same frequency range.

Table 4.2. Range of Characteristic Frequencies Observed With Biological
Material for o, 3, 8, and y Dispersion Effects

Dispersion Frequency Range (Hz)

o 1-10*
B 10*-10°
8 10° - 10°
v 2-10"

Table 4.3 indicates at what level of biological complexity the various mechanisms occur.
Electrolytes display only the y-dispersion characteristic of water. To the water's y-dispersion,
biological macromolecules add a d-dispersion. It is caused by bound water and rotating side
groups in the case of proteins, and by rotation of the total molecule in the case of the amino
acids; in particular, proteins and nucleic acids add further dispersions in the - and a-range as
indicated. Suspensions of cells free of protein would display a Maxwell-Wagner -dispersion
and the y-dispersion of water. If the cells contain protein an additional, comparatively weak [3-
dispersion due to the polarity of protein is added, and a d-dispersion. If the cells carry a net
charge, an a-mechanism due to counterion relaxation is added; and if their membranes relax on
their own as some excitable membranes do, an additional mechanism may appear.
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TABLE 4.3. Biological Components And Relaxation Mechanisms They

Display (Schwan, 1975)
Electrolytes Y
Biological macromolecules

Amino Acids oty
Proteins pto+y
Nucleic acids at+tp+dt+y
Cells, free of protein B+y
Charged atpty

With excitable membranes a+pB+y

Evidence in support for the mechanism outlined above may be summarized as follows.

Water and Tissue Water--The dielectric properties of pure water have been well established
from dc up to microwave frequencies approaching the infrared (Afsar and Hasted, 1977). For all
practical purposes, these properties are characterized by a single relaxation process centered near
20 GHz at room temperature. Static and infinite frequency permittivity values are close to 78 and
5, respectively, at room temperature. Hence, the microwave conductivity increase predicted by
Equation 4.1 is close to 0.8 mho/cm above 20 GHz, much larger than typical low-frequency
conductivities of biological fluids which are about 0.01 mho/cm. The dielectric properties of
water are independent of field strength up to fields of the order 100 kV/cm.

The dielectric properties of electrolytes are almost identical to those of water with the addition of
a o, term in Equation 4.1 due to the ionic conductance of the dissolved ion species. The static
dielectric permittivity of electrolytes of usual physiological strength (0.15 N) is about two units
lower than that of pure water (Hasted, 1963), a negligible change.

Three dielectric parameters are characteristic of the electrical and viscous properties of tissue
water:

a. The conductance of ions in water.
b. The relaxation frequency, f;
c. The static dielectric permittivity, &, observed at f << f, =20 GHz

A detailed study of the internal conductivity of erythrocytes revealed the intracellular ionic
mobility to be identical with that of ions in dilute electrolyte solutions if appropriate allowance is
made for internal friction with suspended macromolecules (Pauly and Schwan, 1966). Tissue
conductivities near 100 or 200 MHz, sufficiently high that cell membranes do not affect tissue
electrical properties, are comparable to the conductivity of blood and to somewhat similar
protein suspensions in electrolytes of physiological strength. Hence the mobility of ions in the
tissue fluids apparently does not differ noticeably from their mobility in water.
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Characteristic frequencies may be found from dielectric permittivity data or, even better, from
conductivity data. The earlier data by Herrick at al. (1950) suggest that there is no apparent
difference between the relaxation frequency of tissue water and that of the pure liquid (Schwan
and Foster, 1966). However, these data extend only to 8.5 GHz, one-third the relaxation
frequency of pure water at 37° C (25 GHz), so small discrepancies might not have been
uncovered. We have made measurements on muscle at 37° C and 1° C (where the pure-water
relaxation frequency is 9 GHz), up to 17 GHz. The dielectric properties of the tissue above 1
GHz show a Debye relaxation at the expected frequency of 9 GHz (Foster et al., 1980) (Figure
4.3). The static dielectric constant of tissue water as determined at 100 MHz compares with that
of free water if allowance 1s made for the fraction occupied by biological macromolecules and
their small amount of bound water (Schwan, 1957; Schwan and Foster, 1980). Thus from all
points considered, tissue water appears to be identical with normal water.
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Figure 4.3. Dielectric properties of barnacle muscle in the microwave frequency range are
presented in the complex dielectric constant plane (Foster et al., 1980).
€' and ¢" = o/we, are the components of the complex dielectric constant e, =¢' - je". The
frequency at the peak of the circle is the characteristic frequency of the dispersion and
identical with that of normal water, demonstrating the identity of tissue water in normal
water from a dielectric point of view.

Protein Solutions--The dielectric properties of proteins and nucleic acids have been extensively
reviewed (Takashima, 1969; Takashima and Minikata, 1975). Protein solutions exhibit three
major dispersion ranges. One occurs at RF's and is believed to arise from molecular rotation in
the applied electric field. Typical characteristic frequencies range from about 1 to 10 MHz,
depending on the protein size. Dipole moments are of the order of 200-500 Debyes, and low-
frequency increments of dielectric permittivity vary between 1 and 10 units/g protein per 100 ml
of solution. The high-frequency dielectric permittivity of this dispersion is lower than that of
water because of the low dielectric permittivity of the protein, leading to a high-frequency
decrement of the order of 1 unit/g protein per 100 ml. This RF dispersion is quite noticeable in
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pure protein solutions, but it contributes only slightly to the large 3-dispersion found in tissues
and cell suspensions.

At microwave frequencies the dielectric properties of tissues are dominated by the water
relaxation centered near 20 GHz. The magnitude of this water dispersion in tissues is typically
diminished by some 20 dielectric units, due to the proteins which displace a corresponding
volume of water.

Between these two readily noticeable dispersions is a small one, termed the d-dispersion by
Grant. It was first noted for hemoglobin (Schwan, 1965b) and then carefully examined for
hemoglobin (Pennock and Schwan, 1969) and albumin (Grant et al., 1968). This dispersion is
characterized by a fairly broad spectrum of characteristic frequencies extending from some
hundred to some thousand megahertz. Its magnitude is considerably smaller than that of the other
two dispersions, and it is thought to be caused by a corresponding dispersion of protein-bound
water and/or partial rotation of polar subgroups.

Grant (1979) and Schwan (1977b) pointed out that the conductivity of protein-bound water is
higher than that of water and electrolytes in the frequency range from ~500 to ~2000 MHz. Grant
has suggested that this might establish a local interaction mechanism of some biological
significance.

Dielectric saturation for proteins can be predicted from the Langevin equation and occurs in the
range of 10 to 100 kV/cm. Indeed, onset of saturation has been experimentally observed in
PBLG (poly-y-benzyl-L-glutamate) at 50 kV/cm (Jones et al., 1969), which is in good agreement
with the Langevin estimate. Any irreversible changes in protein structure that accompany its
rotational responses to an electrical field are unlikely to occur at field levels smaller than
required for complete orientation, i.e., dielectric saturation. The thermal energy kT (where k is
the Boltzmann constant, and T the absolute temperature) is in this case greater than the product
LE (where p is the dipole moment, and E the field strength), representing the change in potential
energy that occurs with rotation. Thus changes in protein structure caused by nonsaturating
electric fields would probably occur spontaneously in the absence of any exciting field at normal
temperatures.

Illinger (1977) has discussed the possibilities of vibrational and torsional substructural effects at
microwave or millimeter-wave frequencies. A calculation of internal vibrations in an alanine
dipeptide in water, using a molecular dynamics approach, has been presented by Rossky and
Karplus (1979). In this model the lowest frequency internal oscillations that occur (dihedral
angle torsions at 1500 GHz) are strongly damped; large proteins might exhibit lower frequency
internal vibrations. We would expect any macromolecular vibration that displaces surrounding
water to be overdamped by the water medium, which is quite lossy at frequencies below 100
GHz; however, a detailed analysis of the response of such a resonator surrounded by a lossy
medium has not yet been applied to this case. Illinger has not discussed the field strengths
required to saturate submolecular vibrational transitions, but the Langevin equation predicts that
saturation for smaller polar units requires higher field-strength values (Froehlich, 1949). Thus we
would expect that biologically critical field strengths are, for the various modes suggested by
Illinger, probably well above the levels required by the Langevin equation for the complete
rotational orientation of the total molecules.
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In summary, the dielectric properties of proteins and biopolymers have been investigated
extensively. For the rotational process, the field saturation levels are rather high; perhaps even
higher for internal vibrational and torsional responses. For nonlinear RF responses due to
counterion movement and chemical relaxation, the levels are unknown but probably also high. In
all these processes, reversible polarizations occur in competition with large thermal energies, and
irreversible changes are not expected at field-strength levels of the order of a few volts per
centimeter.

Membranes--Membranes are responsible for the dielectric properties of tissues and cell
suspensions at RF's, as demonstrated by studies involving cell suspensions. Yeast, blood,
bacteria, pleuropneumonia-like organisms, vesicles, and cellular organelles have been
extensively investigated by many investigators, including Fricke (1923), Cole (1972), and
Schwan (1957). This work has led to a detailed understanding of the role of cell membranes in
the polarization processes of biological media in the RF range. (The relatively simple
geometrical shapes of cells in suspensions facilitated this understanding.) The principal
mechanism for dielectric polarization at RF's and below is the accumulation of charges at
membranes from extra- and intracellular fluids. For spherical particles, the following expressions
were derived (Schwan, 1957):

9 aRC

(Equation 4.2)

1+ RM, (5, -py)
1+ R, [,oi +%pa]

g, =0o,|1- 15 —0,(1-15p)

(Equation 4.3)
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(Equation 4.4)

for the limit values of the simple dispersion that characterizes the frequency dependence. The
time constant is
EC

7= b —RCy (; + 0.50)
2 %% 4 pg

m

o; 20, (Equation 4.5)

In these equations, Cy, and G , are capacitance and conductance per square centimeter of the cell
membrane; R is the cell radius; p is the cellular volume fraction, and c; = 1/p; and 6, =1/p, are
the conductivities of the cell interior and suspending medium. The equations apply for small-
volume fractions, p, and assume that the radius of the cell is very large compared with the
membrane thickness. More elaborate closed-form expressions have been developed for cases
when these assumptions are no longer valid (Schwan and Morowitz, 1962; Schwan et al., 1970),
and an exact representation of the suspension dielectric properties as a sum of two dispersions is
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available (Pauly and Schwan, 1959). If, as is usually the case, the membrane conductance is
sufficiently low, Equations 4.2-4.5 reduce to the simple forms to the right of the arrows.
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Figure 4.4 Equivalent circuit for the B-dispersion of a cell suspension and corresponding
plot in the complex dielectric constant plane (Schwan and Foster, 1980).

A physical insight into Equations 4.2-4.5 is gained by considering the equivalent circuit shown in
Figure 4.4, which displays the same frequency response defined in these equations. The
membrane capacitance per unit area, Cm, appears in series with the access impedance, p; + p./2,
while the term o, (1-1.5 p) provides for the conductance of the shunting extracellular fluid.
Hence, the time constant, t, which determines the frequency where the impedances 1/mwCpR and
(pit pa/2) are equal is given as Equation 4.5. Using typical values of 6j, 5, ~ 0.01 mho/cm, C,, =
1 uF/em?® R =10 pm, and p= 0.5, with Equations 4.2-4.5 we see that the dispersion must occur
at RF's and that its magnitude, & - €, 1S exceptionally high.

From experimental dispersion curves and hence values of the four quantities G, G,

(&s - €»), and T, the three quantities Cp, oj, and ©,, can be determined with an additional equation
available to check for internal consistency. Values for extracellular and intracellular resistivities
thus obtained agree well with independent measurements. Dispersions disappear as expected
after destroying the cell membranes, and their characteristic frequencies are readily shifted to
higher or lower frequencies as intracellular or extracellular ionic strengths are experimentally
changed. This gives confidence in the model, whose validity is now generally accepted.

This work led to the important conclusion that the capacitance of all biological membranes,
including cellular membranes and those of subcellular organelles such as mitochondria, is of the
order of 1 uF/cm?. This value is apparently independent of frequency in the total RF range; at
low audio frequencies, capacitance values increase with decreasing frequencies due to additional
relaxation mechanisms in or near the membranes. These mechanisms will not be discussed here
and have been summarized elsewhere (Schwan, 1957; Schwan, 1965a).

From the membrane capacitance, we can estimate values for the transmembrane potentials
induced by microwave fields. At frequencies well above the characteristic frequency (a few
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MHz), the membrane-capacitance impedance becomes very small by comparison with the cell-
access impedance (p; + p./2) , and the membrane behaves electrically like a short circuit. Since
intracellular and extracellular conductivities are comparable, the average current density through
the tissue is comparable to that in the membrane. For an in situ field of 1 V/cm (induced by an
external microwave-field flux of about 10 mW/cm?), the current density, i, through the
membrane is about 10 mA/cm? since typical resistivities of tissues are of the order of 100 Q2-cm
at microwave frequencies. Thus the evoked membrane potential, AV = i/joC,, is about 0.5 pV at
3 GHz and diminishes with increasing frequency. This value is 1000 times lower than potentials
recognized as being biologically significant. Action potentials can be triggered by potentials of
about 10 mV across the membrane, but (dc) transmembrane potentials somewhat below 1 mV
have been recognized as being important (Schmitt et al., 1976).

If f << f,, the total potential difference applied across the cell is developed across the membrane
capacitance. In this limit, the induced membrane potential, AV, across a spherical cell is AV =
1.5 ER, where E represents the applied external field. Thus the cell samples the external-field
strength over its dimensions and delivers this integrated voltage to the membranes, which is a
few millivolts at these low frequencies for cells larger than 10 pum and external fields of about 1
V/cm. These transmembrane potentials can be biologically significant.

4.1.2. Membrane interactions

Table 4.4 summarizes information relevant to electrical fields and their effects on biological
membranes. Low-frequency alternating fields of the order of some hundred millivolts across the
membrane can destroy it, as later described. The propagation of action potentials along nerves is
initiated or interfered with by pulses or low-frequency potentials of roughly 10 mV across the
membrane. Corresponding current densities and field-strength values in tissues and the medium
external to the affected cell are of the order of 1 mA/cm? and 1 V/em (Schwan, 1972; National
Academy of Sciences, 1977; Schwan, 1971).

TABLE 4.4. Electrical-Field Effects On Membranes

Summary of various field effects on membranes (some established, some
proposed). AVy, is the field-induced membrane potential; E, corresponding field
strength in situ. E and AV are interrelated byAVy, = 1.5 ER (for spherical cells).

Field Effects AV, E, in situ
Membrane destruction 100-300mV
Action potential (excitation) 10 mV 1 V/icm
Subtle effects 0.1-ImV

Extraordinary sensitivities

A. Related to membranes 0.1 pv 0.01 uV/ecm
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B. Possibly not related to membranes <1 nV 0.1 uV/em

Microwave sensitivities (1 GHz) I pv* 1 V/em

* From AVy = 1.5 ER

In recent years, some extraordinary sensitivities have been reported. Electrosensitive species,
such as rays and sharks, detect fields of intensities as low as 0.1 pV/cm. To achieve these
sensitivities, they sample the field over considerable distances with the aid of special organs, the
Ampullae Lorenzini, and operate over a small frequency range extending from dc to only a few
hertz (National Academy of Sciences, 1977; Kalmijn, 1966). Some reports also indicate effects,
due to ELF fields of the order of volts per centimeter in air, on timing responses and calcium
efflux (Bawin and Adey, 1976; Gavalas-Medici and Day-Magdaleno, 1976). Corresponding in
situ fields would be of the order of 0.1 uV/cm, as listed in Table 4.4, and corresponding fields
across membranes below 1 nV. It is, however, not yet obvious if the reported effects are caused
by membrane processes; hence the reduction of external fields to in situ fields and then
membrane potentials is not necessarily sensible. A more detailed discussion of this topic is given
by Schwan (1971) and Bawin and Adey (1976) and the detailed report of the National Academy
of Sciences-National Research Council on the biological effects of electric and magnetic fields
(1977).

Microwave sensitivities of the order of 1 V/cm in situ have been frequently reported and
correspond to external flux values of the order of 1 to 10 mW/cm?. (See, for example, the recent
text by Baranski and Czerski (1976).) Some suspect that these sensitivities correspond to direct
interactions with the central nervous system. However, it is straightforward to translate in situ
field levels to corresponding membrane potentials; and these are at levels of the order of 1 uV or
less, depending on microwave frequency, as discussed by Schwan (1971). The implications of
these calculations have been challenged (Baranski and Czerski, 1976; Frey, 1971) by the
argument that we do not yet know how the brain processes information. But Schwan finds it
difficult to see how this rather general and no doubt valid statement pertains to his calculation of
microwave-induced membrane potentials. At microwave frequencies, field-strength levels in
membranes and in situ field levels are comparable within 1 order of magnitude. This must be so
because in situ currents readily pass the membranes and enter the cell interior as well as the
interior of subcellular organisms; moreover, dielectric constants of membranes (about 10) and
cellular fluids (about 60 or less, depending on frequency) are similar in magnitude (Schwan,
1957). The membrane potential is, therefore, simply the product of in situ field strength and
membrane thickness of about 10 cm. This simple argument does not depend on any particular
model.

Although the microwave-induced membrane potential of about 1 pV is comparable to and even
higher than the perception level across the endepithelium of the Ampullae of Lorenzini, the high
sensitivity of this endorgan is achieved only over a narrow bandpath range of some hertz. If
microwave sensitivities existed over such narrow bandpath ranges, they would be hardly
noticeable experimentally.

81



Also, the sensitivities of excitable cells to electric fields decrease rapidly as the electric stimulus
is applied for time periods decreasingly short in comparison to the refractory period of the order
of 1 ms. Hence quotation of reported low-frequency membrane sensitivities, as done by Frey
(1971), carries no implication with regard to sensitivities claimed at microwave frequencies that
correspond to time periods of the order of 1 ns, which is a million times smaller than the
refractory period. More recently, Bawin and Adey (1977) have postulated that microwave fields
may well be perceived if they are modulated with frequencies below 10 or 20 Hz. This would be
possible in principle if induced in situ fields and if currents could be rectified with some degree
of efficiency so that microwave fields would generate detectable low-frequency currents. No
evidence for such a mechanism has been demonstrated so far at the membrane level.

In Table 4.5 available evidence on the threshold of biological excitation phenomena is
summarized for various fields. In cardiology extended experience exists with pacemakers, and
threshold values range about 0.1-10 mA/cm?, depending on electrode size and other parameters
(Roy et al., 1976). In electrohypnosis, electrosleep, and electrical anesthesia, total currents
applied are about 10-100 mA. Corresponding current densities in the brain may be estimated
based on the work by Driscoll (1970). For a total 1-mA current applied to the head, internal brain
current densities are of the order of 10 pA/cm? (Driscoll, 1970). Hence 10-100 mA of total
current correspond to brain-tissue current densities of 0.1-1 mA/cm? . Very extended work has
been carried out on electrical hazards caused by low-frequency potentials applied to the human
body (Schwan, 1972). The values quoted in Table 4.5 as thresholds for sensation, "let go," and
fibrillation are all consistent with a current density of about 1 mA/cm *. Thus membrane
potentials in the millivolt range are consistent with the experience gained with pacemakers,
effects on brain tissue, and electrical hazards.

Table 4.5. Biological Thresholds

Current density thresholds noticed in various disciplines.

Discipline Density Threshold

Cardiology 0.03-10 mA/cm®
Electrosleep and electrical anesthesia 10-100 mA
Electrohazards:

Sensation 1 mA

"Let Go" 10 mA

Fibrillation 100 mA
Biophysics and axonology 1 mA/cm?

AVMm = 1.5 ER (10 pm, 1 mV)

AVy =R+ J (mA/cm?)
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4.1.3. Field-Generated Force Effects

Electric fields can directly interact with matter and create forces that can act on molecules as
well as on cellular and larger structures. Most of these interactions are reversible and do not
necessarily have demonstrable biological effects. An example is the movement of ions in an ac
field, which is inconsequential if the field is weak enough to prevent undue heating from
molecular collisions (e.g., below about 1 V/cm, corresponding to 1 mA/cm ? in a physiological
medium). Another example is the orientation of polar macromolecules. For field-strength values
of interest here, only a very partial, preferential orientation with the field results. Complete
orientation and consequent dielectric saturation requires field strengths of thousands of volts per
centimeter. (Changes of this magnitude do occur in membranes on depolarization, hence field-
induced orientation and changes in orientation of membrane molecules appear possible.
Corresponding tissue current densities would be in milliamperes per square centimeter.)

Electric fields can interact just as well with nonpolar cells and organelles in the absence of any
net charge. These "ponderomotive" forces are well known and understood. Any system exposed
to an electric field will tend to minimize its electric potential energy by appropriate
rearrangement. This statement is equally true for dc and ac fields because the potential energy is
a function of the square of the field strength. Inasmuch as the induced-dipole moment of a cell or
large particle depends on both the square of field strength and the volume, it is not surprising that
the threshold field to overcome thermal agitation is proportional to R ', where R is the effective
radius of the particle. Experimental evidence confirms the principle: threshold-field values for
responses of 10-um cells are about 10 V/cm; but for 10-nm macromolecules, the fields are about
10 kV/cm--comparable with the fields needed for complete orientation--due to the existence of a
typical dipole moment of about 10 or 100 Debyes.

Table 4.6 summarizes observed manifestations of field-generated forces. The field effects may
manifest themselves as an orientation of particles in the direction of the field or perpendicular to
it, or "pearl chain" formation (i.e., the alignment of particles in the field direction) may occur.
This has long been considered a mysterious demonstration of microwave-induced biological
effects. Cells can be deformed or destroyed with fields. In inhomogeneous electrical fields, the
movement of cells can be affected.

Table 4.6. Mechanisms Caused By Field-Generated Forces
Orientation
"Pearl chain" formation
Deformation
Movement
Destruction

Zimmerman et al. (1974) have observed the destruction of red cells and ghost formation.
Neumann and Rosenheck (1972) studied the effects of fields on chromaffin vesicles. Friend et al.
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(1974) as well as Goodman et al. (1975, 1976) studied the effects of fields on fairly large cellular
organisms. Orientation effects have been observed by Teixeirra-Pinto et al. (1960), Sher (1963),
and Novak and Bentrup (1973). Pohl (1973) developed "dielectrophoresis" as a tool of separating
cells in inhomogeneous fields, and Elul (1967) observed cell-destruction phenomena and cell-
shape changes. No attempt is made here to summarize the total literature on this topic, and
additional discussions have been presented elsewhere (Bawin and Adey, 1977; Schwan, 1977a).
Some of these field-generated force effects can be very startling and dramatic, especially near the
tip of small electrodes. Of a similar nature is the movement of magnetotactic bacteria, reported
by Blakemore (1975), in magnetic fields of fairly low intensity. Apparently these bacteria are
equipped with magnetic properties and are therefore significantly oriented by the magnetic field
and motivated to move in the field direction.

Experimental and theoretical evidence indicates that pulsed fields cannot have greater effects
than continuous fields of the same average power (Sher et al., 1970) . Modulation is therefore not
expected to have special effects.

Field forces due to the induced-dipole moment of the field have been listed as evidence of
nonthermal action of electric fields on biologic systems. The effects, however, require fairly
large field strengths, frequently above those that give rise to heating or stimulation of excitable
tissues. The field forces also depend on the electric properties of the particle considered and its
environment.

Sher (1968) has given a more detailed derivation of the dielectrophoretic force in lossy dielectric
media, based in turn on a derivation of the potential electric energy of a lossy dielectric body
given by Schwarz (1963).

All sorts of biological particles of different effective complex dielectric constants behave
similarly in an electrolyte medium. Figure 4.5 illustrates this fact. Neumann and Rosenheck's
(1972) results on chromaffin vesicles are combined with Sher's data (1963) on E. coli,
erythrocytes, and silicon particles (full circles). The total material fits convincingly the solid line
of slope -1.5 which is demanded by the theoretical requirement that particle volume must be
inversely related to the square of the threshold-field strength mentioned here and discussed in
greater detail elsewhere (Schwan and Sher, 1969).
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Figure 4.5. Threshold field-strength values as a function of particle size (Schwan, 1977a).
(—) Field-generated force effects; () damage resulting from membrane breakdown at
the quoted membrane potentials of 0.1 and 1 V; ( O ) results obtained with biological cells;

and ( ¢ ) data with silicone particles. The data fit the theoretical demand indicated by
(—) and appear to be insensitive to the dielectric properties of the particles.

The dashed curves in Figure 4.5 pertain to another model. The threshold of a cellular response or
destruction is assumed to be reached when the induced membrane potential reaches the dielectric
breakthrough level. This level may be in the range of 0.1 to 1 V across the membrane,
corresponding to membrane field-strength levels from 100 kV/cm to 1,000,000 V/cm. The
inverse relationship of the threshold-field level in the medium with the particle diameter follows
from the equation AV = 1.5 ER (Table 4.4). The dashed curves in Figure 4.5 establish threshold
particle relationships somewhat similar to those resulting from a consideration of field-generated
forces. Hence separating biological effects due to field-generated forces from those due to
induced high membrane potentials may at times be difficult.

In general, available evidence and present understanding indicate that significant effects with
field-evoked forces require field-strength values above 1 V/cm in the medium unless cellular
dimensions are well above 100 um.

4.1.4. Possibility of Weak Nonthermal Interactions

The considerations presented above do not suggest any weak nonthermal mechanism by which
biological systems could react to low-intensity microwave fields. Fields of the order of a few
kilovolts per centimeter are needed to orient long biopolymers, and probably still higher fields to
excite internal vibrations or produce submolecular orientation. External fields acting on
biopolymers must further overcome strong local fields, which are 1.5 kV/cm at a distance of 100
angstroms from a monovalent ion and 1.8 kV/cm at the same distance from a hemoglobin
molecule. Microwave frequencies are well above those corresponding to significant rotational
diffusion times, excluding orientational effects. Transmembrane potentials induced by typical
nonthermal microwave fields are vanishingly small relative to potentials required for stimulation
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and compared with membrane noise. Field-induced force effects are unlikely to be significant on
a single molecular or cellular level because the threshold field strengths necessary to overcome
thermal disturbances are too high (Schwan, 1977a).

Some principles emerge, however, regarding possible mechanisms of weak microwave
interaction, if such a concept exists. Field-force effects become more probable as the volume of
the exposed particle increases (Schwan, 1977a). Transmembrane potentials become larger for a
given in situ field strength as the cell size is increased. Finally, molecules can become
significantly reoriented by the field if uE ~> kT (where p is the dipole moment, E is the field
strength, k is the Boltzman constant, and T is the absolute temperature); thus larger physical
dimensions or larger permanent- or induced-dipole moments are more likely to respond to weak
fields.

The large dimensions necessary for biological responses to weak microwave fields might be
achieved by a cooperative reaction of a number of cells or macromolecules to the microwave
stimulus, which increases the effective size of the structure and correspondingly reduces the
threshold required for an effect. Bawin and Adey (1976) suggested that such cooperation might
be induced in the counterions loosely bound near membrane surfaces which contain a loose
framework of charged polysaccharides.

Froehlich (1973, 1975) suggested that giant dipole moments may be formed during enzyme
substrate reactions and that the corresponding dielectric absorption processes might be highly
resonant and nonlinear, and likely to channel energy into lower frequency modes of vibration. He
also considered the membrane as a likely site of resonant electromagnetic (EM) interactions; and
from the velocity of sound and the membrane thickness, he derived an estimate of the resonant
frequencies to be of the order of 100 GHz. Acceleration and deceleration of a variety of
biological responses that suggest resonances in the millimeter frequency range have been
reported by Webb and Booth (1971), by Devyatkov (1974), and more recently by Grundier et al.
(1977). But some of these studies have been criticized on technical grounds, and the Russian
work (only summarized in 1974) has not yet been published in detail. Gandhi et al. (1979)
conducted continuous dielectric spectroscopy measurements at millimeter-wave frequencies with
no indication of any resonance processes. Also, on a variety of cellular processes they found no
effects of millimeter-wave radiation that were not attributable to sample heating. But the
resonance phenomena reported by Grundler et al. and postulated by Froehlich may only involve
a minor fraction of the total cellular entity and thus not demonstrate itself strongly enough to be
observed in the bulk dielectric data.

4.2. MEASUREMENT TECHNIQUES

4.2.1. Introduction

Measurement of tissue dielectric properties is important because it provides information
necessary for calculating RF power absorption by biological models and for constructing tissue-
equivalent models. Experiments with tissue-equivalent models are useful in evaluating biological
hazards as well as the EM heating patterns of devices used to produce hyperthermia. Also, many
biophysical interaction mechanisms of EM fields with biological systems can be inferred from
the characteristic behavior of tissue permittivity as a function of frequency.
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For complete characterization of the dielectric properties of biological substances and to identify
and characterize the various relaxation processes, the complex permittivity should be measured
over a broad frequency band. The two principal broad-band measurement systems are frequency
domain and time domain. In frequency-domain measurements, sweeping the frequency over the
band of interest provides broad-band information; in time-domain measurements, broad-band
information can be obtained from a single measurement of the pulse response of the material
under test. Both methods require biological sample holders specially designed for evaluating the
effect of parameters such as temperature and physiological factors on the measurements. Several
measurement techniques are commonly used, each valid only in a specific frequency band. For
example, at frequencies below 1 MHz--where all sample lengths, electrical paths, and connecting
leads are short compared to a wavelength--a lumped-circuit approach is usually used. Typically a
sample of the material under test is contained in a parallel plate or a coaxial capacitor.

Cormnercially available impedance-measuring bridges and vector voltmeters are used to
determine the input impedance of the sample holder. This method can, in theory, be extended
down to zero frequency; however, practical measurements on conductive biological solutions are
difficult below 1 kHz because of electrode polarization effects. At frequencies above 10 MHz, on
the other hand, measurements are less straightforward and the results are subject to greater error.
In this frequency range, a distributed-circuit approach rather than a lumped-circuit approach is
required because the sample size is usually a considerable fraction of a wavelength. The sample
is often placed in or at the end of a section of coaxial transmission line or waveguide or in a
microwave cavity. Coaxial-cable methods are usually used in the frequency range from 50 MHz
to 10 GHz. Between 10 GHz and 100 GHz, waveguides are often used; above 40 GHz, free-
space quasi-optical techniques are usually used.

Instrumentation problems initially limited time-domain techniques to the lower frequency range.
With the advent of sampling oscilloscopes and stepfunction generators with very short rise times,
however, time-domain methods now provide valuable measurements in the frequency range from
10 MHz to 10 GHz. The 10-GHz limit is due to the rise time of the step-voltage excitation of
typical time-domain reflectometers (TDRs).

The various time-domain and frequency-domain techniques are reviewed below and some
typical examples of broad-band methods are given. Also, in vitro and in vivo results are
compared.

4.2.2. Low-Frequency Techniques

Impedance bridges and series or parallel resonant circuits are usually used to measure dielectric
properties below 100 MHz. The sample holder is usually either a parallel-plate or coaxial
capacitor, with the test material forming the dielectric between its plates. Since biological
materials are conductive (lossy), the input impedance of the capacitor is complex and is usually
represented by an equivalent circuit consisting of a parallel connection of a resistance and a
capacitance. A typical bridge circuit with the equivalent circuit of the sample holder is shown in
Figure 4.6 (Von Hippel, 1954).
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Figure 4.6. Bridge circuit for measuring dielectric properties of materials at frequencies
below 100 MHz.

The bridge is like a Wheatstone bridge, but impedances are measured instead of resistance.
Balancing the bridge requires adjusting one or more of the impedances (Z;, Z,, and Z3). If the
complex permittivity of the material under test is given by

8* =g (€' -j8") (Equation 4.6)

where ¢, is the permittivity of free space, the admittance Y of the capacitor is given by Y = joC.
For a lossy capacitor filled with the dielectric material under test,

Y =joKe, (¢'-j€") (Equation 4.7)

where K is a constant dependent on the geometry of the sample holder. For example, K = A/d for
an ideal parallel-plate capacitor, where A is the area of the plates and d is the separation between
the plates. The imaginary and real parts of the admittance are hence given by

B = oKe,.g' (Equation 4.8)
G = 0Kee" (Equation 4.9)

The real part of the permittivity can thus be found from the imaginary part of the measured
admittance, and the imaginary part of the permittivity can be found from the real part of the
measured admittance. Although the capacitor sample holder seems easy to use, accuracy of
measurements may be limited by a number of factors such as effects of the lead impedance
(particularly at higher frequencies), effects of fringing fields at the edges of the electrodes, and
electrode polarization effects.

Accuracy of bridge methods at frequencies above a few MHz is often limited by the self-
inductance of the cell and its associated leads. Careful cell design and calibration to account for
fringing capacitance and self-inductance are required to overcome this problem (Grant et al.,
1978).

At lower frequencies, measurements are limited by electrode polarization, which is caused by the
piling up of ions at the electrode-sample interfaces when direct or low-frequency current is
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passed through the measuring system. Measurement of dielectric properties of conductive
materials is particularly restricted by electrode polarization, as is any measurement at frequencies
where the signal period is long enough to permit ions to migrate over appreciable distances and
accumulate at the electrode-dielectric interface. Large electrode separation would minimize this
polarization but is undesirable because it increases the error due to stray fields.

Electrochemists have overcome electrode polarization problems by using four electrodes, two for
applying the RF signal and two for picking up the potential difference within the material under
test (Collett, 1959). Electrode-solution combinations that are nonpolarizing or only slightly
polarizing are also used to minimize electrode polarization effects (Chang and Kaffe, 1952).
These electrode-solution combinations are known as reversible electrode systems. An example of
such a system is electrodes containing a layer of platinum black (Schwan, 1963b). The reversible
electrodes reduce the polarization errors by providing a large effective area of electrode surface.
This large area allows the migrating ions to spread out very thinly over the electrode surface so
that the capacitance of the double layer, which is in series with the sample capacitance, is very
large. This reduces measurement errors. Sandblasted platinum-black electrodes also minimize
electrode polarization problems in biological applications. There is no known way to completely
eliminate polarization problems, however, and some analytical procedures to calibrate for
electrode polarization effects should always be incorporated into low-frequency measurement
techniques (Grant et al., 1978).

4.2.3. High-Frequency Techniques

A distributed-circuit instead of a lumped-circuit approach must be used at frequencies above 100
MHz because the sample size nears a considerable fraction of a wavelength for these
frequencies. In distributed-circuit techniques, the sample is typically placed in or at the end of a
section of transmission line or waveguide or in a microwave cavity. Since these transmission line
methods are broad-band, they are often preferred over the narrow-band cavity techniques.

In the transmission-line methods the complex reflection and/or transmission coefficients are
measured instead of the sample impedance. In reflection methods, the sample holder is treated as
a one-port network terminating a 50 ohm coaxial line. When transmission coefficients are
measured, the sample typically fills the space between inner and outer conductors of a coaxial
line with two low-dielectric beads confining the sample to the desired length. In the latest
techniques, the scattering parameters (S-parameters) of the sample are measured with an
automatic computer-based network analyzer such as the one shown in Figure 4.7 (Burdette et al.,
1980; Iskander and DuBow, 1983). The key elements of the network analyzer system are a stable
synthesizer, broadband and high-ratio directional couplers, and a computer-controlled processor
capable of making corrections in real-time measurements and calculating changes in permittivity
from measured changes in reflection and/or transmission coefficients. The coaxial sample holder
is connected to the S-parameter device, which has two outputs. One output is proportional to the
incident signal and is connected to the reference channel of the network analyzer. The other
output provides a signal either reflected by the sample or transmitted through the sample. This
output is connected to the test channel of the network analyzer. The analyzer, using a calibrated
superhetrodyne receiver, provides a measurement of the reflection and transmission coefficients
by comparing the amplitudes and phases of the reflected and transmitted waves, respectively,
with those of the incident wave.
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Figure 4.7. Experimental setup for measuring S-parameters, using an automatic network
analyzer.

With the reflection (S;;) and transmission (S;,) parameters measured, the real and imaginary
parts of the complex permittivity € = ¢, (€' - j¢") can be determined from

(Equation 4.10)

(Equation 4.11)

where Im means imaginary part; Re, real part; T, the complex reflection coefficient assuming

the sample to be of infinite length; and P, the propagation factor. I' and P are given in terms of
the S-parameters by

(Equation 4.12)

where

(Equation 4.13)

and
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where v is the propagation constant and L is the length of the sample under test. This
measurement procedure provides enough information to obtain the complex permeability of the
sample as well as the complex permittivity. To avoid resonance effects in these measurements,
the sample length should be limited to less than a quarter of a wavelength at the highest
frequency of operation. Typical sample holders suitable for these measurements at microwave
frequencies are shown in Figure 4.8. For the lumped-capacitor holder in Figure 4.8b, only
measurement of the reflection coefficient is required; and the calculations are made as described
in the following section.
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Figure 4.8. Typical sample holders for measuring the dielectric properties of biological
substances at microwave frequencies. (a) Coaxial sample holder. (b) Lumped capacitor
terminating a section of a coaxial transmission line.

4.2.4. Time-Domain Measurements

Measurements over the broad frequency range necessary to characterize dielectric properties can
be very time consuming and tedious unless automated frequency-domain techniques are
available, but such techniques are generally not practical because a single RF oscillator will not
work over a sufficiently wide frequency range. Several RF oscillators are usually required, one
for each range of frequencies. A single technique capable of covering the frequency band from
100 kHz to the higher microwave frequencies with acceptable accuracy is therefore desirable.
Time-domain techniques can provide such capabilities. Since their introduction in the late sixties,
they have been widely used to measure dielectric properties of materials over broad frequency
ranges. These techniques are also conceptually simple and experimentally straightforward,
particularly when used in conjunction with modern data-acquisition systems. They are also less
expensive than conventional frequency domain microwave dielectric spectroscopic systems.
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Below 10 GHz, time-domain measurements can be made with about the same accuracy as swept-
frequency measurements, which is generally less than that obtainable with single frequency
measurements. The strong decrease above 10 GHz in the spectral intensity of the exciting step-
voltage generator in commercially available time-domain reflectometers limits their use to
frequencies below 10 GHz.

In time-domain methods, the Fourier transform of the measured response of the dielectric sample
to short-rise-time pulses is calculated. The dielectric properties over a wide frequency range can
be obtained from this Fourier transform because the frequency spectrum of the short-rise-time
pulses is very wide. The four essential parts of a time-domain system are a sub-nanosecond step-
function generator, a broad-band sampling oscilloscope, a temperature-controlled sample holder,
and a microcomputer for data processing. A typical time-domain reflectometer (TDR) system is
shown in Figure 4.9 (Iskander and DuBow, 1983).

With this brief discussion of the relative merits of the frequency domain and time-domain
techniques as background, a specific example of a time domain method used in our laboratory,
called the lumped-element time-domain method (Iskander and Stuchly, 1977), is described next.
Information about a system analogous to the automated microwave network-analyzer technique
described in Section 4.2.3 is available in the literature (Nicholson and Ross, 1970). In the
lumped-element time-domain method used in our laboratory, the sample holder is a small shunt
capacitor terminating a section of coaxial transmission line. This sample bridges the gap between
the low-frequency measurements, where lumped capacitors are often used, and the high-
frequency measurements, where distributed elements such as a section of transmission line are
used. The capacitor sample-holder consists of a cap screwed on the outer conductor of the
coaxial line. The center conductor is made slightly shorter than the outer conductor to form a gap
between the center conductor and the cap, which is the capacitor at the end of the transmission
line. A schematic diagram of the sample holder is shown in Figure 4.8b.
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Figure 4.9. Typical experimental setup for time-domain measurement of complex
permittivities.

The measurement procedure is to first replace the sample holder by a short circuit and obtain a
reference signal, then to replace the sample holder and record the reflected signal at the sample
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interface. Both signals are digitized and their Fourier transforms calculated. The frequency
dependence of the reflection coefficient is given by

jopor 2 Vel te)] _ [ol8) = Vialr - 26
4

nl ] [v t_t°:'] (Equation 4.15)
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where # represents the Fourier transform; Vi, and V,, the incident and reflected voltages
respectively; Vi, the reflected voltage when the sample holder is replaced by a short circuit; V,,
the total voltage signal recorded on the TDR screen; and t,, the propagation time between the
sampling probe and the sample holder. The real and imaginary parts of the relative permittivity
are calculated from the complex reflection coefficient in Equation 4.15 using the following
relations:
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where | ( :l| and 6(w) are, respectively, the magnitude and phase of the frequency-domain
reflection coefficient, and C, is the capacitance of the airfilled capacitor terminating the
transmission line of characteristic impedance Z,,.

4.2.5. Measurement of in Vivo Dielectric Properties

Most measurements of the dielectric properties of tissue have been made on excised samples.
Making measurements in vivo, though, would be better for two main reasons. First, preparing
samples that fit the sample holder properly is difficult; and second, the condition of the tissue
deteriorates rapidly after it is removed from the body. How dielectric properties of excised tissue
compare with those of tissue in a living body is difficult to determine.

Two procedures for measuring the dielectric properties of tissue in vivo are described in this
section. Both use an open-ended coaxial transmission line placed in or on the tissue. The first
technique is simpler but works only for higher permittivity tissues. The second technique is more
complicated but can be used to measure the dielectric properties of the lower permittivity tissue
like fat and bone.

Measurement of High-Permittivity Tissues--Two probes are available for measuring the
dielectric properties of tissue in vivo. Both consist of a section of coaxial transmission line (see
Figure 4.10): one with the center conductor extended (Burdette et al., 1980), and one without
(Athey et al. 1982). During the measurement, the center conductor is pressed against the material
being tested.
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The primary theoretical basis for the concept of the in vivo probe measurement is found in an
antenna modeling theorem (Burdette et al., 1980) that applies to a short monopole antenna
(antenna length much less than 0.1 wavelength). This theorem relates the impedance of a short
antenna operating at frequency o and radiating in the material under test, to the impedance at
frequency no and radiating into free space. For nonmagnetic materials, the theorem states

Z[U.J, S *} = ZI[nm, ED]I
7 T

(Equation 4.18)

where

Z = antenna impedance
e* = complex permittivity of the material being measured

= *
i e intrinsic impedance of the material being measured

Mo = "o ! %0 = intrinsic impedance of free space

= * . . . . .
& §%ls, index of refraction of the material being measured relative to free space

COAX|AL LIME TERMINATED
WITH SAMPLE

Cearial
connechor

(b}

o Cie)

{c]

Figure 4.10. In vivo dielectric probes for measuring dielectric properties of biological
substances. (a) Open-ended section of coaxial transmission line. (b) A short electric
monopole immersed in the material under test. (¢c) The low-frequency (neglecting radiation
resistance) equivalent circuits.

When a short monopole antenna is used as the probe, the probe impedance is given by

1
JLLe:

Z[nm,ED} = Aw? +
(Equation 4.19)
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where A and C are constants determined by the probe's dimensions. This expression is valid
when the probe length is less than 10% of the wavelength in the material being measured.
Combining this expression with Equation 4.18 gives the following expressions for the resistance
and reactance of the complex impedance Z(m, €*) =R + jX:

R - sinI 28 " A*\E&Jz secd + 1
28'wl 2 (Equation 4.20)

5 = .::;:.s"a +A@wg secd — 1
g wC 2 (Equation 4.21)

where tan 9 is the loss tangent. In the above pair of equations all parameters except €' and 0 are
known or can be determined from experimental measurements. Because simultaneous solution of
these equations is difficult, an iterative method of solution is usually used. The second terms in
Equations 4.20 and 4.21 are small at low frequencies. When these terms are neglected, the
following equations result:

_ sin 28
28w (Equation 4.22)

S c?sza
swC (Equation 4.23)

Solutions to these equations are obtained by dividing Equation 4.22 by 4.23 to get tan 6 = R/X;
therefore, by measuring the input impedance of a short monopole antenna inserted into a
material, we can calculate both the relative dielectric constant, €', and the conductivity, c.

The other probe used for in vivo measurements of dielectric properties is a special type of the
monopole antenna just described. An open coaxial line, placed in contact with a test sample,
serves as a sensor. The equivalent circuit of the sensor consists of two elements (Figure 4.10): a
lossy capacitor, C ( €* ), and a capacitor, Cy, that accounts for the fringing field in the Teflon.

C (e*)=C, ¢e*, where C, is the capacitance when the line is in air. This equivalent circuit is
valid only at frequencies for which the dimensions of the line are small compared to a
wavelength, so the open end of the line does not radiate. At higher frequencies, increased
evanescent TM modes excited at the junction discontinuity cause C, to increase with frequency.
When the evanescent modes are taken into account, C , should be replaced by C, + Af , where
A 1s a constant dependent on the line dimensions.

Measurement of Low Permittivity Tissues--The probes just described work well for measuring
the permittivity when it is high but not when it is low, such as in fatty tissue. For low-
permittivity tissues better accuracy is obtained by extending the length of the center conductor of
the coaxial transmission-line probe further into the tissue (Olson and Iskander, 1986). The
analysis described for high-permittivity measurement is not valid here. A procedure for this case
was developed with the following new features:
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a. A rigorous expression developed by Wu (1963) is used for the input impedance of the in
vivo probe immersed in the material under test. The method of analysis, therefore,
accounts for the radiation resistance of the probe for larger values of h/A, where h is the
length of the center-conductor extension, and A is the wavelength.

b. Because the mathematical expressions for this case are very complex, the dielectric
parameters of the sample under test are determined by comparing the measured and
calculated values of the input impedance, using an iterative two-dimensional (error
surface) complex zerofinding routine. This procedure is illustrated graphically in Figure
4.11 (Olson and Iskander, 1986).

IEi * mpeasured)| -7 i*[pqunrionl.l

MIMNIAUM

Figure 4.11. Graphical illustration of the iterative procedure for calculating complex
permittivity parameters by minimizing the difference between measured and calculated
values of the input impedance of the in vivo dielectric probe. The minimum on the error
surface | Z measured - Z calculated | indicates the most appropriate values €' and €' that satisfy

the measured value of the input impedance.

Except for these new features, the measurement procedure is like that described in Section 4.2.3.
As with all other in vivo probes, special effort should be made to maintain good contact between
the dielectric probe and the material under test. For low permittivities, a ground plane of
approximately 12-cm radius is needed to fine tune the measured values of the input impedance.
We evaluated the accuracy of the in vivo probe measurements for low permittivity materials by
measuring the complex permittivity of known lossy (octyl alcohol) and lossless (heptane)
materials. The measured results were all within less than +£5% of the measured values given in
the literature.

4.2.6. Summary

At frequencies below 100 MHz, methods based on impedance bridges are satisfactory for
measuring the permittivity of tissue samples. Above 250 MHz distributed-circuit methods must
be used; with these, the sample holder is typically a section of transmission line or waveguide.
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The use of impedance-bridge techniques is bounded on the low-frequency end by electrode
polarization; on the high-frequency end by the self-inductance of the cell and its leads.

Modern transmission-line techniques based on automatic network analyzers are remarkably
accurate and relatively easy to use, for both in vitro and in vivo measurements. In all cases,
however, the sensitivity of the measured permittivity to the experimental errors in the measured
parameters should be analyzed to determine the advantages and limitations of a given method in
a specified frequency band. Examples of such analyses are those developed for the time-domain
measurements using the lumped capacitance method (Iskander and Stuchly, 1972). These
calculations were later used with frequency-domain measurements using in vitro (Stuchly et al.,
1974) and in vivo probes (Athey et al., 1982; Stuchly et al., 1982). Such uncertainty analyses
lead not only to bounding the measurement errors but also to optimizing the parameters of the
measuring cell, such as the value of the capacitance in the lumped-capacitance method (Iskander
and DuBow, 1983). Uncertainty analyses should, therefore, be included in all measurement
techniques, even when complicated expressions relating the measured parameters to the
dielectric properties of the material under test are involved (Olson and Iskander, 1986).

4.3. TABULATED SUMMARY OF MEASURED VALUES

This section contains a summary of the measured values of dielectric properties of biological
substances as a function of frequency and temperature, as reported in primary sources in the
literature. Further information can be found in the listed references.

Tables 4.7 and 4.8 give the dielectric constant and conductivity values of different animal
tissues, at indicated temperatures and frequencies. The temperature coefficient of the dielectric
constant and conductivity of various body tissues are shown in Tables 4.9 and 4.10

Table 4.7. Real Part of the Complex-Dielectric Constant (Relative
Permittivity) Of Various Body Tissues
(Letters designate footnotes for Table 4.7)

Frequency Heart Fatty Bone Whole
(MHz) Muscle Muscle Liver Lung* |Spleen | Kidney | Brain Tissue |Bone|Marrow| Blood | Skin
10 2.5x 10 k7x10% <1.6x 107 <8 x 10% |-
<1x10™
10* 8 x 10  |(8-8.2) x 10™ |(8.5-9) x 10°* 4.5 x 10 |--- 1.5x 10™
10%
107 1.3x10* |3-32)x 10 |L.5x 10* 9x 10" |- - - 5 x 10% I b9x10% |-
1.7x10%
1.0x 10°°
102 (5-6) x 10* |1 x 10* (5-6) x 10* 3x10% |- 2 x 10* .81 x 10
9 x 10%
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5 x 10*

10" 3x 10* - 7x10°-1.2x10% |- 1.2x 10*° 3 x 10°* |-- 2.74 x 103d}---
2 x 10
1 2 x 10* - 1.2x 102 x 10% |- 2.5 x 10°* [870% - 2.04 x 10* |---
10 179 320 465 40 |- 200¢
25 103-115" |- 136-138" >2000 200 >1600 |-
50 85-97" 88-93' 135-1401119-132"  [110-114" |11-13t - 16.8-7.7" |-
1x10*  [69-73° 65-75* 88-90° [83-84c  [70-75° [8-13* - [6.8-7.7" [72-74°
71-76™ 72-74° 18(1)'“ 87-92™  81-83™ |11-13™ 73-76™
2x10* |56 59-63" 50-56" 35t 62" U575 b |-
3x10°  [55-57 55-62Y 48-56" 35t 57-60 |- 63Y
Ux10*  [52-54' 52-56" 44-51" 35! 53-55' |- u-7" 64"
54-56" 54-58" 46-53 36" 55-57"
6x10°  [55-56 54-58Y 46-537 36" 54-56" |- 62"
7x10°  [52-53' 50-55" 42-51" 34! 50-53' |- 62
55-56 53-58" 46-54y 35Y 53-56
9x10°  [53-55 53-57" 44-52Y 35Y 53-56 |- 3.2-6" 63
1x10°  }49-52 53-57° 46-47" 35° 53-56° |- 43-75" 8" 14.3-7.8n [58-62
53-55° 44-52° 3.2-6° 63°
61° 50° 9.5
1.77x10° |- 59.27
56.8%
56.2"
1.78 x 10° [51* 9.7 8.4% |- 45.6*
2.98x10° |51* 8.43* 8.35% --- 44.5*
2.99x 10° |--- 59.9*
57.7"
56.0"
3x10°  {45-58 42-43' 32% 3.9-7.2' - [4.2-5.8" |-
3.59x10° {4825 7.90* 8.3% |- 44.25*
4.63 x 10° [47.33" - - 6.56" 7.83% |--- 41.53"
8.5x 10°  |40-42' 34-38' 3.5-4.5 |- H4-54" |-
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9.39x 10° |-- 4247
5.5
47.8"
0.43x10° |- - - - -~ -~ 4.5 7.6% |- 45v 35.5%
1x10*  [40-42" 34-38" 3.5-3.9"  [8.0" H.4-6.6" [50-52" |-
291 3.6 6.60 |5.89 459
45 5.7¢ 48"
2.362x 10* |--- 3.4% 6.3" |- 32V b3
2377 x 10* |- D5.0%

" Partially or totally deflated, except material described in Footnote a (Schwan, 1956b).

* Dog, material in situ at body temperature (Schwan, 1956b, 1957, 1963a)

b Sheep, material at 18°C (Schwan, 1956b, 1963a)

¢ Beef and pork, excised material at 20°C (Schwan, 1956b, 1963a).

4 Rabbit, at room temperature (Schwan, 1956b, 1963a).

¢ Rabbit, excised material at 37°C (Schwan, 1956b, 1963a).

T Rabbit, excised piece at room temperature Schwan, 1956b, 1963a)

£ Man and various animals, excised pieces and minced material at 23°C (Schwan, 1956b, 19634).

%‘ Sheep, 18°C (Schwan, 1956b, 1963a).

' Man, minced material at 23°C (Schwan, 1956b, 1963a).

JRabbit, minced material at 23°C (Schwan, 1956b, 1963a).

¥ Man, minced material at 37°C (Schwan, 1956b, 1963a).

! Sheep, at 20°C (Schwan, 1956b, 1963a).

" Beef and pork, excised material at 37°C (Schwan, 1956b, 1957, 1963a).

"Dog and horse, blood and excised tissues measured at 38°C, except bone and bone marrow at 25°C (Schwan,
1956b, 1957, 1963a; Schwan and Piersol, 1954).

° Man, excised piece at 27°C (Schwan, 1956b, 1963a).

P Beef, minced material at 22°C (Schwan, 1956b, 1963a).

9Man, excised piece at 37°C (Schwan, 1956b, 1963a).

" Man, excised material at 35°C (Schwan, 1956b, 1963a).

* Frog, excised piece at 25°C (Schwan, 1956b, 1963a).

"Various body tissues at 37°C (Schwan, 1957; Schwan and Piersol, 1954; Schwan and Li, 1953).

" Human tissues at 37°C (Rajewski, 1938).

¥ Animal tissues at 37°C (Rajewski, 1938).

" Human tissues, taken from surgical operations, at 37°C (England, 1950).

* Human tissues at 37°C (Cook, 1952).

¥ Human autopsy, material of normal composition at 27°C (Schwan and Li, 1953).

* Human blood containing average cells in concentration 4.9 x 10°6 per mm?, at 15°C (Cook, 1951).
* Human blood containing average cells in concentration 4.9 x 1076 per mm?, at 25°C (Cook, 1951).
" Human blood containing average cells in concentration 4.9 x 1076 per mm? at 35°C (Cook, 1951)
“ Biological material (Swicord et al., 1976).

4 Human brain at 37°C (Schwan, 1957).

¢ Animal tissues at 37°C (Stoy et al., 1982).

Table 4.8. Conductivity (S/m) of Various Body Tissues
(Letters designate footnotes for Table 4.8)
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Frequenc

Heart Fatty Bone ‘Whole
(M}II-IZ) Muscle | Muscle Liver Lung* Spleen | Kidney Brain Tissue |Bone| Marrow | Blood Skin
5 . . 0.082- .
10 0.104 0.104 0.119° 0.09
4 . . 0.094- .
10 0.114 0.108 0.125° 0.091
5 0.121- 0.118- | . [0.233- . | b
10 0.125" 0.133" 0.103-0.1370.1-0.25" | 325, - 0.125-0.2° [0.02-0.067°-- |- 0.602
d « [0.053- 0.182- 4
0.102f  0.111-0.1290.063-0.1° | " = 02228 0.680
0.077- 0.641-
0.143¢ 0.833¢
0.556-
0.769"
. . 0.118- . J
10-2 0.132 0.167 0.146° 0.105 0.680
0.114"
. 0.417- . i i i{0.118- d
10-1 0.4-0.588" | "o i 0.217 0.5-0.606' 0.2-0.4'  10.37-0.667 5 = 0.680
0.182-
0.192f 0455
0.125-
0.182¢
0.238
0.476- 0.435- 0.238- 0.357- 0.263- . 0.143- d
! 0.625' 0.556' 0476 0.667* 0.435' 0-4-0.714" 1y 5331 0-714
‘ 0.182-
0.4 0.258
0.25'
10 0.588- 0.556- 0.385- 0.667- 0.588- 0.588- 0.222- L111®
0.667" 0.7141 0.556' 0.909' 0.667' 0.833' 0.333' ’
0.40/
5 0.47-0.99 |--- 0'476( 0.93¢ 0.83°¢ 0.455" - 10.02-0.036'|----
0.541
. 0.513- .10.662- 0.476- ! .
50 0.68-0.885"[--- 0.575" 0.222-0.38'1 "% 0.69-L111'} ") 0.04-0.059'F--  0.02-0.036'|---
) . 0.588- 0.69- 0.769- 0.952- « [0.435- 0.08- 0.019- 0.21-
10 0-769-1.0° |y 760 0.833* 1.053% 1.176* 0-833-10 1y a5 0.085" T 0.024° 1.2201 0.625"
0.625- " ; . 0.667- ; ; ; 0.02- 0.667-
0.833 0.78-0.92" 0.5-0.667 (0.714-1.0" |0 o 0.667-1.0" [0.333-0.5" [0.067 0.033" 0833
. 0.476- . . 0.625- 0.385- 0.023- 0.02- n
0.5-0.714 0.556° 0.77-1.15" (0.667 0.769° b 455¢ b.045¢ 0.035" 1-1.25
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053m iy 083" [l 050556" 05
0.85-1.04" 0.63-0.87" 0.96-1.16" [0.85-1.0° 043 0.083"
.85-1. .63-0. 96-1. 85-1.0" |7 O .
v v v v . 0.04-
0.68-0.85 0.56-0.65 0.83-0.84" 0.69-1.1" [0.41-0.59
0.058v
2 x 10 ?'ggg{ 0.87—1.053‘8'88; 0.625' 0.69" 8'852{ 1.042" |-
0.833-  [0.769-  [0.588- y Y 0.02-
0909 0909  f.sor  [*3%6 0-962 0.067"
> 0.909-  [0.833-  |0.645- y ' '
3x10 0.952Y 0.952Y 0.833Y 0.613 T 1.02 T T T T 111 T
4x10*  [0.91-1.176'(1-1.176' 8'323( 0.714' 1.176' 8'(3?{ 1.099" |-
0.667- 0.075-
- M - Y y e y
0.952-1.0" 0.87-1.0" | "oy [0.613 1.02 0777
6x 10> [1-1.064 ?zgz;y g:gég; 0.741% |- }:??j" 1.087 |-
7x 10> [1.22-1.37" [1.053-1.28'/0.87-1.176'0.769" }g?gt 1.176" |-
}‘2;5' ?‘ggg; 0.769-1.0" 0.658 |- 1.11-1.12Y
45.6*
,  |1.19- , [0.833- ' 1.22- 0.029- '
Ox 107 o3 [F12057 gy 073 1235 [ 0001 [T [T 1.25
3 1.266- o 0.943- . 1.22- 0.071- N a [1.389-
10 333" 1-1.205° "o 0.730 12350 [ o a3 005" 0043007 | T e
1.19- o o o
2350 1-1.087 0.29-0.91 1.250
1.299° 1.0° 0.04° 57.7%
56.0
1.77 x 103 |--- 1.753¢
1.753™
1.753%
1.78 x 10°2.245* |- 0270 [0.149%-- 1.926*
298 x 10°2.984* |- 0.341*  [0.219%-- 2.244*
2.99 x 10 |--- 3.310”
2.844"
D.645%
3.0x10° b 174. 2.0-2.041" |--- 3.04 0.111- —  lo116- 2.503%  .754"
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336" 0.227" 0.225"
0.267"
3.59 x 10°[3.186" 0.309* 0.258-- 0.557%
4.63 x 10° [4.808" 0.381* 0.335%-- 3.606*
8.5x 10° [8.333 22231 0.27-0.417"}--- 8}‘%
9.39 x 10° |--- 13.95%
12.02%
10.29%
9.43 x 10% |--- 0.498" 8'761 12.066%  [8.394"
4 \ 5.882- 0.27- , . .
1x10* [8.333 6 067" 417" 0.667"0.5-1.667" 9.091
7.6924 0.476% 0.76991.0¢ 10.526¢
8.0° 0.57° 10.753"
?'03462 L 1.445" &'445 26.28%  [17.082"
0.377 x
104 - |- 32.79 -
34.38%

" Partially or totally deflated, except material described in Footnote a (Schwan, 1956b).

* Dog, material in situ at body temperature (Schwan, 1956b, 1957, 1963a)

® Sheep, material at 18°C (Schwan, 1956b, 1963a)

¢ Beef and pork, excised material at 20°C (Schwan, 1956b, 1963a).

4 Rabbit, at room temperature (Schwan, 1956b, 1963a).

¢ Rabbit, excised material at 37°C (Schwan, 1956b, 1963a).

f Rabbit, excised piece at room temperature Schwan, 1956b, 1963a)

€ Man and various animals, excised pieces and minced material at 23°C (Schwan, 1956b, 19634).
f‘ Sheep, 18°C (Schwan, 1956b, 1963a).

' Man, minced material at 23°C (Schwan, 1956b, 1963a).

JRabbit, minced material at 23°C (Schwan, 1956b, 1963a).

¥ Man, minced material at 37°C (Schwan, 1956b, 1963a).

! Sheep, at 20°C (Schwan, 1956b, 1963a).

™ Beef and pork, excised material at 37°C (Schwan, 1956b, 1957, 1963a).

"Dog and horse, blood and excised tissues measured at 38°C, except bone and bone marrow at 25°C (Schwan,
1956b, 1957, 1963a; Schwan and Piersol, 1954).

® Man, excised piece at 27°C (Schwan, 1956b, 1963a).

P Beef, minced material at 22°C (Schwan, 1956b, 1963a).

9Man, excised piece at 37°C (Schwan, 1956b, 1963a).

' Man, excised material at 35°C (Schwan, 1956b, 1963a).

* Frog, excised piece at 25°C (Schwan, 1956b, 1963a).

" Various body tissues at 37°C (Schwan, 1957; Schwan and Piersol, 1954; Schwan and Li, 1953).
" Human tissues at 37°C (Rajewski, 1938).

¥ Animal tissues at 37°C (Rajewski, 1938).

" Human tissues, taken from surgical operations, at 37°C (England, 1950).

* Human tissues at 37°C (Cook, 1952).
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¥ Human autopsy, material of normal composition at 27°C (Schwan and Li, 1953).

? Human blood containing average cells in concentration 4.9 x 1076 per mm? , at 15°C (Cook, 1951).
* Human blood containing average cells in concentration 4.9 x 1076 per mm?, at 25°C (Cook, 1951).
®® Human blood containing average cells in concentration 4.9 x 106 per mm? at 35°C (Cook, 1951)
“ Biological material (Swicord et al., 1976).

4 Human brain at 37°C (Schwan, 1957).

¢ Animal tissues at 37°C (Stoy et al., 1982).

Table 4.9. Temperature Coefficient Of Dielectric Constant

Of Various Body Tissues
[100 (Ae/e) / °C] (Schwan, 1954)

Frequency (MHz)
Type of Tissue 50 200 400 900
Muscle 0.3 - -0.2 -0.2
Liver 0.3 0.2 -0.2 -04
Spleen 1.0 - - -—-
Kidney 0.5 0.2 -0.2 -04
Brain 1.1 _— — .
Blood 0.3 - - -
Serum and 0.9% saline -04 -04 -04 -04
Fat - 1.3 - 1.1

Table 4.10. Temperature Coefficient Of Conductivity

Of Various Body Tissues
[100 (Ac/s) / °C] (Schwan, 1954)

Frequency (MHz)
Type of Tissue 50 200 400 900
Muscle 2.5 .5 13 1.0
Liver 2.0 1.8 1.8 14
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Spleen 23 e e e

Kidney 1.6 20 20 13
Brain 14 — -
Blood 2.7 .
Serum and 0.9% saline 2.0 1.7 1.6 13
Fat 1.7-4.3 49 - 42

The complex permittivity is generally frequency dependent and at a frequency £=® /2% can be
described by the Debye equation, similar to Equation 4.1 (Schwan and Foster, 1980; Foster et al.,
1980):

. i= h M
R CPIE IS
=1 + :
e ilofo) (Equation 4.24)
where
g'=glws,
litn &'
g, =
o — o
B litn o
g

Ai = relative-permittivity change due to dispersion associated with ®i . From Equation 4.24, we
get

1 > .&1
g=g_ + - 2
) (Equation 4.25)
and
n M
g =g+ ngn EI—MI;
1+ [OJ fa i} (Equation 4.26)

Hurt (1985) has written a Fortran program that performs a least-squares fit of Equations 4.25 and
4.26 to permittivity data. Figures 4.12 and 4.13 are the curves for relative dielectric permittivity
and conductivity, respectively, that result from fitting a 5-term Debye relation to muscle data
(Tables 4.7 and 4.8). For muscle, € is set equal to 4.3 (Grant et al., 1978; Hill, 1963).
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The complex dielectric data in Tables 4.7-4.10 are from in vitro measurements of permittivity on
excised human or animal tissues. Interest in reexamining tissue-permittivity values based on in
vivo measurements has been increasing (Toler and Seals, 1977). With the in vivo procedure, a
short monopole antenna is inserted into living tissue, and changes in the terminal impedance of
the antenna are measured (Burdette et al., 1980). These impedance values can then be related to
the complex permittivity of tissue.
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Figure 4.12. Relative dielectric permittivity for muscle (W. D. Hurt, private
communication, USAF School of Aerospace Medicine, 1985).
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Figure 4.13. Conductivity for muscle (W. D. Hurt, private communication, USAF School of
Aerospace Medicine, 1985).

Figures 4.14-4.16 compare in vivo data for dielectric constants and conductivity with in vitro
data; Figures 4.17-4.19 give additional in vivo data. These figures show only slight differences
between the in vivo and in vitro values, except in the case of canine fat tissue (Figure 4.17)
where the in vivo dielectric constant values are a factor of approximately 1.5-2 times the reported
in vitro results above 100 MHz. These differences in the dielectric constant are attributed
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primarily to possible differences in water content between the in vivo and in vitro measurement
conditions (Burdette et al., 1980). Conductivity values are also generally higher than in vitro
values found in the literature (Schwan, 1957).

100 —
~—T1 IN VIVO RAT MUSCLE {31° C)

o INVIVQO CANINE MUSCLE ([34* CJ
a IN VITRO HUMAN MUSCLE, SCHWAN {37¢C)

le')

80

20 -

RELATIVE DIELECTRIC CONSTANT
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Figure 4.14. Measured values of relative dielectric constant of in vivo rat muscle and canine
muscle (Burdette et al., 1980) compared to reference data (Schwan, 1975).
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Figure 4.15. Measured values of conductivity of in vivo rat muscle and canine muscle
(Burdette et al., 1980) compared to reference data (Schwan, 1957).
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Figure 4.16. Measured values of relative dielectric constant and conductivity of in vivo and

in vitro canine kidney cortex (Burdette et al., 1980) compared to reference data (Schwan,
1957).
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Figure 4.17. Measured values of relative dielectric constant and conductivity of in vivo
canine fat tissue at 37°C (Burdette et al., 1980).
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Figure 4.18. Measured values of relative dielectric constant and conductivity of in vivo rat
brain at 32°C. Maximum SEM for ¢' is indicated by error bars and SEM for &' =+ 0.9
(Burdette et al., 1980).

109



100 - ] 200

K

i ! iy

—_ ! a

4 -

& A / :
) T . r Jw0f

U 60 |- .

s ! i

= ! .

i =

= a0 | / - 80 2

= / )

] [ ] =}

7 a

= A 440 3

520 P

T -

g - __..—'"

e — .____.___.__l..—-
0 | 1 ! | | | | 11 0
0.1 0.2 0.4 0.6 08 2 & 6 B 1012

FREGUENCY [GHz)

Figure 4.19. Measured values of relative dielectric constant and conductivity of rat blood at
23°C (Burdette et al., 1980).

Figures 4.20-4.24 show recently obtained in vivo data for several feline tissues at frequencies
between 10 MHz and 1 GHz (Stuchly et al., 1981). These figures show significant differences in
the properties of different types of the same tissue (e.g., skeletal and smooth muscle).
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Figure 4.20. Relative permittivity of cat smooth muscle in vivo: V and O show results
obtained for two locations in the tissue. The vertical bars show the uncertainty due to the
estimated measurement errors (SD) (Stuchly et al., 1981).
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Figure 4.21. Relative permittivity of cat spleen in vivo: V and O show results obtained for
two locations; the vertical bars show the uncertainty due to estimated measurement errors
(SD) (Stuchly et al., 1981).
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Figure 4.22. Average relative permittivity of two types of cat muscle in vivo (five samples
for each point) (Stuchly et al., 1981).

400 3N
LIvVER 15:5°C
200
100
a0
W 60 — ]
o - - — &
A _ m—— LIvER 35s5%e
=4 i g €' -3
- = e el v
o L l A 1 L 3
. 02 04 06081 .2 - S T I
FREQUENCY (GHz)

o {m53/cm)

Figure 4.23. Average relative permittivity of cat internal organs in vivo (three to five
samples for each point) (Stuchly et al., 1981).
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Figure 4.24. Relative permittivity of cat brain: tissue 1 -- gray matter; tissue 2 -- gray
matter, 3 mm thick over white matter; tissue 3 -- white matter (Stuchly et al., 1981).
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At frequencies below 100 kHz, a strong conductance anisotropy exists in muscle tissue (Rush et
al., 1963). Data for anisotropic permittivity at low frequencies can be found in the works of Rush

et al. (1963), Schwan (1957), and Johnson et al. (1975). Figure 4.25 shows the real part of the
dielectric constant and conductivity of muscle tissue as a function of frequency for the parallel

and perpendicular orientations (Epstein and Foster, 1983).
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Figure 4.25. The real part of the dielectric constant (a) and the conductivity (b) of the
canine skeletal muscle tissue at 37°C as a function of frequency, in parallel orientation
(open and closed circles) and perpendicular orientation (crosses and triangles), averaged
over five measurements on different samples, The dotted lines are the data for non-oriented
muscle tissue (Epstein and Foster , 1983).

Figures 4.26-4.28 show the real and imaginary parts of the dielectric constant and the
conductivity of ocular tissue at 37°C as a function of frequency (Gabriel et al., 1983). Figures

4.29 and 4.30 compare the dielectric constant and conductivity of the normal and tumor mouse
tissue as a function of frequency (Rogers et al., 1983).
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Figure 4.27. The imaginary part of the dielectric constant, €', of ocular tissues at 37°C
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lens nucleus.
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Chapter 5. Theoretical Dosimetry
5.1. METHODS OF CALCULATION

5.1.1. Planewave Dosimetry

In principle, the internal fields in any object irradiated by electromagnetic fields can be
calculated by solving Maxwell's equations. In practice, this is very difficult and can be done only
for a few special cases. Because of the mathematical complexities involved in calculating SARs,
a combination of techniques has been used to obtain SARs as a function of frequency for various
models (Durney, 1980). Each technique gives information over a limited range of parameters.
The combined information gives a reasonably good description of SAR versus frequency over a
wide range of frequencies and for a number of useful models. Figure 5.1 summarizes the
combination of techniques used in the various frequency ranges to obtain the average SAR
versus frequency for a model of an average man.

With spheroidal models we used a method called the long-wavelength approximation up to
frequencies of about 30 MHz; the extended-boundary-condition method (EBCM) up to
approximately resonance (80 MHz); and the iterative extended-boundary-condition method
(IEBCM), an extension of the EBCM, up to 400 MHz. With cylindrical models we used the
classical solution of Maxwell's equations to obtain useful average SAR data for E polarization
from about 500 to 7,000 MHz, and for H polarization from about 100 to 7,000 MHz; above
approximately 7,000 MHz, we used an approximation based on geometrical optics. Up to about
400 MHz we used the moment-method solution of a Green's function integral equation for the
electric field; for K polarization we used the surface-integral-equation (SIE) technique with a
model consisting of a truncated cylinder capped on each end by hemispheres. An empirical
relation developed for E polarization gives a good approximation for the average SAR over the
entire frequency spectrum up to 10 GHz. For K polarization we used estimated values based on
experimental results for the range between 400 and 7,000 MHz because calculations are not yet
possible in this frequency range. Each of these techniques will be briefly described.
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Figure 5.1. Illustration of different techniques, with their frequency limits, used for
calculating SAR data for models of an average man.

Long-Wavelength Approximation--In the frequency range where the length of the irradiated
object is approximately two-tenths or less of a free-space wavelength, we have approximated the
SAR calculations, based on the first order term of a power series expansion in k of the electric
and magnetic fields, where k is the free-space propagation constant (Durney et al., 1975). This is
called a perturbation method because the resulting fields are only a small change from the static
fields. Equations for SAR have been derived for homogeneous spheroidal and ellipsoidal models
of humans and animals (Johnson et al., 1975; Massoudi et al. , 1977a, 1977b, 1977c¢) . Detailed
relations (given in the referenced articles) have been used here to calculate the SAR in the low-
frequency range.

Extended-Boundary-Condition Method--The EBCM is a matrix formulation based on an integral
equation and expansion of the EM fields in spherical harmonics. This method was developed by
Waterman (1971) and has been used to calculate the SAR in prolate spheroidal models of
humans and animals (Barber, 1977a, 1977b). The EBCM is exact within the limits of numerical
computation capabilities; but for prolate spheroidal models of humans, numerical problems limit
the method to frequencies below about 80 MHz. In SAR calculations for these models, the long-
wavelength approximation and the EBCM give identical results up to about 30 MHz, where the
long-wavelength approximation begins to be inaccurate.

Iterative-Extended-Boundary-Condition Method--The EBCM has been extended (Lakhtakia et
al., 1983Db) to a technique (the IEBCM) that is capable of SAR calculations up to at least 400
MHz in prolate spheroidal models of man. The IEBCM differs from the EBCM in two main
respects. By using more than one spherical harmonic expansion, the IEBCM allows better
convergence for elongated bodies and at higher frequencies; and it uses iteration, beginning with
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an approximate solution, to converge to the solution. These two features have significantly
extended the calculation range of the IEBCM over that of the EBCM.

The Cylindrical Approximation--In the frequency range where the wavelength is very short
compared to the length of the spheroid, the SAR calculated for an appropriately long section of
an infinitely long cylinder is a good approximation to the SAR of spheroids. The lowest
frequency at which the approximation is useful depends both on the length of the spheroid and
on the ratio of the major axis to the minor axis. For man-sized spheroids, the lower frequency
limit occurs for E polarization when the wavelength is about four tenths the length of the
spheroid. (Massoudi et al., 1979a).

Moment-Method Solution--A moment-method solution of a Green's-function integral equation
for the E-field has been used to calculate the internal E-field in block models, so-called because
the mathematical cells of which the model is composed are cubes (Chen and Guru, 1977a,
1977b, 1977¢c; Hagmann et al., 1979a, 1979b). Whole-body average SARs calculated by this
method are very close to those calculated for spheroidal models. Although the block model--with
simulated arms, legs, and head--has the advantage of resembling the human body better than a
spheroid, the calculations of the spatial distribution of the internal fields have been unreliable
(Massoudi et al., 1984). One problem with this technique is that the E-field in each mathematical
cell is approximated by a constant (called a pulse function), and this approximate field cannot
satisfy the boundary conditions between cells well enough. Another problem is that the
discontinuities at the sharp corners of the cells make the calculated fields at the corners between
cells of different permittivities vary rapidly with position, which causes problems in numerical
calculations.

Surface-Integral-Equation Technique--The SIE method, based on a formulation of the EM-field
equations in terms of integrals over induced currents on the surface of an object (Wu, 1979;
Harrington and Mautz, 1972), has been used to calculate average SARs, principally for K
polarization and mostly for models consisting of a truncated cylinder capped on each end by
hemispheres. Average SARs for this model are close to those for a spheroid, depending on how
the dimensions of the cylinder-hemispheres model are chosen relative to the spheroid.

Empirical Relations for Free-Space Irradiation--Techniques for calculating SARs (especially
over a wide frequency range) are complex and expensive, so a simplified method for calculating
approximate average SAR over a broad range of frequencies could be very useful, even if it gave
results within 10% or 15% of those calculated by more sophisticated methods. Kucia (1972) and
Gandhi and Hagmann (1977a) made some approximate calculations based on antenna theory.
Gandhi and Hagmann found from experimental data that the resonant frequency for E
polarization occurs when the length of the object is equal to approximately 0.4 Awhere A is the
free-space wavelength. They also noticed that the SAR decreases approximately as 1/f (f is
frequency) in the postresonance region. Using a combination of antenna theory, circuit theory,
and curve fitting, we have developed empirical relations for calculating the average SAR over
the whole frequency range of interest for a prolate spheroidal model of any human or animal
(Durney et al., 1979). We have also developed semiempirical methods for calculating the
average SAR of an irradiated object near or on a ground plane or connected to a ground plane by
a resistive connection. These relations are described below.
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Based on available calculated and experimental data, we formulated the following expression of
average SAR for an incident-power density of 1 mW/cm? and E polarization for a spheroid with
semimajor axis, a, and semiminor axis, b, in meters:

& f° ff§[1 + A(E 1 Ju(f - £,) + A,4,(8% ¢ £)ulE - fﬂ)]

SAR W/ lkg) = T s =
IR ik ‘%(f &k _1) (Equation 5.1)

where (as given by Equations 5.5 - 5.9) Aj, A,, A3, and A4 are functions of a and b, and Asis a
function of €. Unit step function u (f - f; ) is defined by

0if£{f 4
u(f - £,,) =
Lif £y £ 4

and u (f - f o» ) is similarly defined. Also, f, < f, < fy;. The resonant frequency, f, , is given by the
following empirical relation:

£[Hz)=275% 108[8312 + i (al + b?*)]'% (Equation 5.2)

We obtained Equation 5.2 by constructing a function of a and b with adjustable parameters and
using a least-squares-error procedure to fit the function to calculated values of f,. The function
was constructed from the observation that resonance is a combination of the length being near a
half wavelength and the circumference being near a wavelength. Values calculated from
Equation 5.2 are within 5% of all resonant frequency values calculated by more accurate
methods.

The empirically derived quantities f,; and f o, are defined by

3
SOl = 0421 a+1.23%9a/b+1.090a% - 0.295(a/ b)* + 0.020 (a/ b
£, (Equation 5.3)

£
22 = 21800 a+ 0502 afb - 50.810 2% - 0068 (a/ B)* + 34.1204°
s (Equation 5.4)

By requiring Equation 5.1 to provide a best least-squares fit to all the data available, we obtained
the following expressions:

A1=-0.994-10.690 a+ 0.172 a/b +0.739 a™' + 5.660 a/b* (Equation 5.5)
A>=-0.914+41.400 a +399.170 a/b - 1.190 a™* -2.141 a/b> (Equation 5.6)
As;=4.8222a-0.084 a/b - 8.733 a* + 0.0016 (a/b)* + 5.369 a° (Equation 5.7)
A4=0.3352a+0.075 a/b - 0.804 a* - 0.0075 (a/b)* + 0.640 a° (Equation 5.8)

As=|g/eyp| ™ (Equation 5.9)
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where €5 is the complex permittivity at 20 GHz.

As is a function of g, the complex permittivity of muscle, and is used to describe the SAR in the
geometrical optics region.

Equation 5.1 is a powerful relation because it allows using a hand calculator to get good
approximate values of SAR for any prolate spheroidal model between rat size and man size,
whereas the SAR data in this handbook and its previous editions require sophisticated and
expensive calculation methods and are plotted only for specific cases. Numerical results from
Equation 5.1 are shown in Figure 5.2 as data points on the E polarization curve.

This empirical formula (Equation 5.1) is included, however, to complement but not substitute for
the SAR data given in the handbook. In its present form, Equation 5.1 is useful for calculating
the SAR for models of intermediate sizes between humans and rats. Although the coefficients
Aj, Ay, ..., As were derived by fitting available SAR data for 18 models, the accuracy is rather
limited in the transition regions at f = f;; and f = f,, where step functions begin to be effective.
Because of the abrupt nature of the step function, SAR values in close proximity to f,; and f,, are
usually inaccurate. Also, since the frequency-dependent permittivity is not explicitly included in
Equation 5.1, SAR-value fluctuations caused by the variation of € with frequency are not always
accurately represented.

William D. Hurt and Luis Lozano (USAFSAM) modified Equation 5.1 to eliminate the step
functions. Their equation is

— AL E[ 1 AAE 18, - 1P(E T £0)° ]

2 el 2,03 2
1000 £2 / £ + &, (F/£ 1) (Equation 5.10)

where

B Sl (Equation 5.11)

u=-016 + 1.128 (logm? - 0.0438 (logm)* + 514 b
2716 S 8902a + 94l
4

= — 7 ab’
3

(Equation 5.12)

and a, b, A, Ay, A4, As, and f, are as defined previously.
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Figure 5.2. Average SAR calculated by the empirical formula compared with the curve
obtained by other calculations for a 70-kg man in E polarization. For the prolate
spheroidal model, a = 0.875 m and b = 0.138 m; for the cylindrical model, the radius of the
cylinder is 0.1128 m and the length is 1.75 m.
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Figure 5.2 (continued).

Equation 5.10 has the advantage of being continuous because it contains no step functions. It is
identical to Equation 5.1 for low, resonance, and high frequencies but differs somewhat in the
immediate postresonance frequency range, where it gave values within 30% of those calculated
for specific models (data in Chapter 6) except for the average endomorphic man, for which it
gave results that were 40% below the handbook values.

William D. Hurt (USAFSAM) developed another empirical relation that incorporates in one
continuous expression both the long-wavelength approximation for prolate spheroids on the low
end of the frequency spectrum and the geometrical optics approximation on the high end. This
empirical equation is

_Af ffj(l H(1- e A(E /L, - D+ ABY(EIE)E/E - 1))

SAR ]
1000 £2 /€2 + B, (£ /£2 - 1)

(Equation 5.13)

where Aj, A 3 and As are defined in Equations 5.5, 5.7, and 5.9, and

_ 6054,
ffcr[[Ee 13770) +a" b7 15 (a® + bf*)]

Bl
(Equation 5.14)

(S LT R (Equation 5.15)

£, = 2?5;[833 + w(ad + bgj]lmMHz _
(Equation 5.16)
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B (= 1)'1((U F)m(T+ 14 (-1 -1)

(Equation 5.17)

l 2_21}'2
U=a/(a’ - b* (Equation 5.18)

Also, o is the conductivity of the spheroid in siemens per meter.

The SARs calculated from Equation 5.13 were within about 25% of the values for specific
models as given in Chapter 6 except for the small rat, for which the values differed by about 40%
at 5 GHz.

Semiempirical Relations for Irradiation Near a Ground Plane--Knowing how shoes and soles
affect the SAR in man on a ground plane is desirable. Such an effect, however, is very difficult
to estimate even by using complicated numerical techniques (Hagmann and Gandhi, 1979). In
this section we present a simple semiempirical formula for calculating the SAR of a half-
spheroid placed over, but at a distance from, an infinitely large ground plane.

To derive this formula, we first put Equation 5.1 in the form of the power absorbed in a series
RLC circuit. Hence

(2R

bAR = 2, .3 I(r2y pa yd
ke () (Equation 5.19)
where
Q, =w,LIR
£ =1/ 2m/LC

V= 2aE,(E,isthe incident E - field intensity )

Comparing Equations 5.1 (up to resonance) and 5.19--and keeping in mind that input voltage aE,
is applied across the input impedance and the radiation impedance of a monopole rather than a
dipole antenna--the parameters R, L, and C of Equation 5.19 can be expressed in terms of A;, A,
and f ,. Therefore, we first compute the parameters Aj, Ay, and f, so that the power calculated
from Equation 5.1 will fit (with least-squares error) the numerical results of the SAR in a man
model on a ground plane (Hagmann and Gandhi, 1979). The corresponding R, L, and C
parameters will hence be valid for a half-spheroid in direct contact with a perfectly conducting
ground plane. Introducing a small separation distance between the half-spheroid and the ground
plane, in the form of an air gap or a resistive gap representing shoes, will correspond to adding
the following R, and X, parameters in series with the previously derived resonance circuit:

R, _ wCE]
g 14 iPR2 dx, 1+ wlicPR2 .
] ] (Equation 5.20)

where R;and C; are the parallel combination describing the gap impedance. R, and X, are
frequency dependent and will result in changes in both the SAR values and the resonance
frequency at which maximum absorption occurs.
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At frequencies higher than 1 MHz and at separation distances more than 1 cm from a relatively
dry earth, R , can be shown to be negligible with respect to the resistance of the equivalent
circuit in Equation 5.19. For this case the effect of only X , is shown in Figure 5.3. As the gap
distance increases, the SAR curve continues to shift to the right toward the limiting case of a man
in free space. The SAR curve reaches this limiting case for a separation distance of about 7.5 cm.
Since the introduction of C, will not account for any changes in the SAR value at resonance, the
peak value in the figure remains the same.

For wet earth and particularly for spheroids at small separation distances, the effect of gap
resistance R, should be taken into account (Spiegel, 1977). Figure 5.4 illustrates such an effect
where small reductions in the SAR values are generally observed.

Although the presence of the ground plane shifts the resonant frequency in each case, it does not
significantly affect the maximum value of the average SAR. At a given frequency well below
resonance (e.g., 10 MHz), however, the presence of the ground plane increases the average SAR
by an order of magnitude over the free-space value.

Penetration as a Function of Frequency--The concept of skin depth discussed in Section 3.3.4
shows that for the special case of a planewave incident on a lossy dielectric half-space, the
penetration of the planewave becomes shallower and shallower as the frequency increases. For
example, from Equation 3.46 the skin depth in a dielectric half-space having a permittivity equal
to two-thirds that of muscle tissue is only 0.41 cm at 10 GHz. Although the concept of skin depth
in a dielectric half space can give a qualitative indication of how penetration changes with
frequency in nonplanar objects, it must be used with caution.
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Figure 5.4. Calculated effect of grounding resistance on SAR of man model placed at a

distance from ground plane.

To provide more quantitative information about penetration in nonplanar objects, we have made
some calculations that show how power absorption is distributed over the volume of the object as
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a function of frequency for spheres, cylinders, and spheroids irradiated by planewaves. These
calculations are based on the following procedure. First, the object is divided into M small equal-
volume elements AV. Then P,, the power absorbed in each AV, is calculated and ranked in order
from greatest power absorbed to least. Next, the total power absorbed in N of the AVs is
calculated by summing the ranked P,'s from highest toward least:

M
£ HZ 1Pn (Equation 5.21)
The number N is selected so that
PN =0% PM

(Equation 5.22)
where Py is the total power absorbed in the object, given by

)
E_= F
Mopsqe (Equation 5.23)
Then the volume fraction Vg is defined as that fraction of the volume in which 90% of the power

is absorbed:

v N N
FoMAV M (Equation 5.24)

As the curves in Figures 5.5 and 5.6 show, V5 is nearly unity at low frequencies but decreases to
a very small number at high frequencies.

Although like calculations are not practical for a shape closer to the human body, the similarity
of the curves for the objects shown indicates that similar results would be expected for the
human body. Curves for spheres, cylinders, and planar half-space all show that the penetration
decreases rapidly with frequency, and at the higher frequencies almost all of the power is
absorbed in a small percentage of the volume near the surface.
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Figure 5.5 The volume fraction, Vg, as a function of frequency for a cylindrical model of an
average man. Vg is the fraction of the volume in which 90% of the power is absorbed (see
Equation 5.24).
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Figure 5.6 The volume fraction, Vg, as a function of frequency for two spheres of muscle
material. Vp is the fraction of the volume in which 90% of the power is absorbed (see
Equation 5.24).

5.1.2. Near-Field Dosimetry

The methods used to calculate near-field SARs are similar to those used to calculate planewave
SARs. Since the basic methods were described in Section 5.1.1, the comments here are directed
mostly toward the differences required in using the techniques in near-field analyses.
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Long-Wavelength Approximation--The long-wavelength approximation used for planewave
calculations has been useful for some near-field calculations in spheroids. In the approximation
for near fields, the incident near field is averaged along the major axis of the spheroid; the SARs
calculated this way are surprisingly close to those calculated by more accurate methods. The
advantage of the long-wavelength approximation is its relative simplicity.

Extended-Boundary-Condition Method-By expanding the incident near fields in spherical
harmonics, we have been able to use the EBCM for calculating near-field SARs. Since these
calculations are more complex than those for planewaves, the EBCM may not be useful up to 80
MHz for near-field calculations, as it is for planewave calculations.

Iterative-Extended-Boundary-Condition Method--Expanding the incident near fields in
spherical harmonics allows use of the IEBCM, which greatly extends the range of calculations
possible with the EBCM, just as for planewave calculations.

Cylindrical Approximation--in planewave dosimetry, the SAR calculated for a cylinder was a
good approximation to that calculated for a spheroid in the frequency range where the
wavelength was short compared to the length of the spheroid. Similarly, the same approximation
was valid for near-field calculations and was used in calculating SARs at frequencies above
resonance for data in this report. In fact, for sources very close to an absorber, the cylindrical
approximation is even better for near fields than for far fields. For the cylindrical models SAR
calculations were made by the classical eigenfunction expansion method.

Planewave Spectrum Method--Chatterjee et al. (1980a, 1980b, 1980c, 1982b) expressed
incident near fields in terms of a spectrum of planewaves and then used the moment method to
calculate local and average SARs in a block model of man. Some of their data are summarized in
Chapter 6.

5.1.3. Sensitivity of SAR Calculations to Permittivity Changes

Since there is some variability in the permittivity of people and other animals and some
uncertainty in the measurement of permittivity of tissue equivalent materials, knowing something
about SAR sensitivity to permittivity changes is important. Figure 5.7 shows calculated average
SAR as a function of frequency for several permittivity values in a prolate spheroidal model of
an average man. For this case the SAR is not extremely sensitive to changes in permittivity. This
appears to be generally true.

5.1.4. Relative Absorption Cross Section

Although commonly used in electromagnetics, particularly in describing the properties of objects
detected by radar, the concepts of absorption cross section and scattering cross section apparently
have not been used much by the bioelectromagnetics community. The basic concept of
absorption cross section is explained here, and some examples of relative absorption cross
sections are given.

The term "absorption cross section" (AC) is defined as the ratio of the total power absorbed by a
target exposed to EM radiation to the incident-power density. The AC has the dimension of area
and can be expressed in terms of the average SAR as
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I
1 (Equation 5.25)

where Pi, is the incident power density and M is the mass of the object exposed to EM fields.
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Figure 5.7. Calculated average SAR in a prolate spheroidal model of an average man, as a
function of frequency for several values of permittivity. g, is the permittivity of muscle
tissue.

The relative absorption cross section (RAC) is defined as the ratio of the AC to the geometrical
cross section G, where G is the body's cross-sectional area projected onto a plane perpendicular
to the direction of propagation of the incident wave (e.g., G = na” for a sphere of radius a). The
RAC is a dimensionless number and is a measure of the object's ability to absorb EM energy. For
an arbitrarily shaped body, the RAC depends on the orientation of the body with respect to the
polarization of the EM fields. In terms of the average SAR, it can be expressed as

rac o SARX M

P =3 )
n (Equation 5.26)
The relative scattering cross section (RSC) is defined as

P
Eoc=_ 8¢

-4t i
n (Equation 5.27)

where Py is the total power scattered by the object. The RSC shows how effective the geometric
cross section is in scattering the power it intercepts. Graphs of the RAC are shown in Figure 5.8
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for prolate spheroidal models of an average man, a rabbit, and a medium-sized rat--in the
frequency range from 10-10° MHz and for the most highly absorbing polarization, E
polarization. The data in Figure 5.8 show that the RAC is a strong function of frequency and
shape; also, near resonance the effective cross-sectional area in terms of total energy absorbed is
greater than the geometric cross section of the body. Figure 5.9 shows the RAC and the RSC for
a prolate spheroidal model of a medium rat.

At low frequencies the RSC varies as f * ; this is called the Rayleigh scattering region. Rayleigh
scattering is independent of the shape of the object. Also at low frequencies the size of the object
is small compared to a wavelength, the object does not interact strongly with the EM fields, and
the RAC and RSC are therefore both very small. Near resonance, where the length of the object
is about a half-wavelength, the interaction is very strong and both the RAC and the RSC are
greater than unity. For the model of Figure 5.9, near resonance the RSC is greater than the RAC,
which means that this model is a more effective scatterer than absorber.
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Figure 5.8. Relative absorption cross section in prolate spheroidal models of an average
man, a rabbit, and a medium-sized rat--as a function of frequency for E polarization.

10—

10°

!

RAC & RSC
o

| |
10' 10? 10*
FREQUENCY (MHz)

10

Figure 5.9. Comparison of relative scattering cross section (RSC) and relative absorption
cross section (RAC) in a prolate spheroidal model of a medium rat--for planewave
irradiation, E polarization.

The three graphs shown in Fig. 5.8 would lie almost on top of each other if they were normalized
to the resonant frequencies, which suggests a possibility of a universal RAC graph. Our
calculations showed, however, that the graphs are probably not close enough to make a universal
curve useful except possibly for very approximate estimates.
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5.1.5. Qualitative Dosimetry

Since calculating dosimetric data is usually difficult, time consuming, and expensive, obtaining
the desired dosimetric information for a given experiment or application is not always possible.
Often, therefore, just having a rough estimate of the dosimetric results to be expected would be
useful, both to decide whether further work is justified and to guide and check experiments. This
is especially true for near-field dosimetry.

Researchers doing experiments that involve near-field irradiation are apt to find that the near-
field SAR curves in this handbook do not correspond closely to those for their irradiation
conditions. Near-field radiation varies greatly from source to source, and we have no ready way
to normalize the calculated SARs to the incident fields, as we have for planewave irradiation.
Consequently it is not practical to give a set of normalized near-field SAR curves to use for
predicting SARSs in specific experiments, as it is for planewave SARs. However, by having near-
field SARs for some typical simple sources (as given in Chapter 6), along with qualitative
explanations of how the near-field SARs are related to the incident fields, we can at least predict
relative values of SARs for given exposure conditions. In this section, some of the basic
characteristics of EM fields described in Chapter 3 are used to develop in more detail some
techniques for estimating relative values of SARs, both for far-field and near-field irradiation.
These techniques are based on two qualitative relations described earlier: the boundary
conditions on the E-field and the magnetic flux intercepted by the absorber.

Estimating Values of internal Fields--As explained in Chapter 3, at a boundary between two
media with different complex permittivities, the E-field must satisfy the following two boundary
conditions:

Eip = Ezp (Equation 5.28)
€1E1n = €2E2, (Equation 5.29)

where Ej, and Es, are components parallel to the boundary, and Ej, and E», are component,
perpendicular to the boundary, as shown in Figure 5.10. It is important to remember that
Equations 5.28 and 5.29 are valid only at a point on the boundary. From Equation 5.29, we can
see that E,, = € Ej, /e;; and if &, >> g1, then E,, << E;,,. Thus if Ej, is the field in free space and
E», is the field in an absorber, the internal field at the boundary will be much weaker than the
external field at the boundary when g, > > g; and the fields are normal to the boundary. Also,
from Equation 5.28, we see that the external field and the internal field at the boundary are equal
when the fields are parallel to the boundary. These two results will be used extensively in
explaining relative energy absorption.
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Figure 5.10. Field components at a boundary between two media having different complex
permittivities, €; and &;.

Boundary conditions are not as important on the H-field as on the E-field for explaining relative
energy absorption in biological materials because they are usually nonmagnetic (i = p, ) and
have no significant effect on the H-field itself at the boundary. Another relation between the
incident H-field and the internal E-field, however, is useful in explaining qualitatively the
relative strengths of internal fields.

From the integral form of Maxwell's equation,

TE'dE=—;LJE'dS

ot (Equation 5.30)

For the very special case of a lossy dielectric cylinder in a uniform H-field Equation 5.30 can be
solved by deducing from the symmetry of the cylinder and fields that E will have only a ¢
component that will be constant around a circular path, such as the one shown dotted in Figure
5.11. For E constant along the circular path, and H uniform, Equation 5.30 reduces to

dH
2mE | = —p — e
b a
dH r
E¢=-pn——

3t 2 (Equation 5.31)

Thus, Equation 5.30 shows that E is related to the rate of change of the magnetic flux intercepted
by the object; and Equation 5.31 shows that for the very special case of Figure 5.11, the E-field
circulates around the H-field and is directly proportional to the radius. For this example the
circulating E-field (which produces a circulating current) would be larger for a larger cross
section intercepted by the H-field. The generalized qualitative relation that follows from
Equation 5.30 is that the circulating field is in some sense proportional to the cross-sectional area
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that intercepts the H-field. This result is very useful in qualitative explanations of relative energy
absorption characteristics; however, this qualitative explanation cannot be used indiscriminantly.

Figure 5.11. A lossy dielectric cylinder in a uniform magnetic field.

The qualitative relations obtained above from the boundary conditions on E and the circulating
E-fields produced by H can be used to explain the relative energy-absorption characteristics in
terms of some relations that are strictly valid only at low frequencies. The qualitative
explanations thus derived, however, appear to be useful at higher frequencies also.

At lower frequencies the internal fields can be thought of as being generated by the incident E
and incident H separately. That is, there will be two sets of internal, E-fields: one generated by
the incident E and one generated by the incident H. The total internal E-field is the sum of these
two internal E-fields, i.e.,

En=E Ey (Equation 5.32)

where

E. = The internal E-field generated by E;, (incident E-field)

E;, = The internal E-field generated by Hj,. (incident H-field)

E;, = The total internal E-field

E. = The magnitude of the vector field E. (with similar notation for E; , E;, , and other vectors)

At low frequencies E. can be calculated from E;,., and E;, from Hj,. and the two are added as in
Equation 5.32 to obtain Ei,. This procedure cannot be followed, however, at the higher
frequencies, where the E- and H-fields are strongly coupled together by Maxwell's equations.
Instead, E. and E;, are strongly interactive and must be calculated simultaneously. However, the
qualitative explanations based on the separate calculations of E. and E; and the use of Equation
5.32 seem to have some validity at higher frequencies, perhaps even up to resonance in some
cases.

The basis for qualitative explanations of the relative strength of Ej, can be based on two
qualitative principles (QP):

QPI.

E. is stronger when E;, is mostly parallel to the boundary of the object and weaker when E;, is
mostly perpendicular to the boundary of the object.
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QP2.

E, is stronger when Hj, intercepts a larger cross section of the object and weaker when Hiyc
intercepts a smaller cross section of the object.

Figure 5.12 shows some examples of qualitative evaluations of internal fields based on these
principles. For clarity only simple objects are shown in the illustrations, but the principles can be
used with more complicated shapes (e.g., the human body). The dependence of the planewave
SAR on polarization can be explained on the basis of QP;and QP;, as illustrated by the summary
in Table 5.1 (refer to Figure 3.37 for the orientations of the incident fields for each polarization).
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Figure 5.12. Qualitative evaluation of the internal fields based on qualitative principles QP1
and QP2. E. is the internal E-field generated by Ei,., the incident E-field, and E, is the
internal E-field generated by H;,.,the incident H-field.

Table S.1. Application of QP1 and QP2 To Planewave SARS
Polarization Einc Hine E. En Relative SAR
E polarization Mostly parallel Intercepts large cross section Strong Strong Highest
K polarization Mostly normal Intercepts large cross section Weak Strong Middle

H polarization Mostly normal Intercepts small cross section Weak Weak Lowest
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Since E. and E;, are both strong for E polarization, its relative SAR is the highest. The weak E.
and E; make the relative SAR of H polarization the lowest, with that of K polarization between
the two. Note that for H polarization the cross section intercepted by Hi, is circular, also smaller
than the elliptical cross section intercepted by Hi,. in E and K polarization.

From the limited amount of available near-field absorption data, QPI and QP2 appear also to be
very useful in explaining near-field dosimetric characteristics. For example, consider Figure
8.20, the measured relative SAR in man and monkey spheroidal models irradiated by a short
electric monopole antenna on a ground plane. At first it may seem surprising that the SAR-fields
increases more slowly than (A/d)*, since the magnitude of the E- and H-fields is expected to
increase more rapidly than A/d in the near-field region. However, the reasons for the shape of the
SAR curve may be found from Figure 8.21, which shows the behavior of the measured fields of
the antenna (designated E;, and Hi,. with respect to an absorber). The direction of the Hi,. does
not change with d, but the magnitude of Hiy. increases faster than A/d for d/A < 0.3. The direction
of Ei,. however, changes significantly with d. In the far field, the angle o between E;,. and the
long axis of the spheroid is zero; but at d/A = 0.1, it is about 70°. According to QP1, this change
in angle has a significant effect on E. Thus the change in SAR with d/A results from three
factors:

1. E. increases as the magnitude of E;,. increases.
2. E. decreases as oincreases.
3. Ejincreases as the magnitude of Hi,c increases.

Even though Ej;, increases faster than A/d, E. increases much more slowly than A/d because of the
combination of factors 1 and 2. The average SAR, which is proportional to E%, does not increase
as fast as (Md)2 because E. affects Ei, more than Ej, does. On the other hand, since the monkey-
size spheroid is relatively shorter and fatter than the man-size spheroid, Ej, has a stronger effect
on E;, for the monkey than for the man. Consequently, the SAR for the monkey increases more
rapidly as d decreases than does the SAR for the man.

Similarly, the variation of the relative SARs in Figure 6.31 can be explained in terms of the
antenna-field behavior, as shown in Figures 6.37- 6.39. In Figure 6.31 the relative SAR curves
for 10, 27.12, 50, and 100 MHz lie very close together, while those for 200 and 300 MHz differ

significantly for some values of d/A. The reasons for this can be seen from Figures 6.37 - 6.39:

1. Ejn is slightly lower at 200 MHz and significantly lower at 300 MHz than at the other
frequencies.

2. Hijyis lower at 200 and 300 MHz than at the other frequencies.

3. The angle a of Ei, with the z axis is significantly higher at 200 and 300 MHz than at the
other frequencies.

Eixc 1s not the strongest factor since it is not much less at 200 than at 100 MHz, but the relative
SAR is significantly less at 200 MHz than at 100. The dominant factor is a.. According to QP1,
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as o increases, the SAR decreases. The effect of a can be seen from the 300-MHz curve which
begins to rise rapidly at y/A = 0.3, where a decreases steeply. A surprising aspect of the
correspondence between incident-field characteristics and the relative SAR characteristics is that
the correlation was based on the values of the incident fields at only one point in space.

Some other important SAR characteristics are the differences between the relative SARs for K
and H polarization (Figures 6.32, 6.33) as compared to E polarization (Figure 6.31). Although
the variation of the Ei,. with respect to A/y (as shown in Figure 6.37) for 0.15 <y/A <0.5 is
slower than A/y, the relative SARs for an absorber at distance d from the dipole for both H and K
polarizations vary faster than (A/d)* in this region (as seen in Figures 6.32 and 6.33). From the
nature of the incident fields (as shown in Figures 6.37-6.39), E;, appears to dominate for K and H
polarizations, while E. dominates for E polarization. The same behavior is shown in a different
way in Figure 5.13, where the calculated average SAR for a prolate spheroidal model of an
average man is shown as a function of 1 = Ej,¢/1o Hine , the normalized field impedance, with
E;.. constant at 1 V/m. The curves show the characteristic behavior that results when the
impedance deviates from the planewave case (n= 1). Since E;,. is constant, small n means large
Hi, ; thus, for a very small 1, Hi,. dominates and E polarization and K polarization become
equivalent.

The important information furnished by the curves in Figure 5.13 is that the SAR changes
significantly with the Hj, field for K and H polarizations, but changes very little with the Hj,. for
E polarization in the range 0.5 <n < 1.5, which, according to Figure 6.40, is the range of interest.
This means that the contribution of the Hi, to the average SAR dominates for K and H
polarizations, while the contribution of the E;,. dominates for E polarization, as explained by
Durney et al. (1975) and in the report by the National Council on Radiation Protection and
Measurements (1981). Thus, for K and H polarization, the SAR in the long-wavelength region
follows the H;,. variation and therefore lies above the (k/d)2 variation, as shown in Figures 6.32
and 6.33.

Further insight at low frequencies is provided by the information in Figure 5.14, which shows the
ratio of the SAR produced by E. to that produced by Ej, for a 0.07 -m’ prolate spheroidal model
at 27.12 MHz for each of the three polarizations. For a/b < 3.5, E;, dominates in all three
polarizations; but for a/b > 3.5, E. dominates in E polarization and E, dominates in H and K
polarization. This is shown only for a conductivity of 0.4 S/m and at low frequencies, but it
appears that Ej, usually dominates in H and K polarization, while E. dominates in longer, thinner
models for E polarization. Note that QPI and QP2 cannot be used to compare E. and Ej;, for
different polarizations; they can be used only to compare the E. for one set of conditions to the
E. for another set, and the E;, for one set of conditions to the E,, for another set.
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Figure 5.14. Ratio of (SAR)e, to (SAR), of a 0.07-m’ prolate spheroid for each polarization
as a function of the ratio of the major axis to the minor axis of the spheroid at 27.12 MHz,
c=0.4S/m.

5.2. DATA FOR MODELS OF BIOLOGICAL SYSTEMS

The average weight and height and the calculated values of semiaxes b and ¢ for ellipsoidal and
prolate spheroidal models are given in Tables 5.2 through 5.4. Except items for the Long Evans
or Sprague-Dawley rat, IC Swiss Webster mouse, and chicken and quail eggs, which are based
on a few measurements in our laboratory, weight and height data were compiled by averaging
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values contained in the following references: Colliers Encyclopedia, 1971; Dreyfuss, 1967;
Encyclopedia Britannica, 1966; Encyclopedia Americana, 1975; Grizmek's Animal Life
Encyclopedia, 1975; Jordan, 1969; Walker et al., 1964. The tissue of all the species is assumed to
be 1 g/cm?. The cylindrical models have the same weight and height as the prolate spheroidal

models.

Table 5.2. Average Weight And Length And Calculated Value of b For

Prolate Spheroidal Models Of Animals And Eggs

Species
Rhesus monkey
Squirrel monkey
Dogs
German shepherd
Brittany spaniel
Beagle
Rabbit
Guinea pig
Small rat
Medium rat
Large rat
Small mouse
Medium mouse
Large mouse
Pupae (blow fly or mealworm)

Chicken egg

Quail egg

Average weight (kg) Average length, 2a (cm) b (cm)

3.5

1.1

32.0
15.9

13.5

1.0

0.58

0.11

0.32

0.52

0.015
0.020
0.025
1.96x 10
0.060

0.010

40.0

23.0

90.0

68.8

57.0

40.0

22.0

14.0

20.0

24.0

54

7.0

7.6

1.5

5.8

3.0

6.46

4.78

13.03
10.50
10.63
3.45
3.55
1.94
2.76

3.22

1.17
1.25
0.25
222

1.26
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Table 5.3. Average Weight And Height And Calculated Values Of b And ¢ For
Ellipsoidal Models Of Human-Body Types

Species Average weight (kg) Average height, 2a (m) b (m) ¢ (m)
Average man 70.00 1.75 0.195 0.098
Average ectomorphic (skinny) man 47.18 1.76 0.160 0.080
Average endomorphic (fat) man 141.00 1.76 0.225 0.170
Average woman 61.14 1.61 0.200 0.091
Small woman 43.09 1.45 0.180 0.079
Large woman 88.45 1.73 0.215 0.114
10-year-old child 32.20 1.38 0.143 0.078
5-year-old child 19.50 1.12 0.120 0.069
1-year-old child 10.00 0.74 0.095 0.068

Table 5.4. Average Weight And Height And Calculated Values Of b For
Prolate Spheroidal Models Of Human-Body Types

Species Average weight (kg) Average height, 2a (m) b (m)
Average man 70.00 1.75 0.138
Average ectomorphic (skinny) man 47.18 1.76 0.113
Average endomorphic (fat) man 141.00 1.76 0.195
Average woman 61.14 1.61 0.135
Small woman 43.09 1.45 0.120
Large woman 88.45 1.73 0.156
10-year-old child 32.20 1.38 0.106
S-year-old child 19.50 1.12 0.091
1-year-old child 10.00 0.74 0.080

5.3. TABULATED SUMMARY OF PUBLISHED WORK IN
THEORETICAL DOSIMETRY

Theoretical studies of the SAR in biological models have been of increasing interest in recent
years. The analyses started with simple geometrical models, such as homogeneous planar and
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spherical models. More complicated numerical methods have now been used, and calculations
are available for inhomogeneous realistic models of man.

In general the SAR depends on body shape, frequency, polarization, E and H vector fields,
presence of ground plane and reflectors, and dielectric composition. The shape of the model
basically dictates the appropriate expansion functions to be used in an analytical solution.
Frequency, on the other hand, determines the method of solution. Other factors, such as
excitation and layering, can be included by extending the appropriate technique.

In Table 5.5 we summarize the theoretical techniques used to calculate the SAR in models of
man and animals. The table is divided into three basic divisions according to how complex the
model's shape is. The one-dimensional models are the simplest and are particularly useful at
higher frequencies where the body curvature can be neglected. Such models, however, cannot
predict body resonance that occurs in three-dimensional models. The two dimensional models
are basically single or multilayered cylindrical geometries suitable to simulate limbs. The three-
dimensional case includes models of idealized shapes, such as spheres, spheroids, and ellipsoids,
as well as more realistic block models of man.

Table 5.5. Comparison of Theoretical Methods Used In Literature
To Calculate The Power Absorption By Biological Models

Ref
Shape Dimensions Excitation Method Frlgz?legl;cy eren| Remarks
ce*
A. One-
dimensional
models
(Good only at high frequencies where the
Infinite plane body
tissue layers Multilayers IPlanewave Transmission-line model [Unlimited la  [curvature can be neglected. Can predict
(isotropic) /4
type resonances but not body resonance.
Fourier transform
[Two layers aR:;t:tIllEleﬂar zﬁgﬁ:ﬁlg (?r?i(iiﬁon 433-2450 MHz b, ¢ [Used to calculate relative heating patterns.
[boundaries
[Used to calculate effects of tissue
[Transmission-line model lanisotropy (at low frequencies) on
(Anisotropic)  [Multilayers Planewave (together with Thevenin's|0.001-100 MHz d  microwave fields and power absorption.
theorem) Small effects observed at higher
frequencies (above 10 MHz).
R INonperiodic
Semi-infinite . .
electric field IPlanewave spectrum A1l calculations .
homogeneous  |One layer with TE and TM |analysis at 2450 MHz e [Near-field analysis of aperture sources.
slab components
. . . ILayering increases average SAR; an
Six layers EI:I?;jZiZd (S)r?eti;esillerle‘fractlon lUp to 3.0 GHz f  |enhancement factor needed to correct
P results from homogeneous models.
Horr_lo_g;:'nc?;)us INear field of a P lanewave-soectrum For fields nearly constant over at least a
s;:ml-m n1 f; - source leaking W}:’ -Sp! D450 MHz o, h free-space wavelength, energy deposition
slab and multi- radiation approac! lequal to or less than that resulting from

layered slab

Iplanewave exposure. In the analysis,
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coupling of target to source not taken into
laccount.

B. Two-
dimensional
models

Infinite circular

Length 1= 1.75 m,
radiusa=11.3 cm; 1

IMode-matching

In good agreement with geometrical

cylinder =14 cm,a=1.58 Planewave echnique . . 300-6000 MHz ") optics at the high-frequency limit.
em land geometrical optics
[Formulation simple to use, but valid
Radius such that  |Coaxial loop ILong-wavelength IDepends on " results are in low-frequency range. Power
(formula) k,a <2.4 lantenna lapproximation method |(formula) koa <2.4 labsorption coefficient is plotted against
loop dimensions and cylinder radius.
b0 et
radius cylinders in IPoint-matching method SAR calculated as function of frequency
[vector normal to . Lo . Up to 1 GHz I .
presence of a icombined with imaging land distance from reflector.
plane of a
reflector
reflector
la. Geometrical optics IAt higher frequencies the two methods
Radius: Planewave E andfapproximation b00-100 GHz give same result. Average SAR results
2.24-24 cm H polarization [b. Mode-matching tally with those from prolate spheroidal
technique models at higher frequencies.
Multilayered Mode-matching . . .
infinite circular |--- IPlanewave technique and moment 433-2450 MHz m, Mlcrowave heating ¢ alculated in
. simulated human thigh.
cylinder method
Direct con- Field expansion in terms
tact a er?ture lof three-dimensional Microwave heating calculated in phantom
Three layers sourcz (TE cylindrical waves and ~ [433-2450 MHz o [models of human limbs exposed to a
10 imatching the boundary direct-contact aperture source.
mode) o
conditions
Multilayered [a=1.5b,a=0.239 Surface integral
cylinders of m, b=0.159 m for Plancwave lequations derived via  |All calculations at Calculations made for one-and two-
arbitrary cross |elliptical-cal lvector Green's theorem [300 MHz P layered circular and elliptical cylinders.
section cylinder land boundary condition
Finite element method and variational
17.5-x 19- cm .. calculus used to approximately calculate
triple-layered model Planewave TM - Finite element 433 MHz 9 finternal fields. Results presented only for
normalized inside field.

. IAbsorption effects due to clothing are
Mult}lay;red Outer radius 11.28 [Planewave E and negligible below 2 GHz. Layering
infinite circular . 10 MHz-10 GHz Ir .

. cm H polarization changes average SAR values in the 0.4- to
cylinders
8-GHz frequency range.
Method based on modeling the body by a
. . set of planar parallel slabs and utilizing a
IHomogeneous IPlanewave E Stacked ‘two-c-hmensmnal 915 MHz, 2450 convolution-type relationship between a
R . 62.6 x 62.6 cm L spectral iterative S R
infinite cylinder [polarization technique (SIT) IMHz current distribution on any slab and the
4 field due to this current. Calculated data
for the SAR distribution are given for two
Near field of \With proper choice of geomf;try and )
[Homogeneous . . polariza-tion of the sources, it is possible
. Lo L electric and IMode-matching 27,100, and 300 . K .
linfinite circular |radius =5 cm S . It [to have deep penetration with maximum
. magnetic line  ftechnique IMHz .
cylinder heating at the center and to move the
sources .
maximum around.
.InhoTnogeneous Cross section of a EM planewa\{e Galerkin's method with [Low-frequency u Arbitrarily shaped polygonal cells are
linfinite land a sole-noidal lused to allow more accurate modeling of

144




cylinders with  {human torso field linear basis function region complex objects without excessive matrix
larbitrary cross sizes.
section
SAR distribution calculated in two-
. dimensional models of cross sections of
Annular phased Moment method with 70 MHz v the human body. Numerical results agree

larray system

Ipulse basis function

with measured values in central region of
the cross section.

C. Three-
dimensional
models

Finnite planar

16 x 12 x 4 cm for a
fat muscle tissue

IPlanewave

Tensor integral equation
for the electric field

IResults presented up

Method applicable for heterogeneous

model block and 3 x 0.5 x .. to 2.45 GHz biological bodies.
inside the body
0.5 y for a muscle
IFor human model in direct contact with a
lground plane, an order-of-magnitude
enhancement tin SAR value may occur at
. . . B . a. Antenna theory frequencies below resonance.
Fm.l te circular - Height/radius lr, = |E-polarized b. Curve fitting used 1-60 MHz x  |[Enhancement rapidly decreases as model
cylinder 12.68 Iplanewave Lo
lalong with circuit theory moves away from ground plane.
Separation distance of about 7.5 cm from
lground plane is sufficient to restore free-
space absorption characteristics.
Spherical model Fidll gsc(r)rf the sphere Planewave Mie theory 10-10,000 Mhz lv, z [Examined distribution of generated heat.
= 25.57 em Plancwave Mie theory 1-20 MHz laa,b [Power deposition in a spherical model of
b  |jman--70 kg.
Ir=35cm Planewave Mie theory 10-12,000 MHz cc [Distribution of heating potential.
Type of nonuniformity described in a
radius-frequency diagram. Localized
Br=10 cm IPlanewave Mie theory 100-10,000 MHz lheating for 8 cm <a < 0.1 cm in the
frequency range 300 MHz < f < 12 GHz
lis described.
§x< ;r;f:mc;l Used to calculate heating patterns in
resl?ﬂ s for r Planewave Mic theory 915 and 2450 MHz (dd |mammalian brains. Selective absorption
N lalso indicated.
=3and 7 cm
IComparison made between heating of
918 mHz for sphepcal and realistic models of humags
[Human head (7-cm . . . land infrahuman heads. Lower EM heating
. . [E-polarized Tensor integral equation [infrahuman head; A . . o
radius) and infra- e |induced in brain of realistic model than
Iplanewave method 2450 MHz for . ,
lhuman human head spherical model. Skull's bony structure
tends to attenuate heating of the brain,
including the eyes.
. Primate cranial .
Multl}ayered structure of rhesus  [Planewave Mic theory IMost of the results, 3 o results glvenhof average SAR gnd mean
spherical model GHz square electric field in equatorial plane
macaque monkey
IAdditional SAR peak recognized at about
Human skull. = 7- 2.1 GHz. This is due to the y/r impedance
’ IPlanewave Mie theory 0.1-3 GHz igg [matching effect which was also

10 cm

recognized in planar model (Schwan,
1968;;).
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[Human and animal

[Energy distribution examined in three

_ Planewave Mie theory 0.1-10 GHz hh [spheres--3.3-, 6-, and 10-cm radii--with
lheads, r=3.3-10 cm| . . R
lemphasis on strong localized heating.
Outer radius . T
maximum value =  [Planewave Mic theory [Results presented, i [Examined SAR distribution in different
433 < <6000 MHz layers.
6.6 cm
la. Current loop p
Six-layered cranial | z L .. [Model allows for an idealized
structure of b. Electric dipole . IRresults only at 3 s . .
. . State-space formulation continuously inhomogeneous structure.
maximum radius 3.3jm | z, both GHz lkk L
. Heat potential distributions are calculated
cm laxially above the
model
Planewave .
_ _ . Perturbation theory,
p-Imandab= magnetic, [based on expanding all Used to calculate the first-order internal
Prolate spheroid |7.73, volume = 0.07 |electric, and . P g IUp to 30 MHz I .
3 fields in a power series electric field and SAR
m” and a/b up to 10 |cross .
o of -jk
[polarization
Planewave
macnetic Up to 30 MHz for
0.02 <a<0.0875 ele(%tric a’nd Perturbation analysis iman model; up to 1 IAverage SAR presented as function of
m, 2 <a/b <6.34 eross ’ Y GHz for mouse langle of incidence.
L imodel
[polarization
Usine the vector Results presented for 915 and 2450 MHz.
3 <a <10 cm, a/b = |Planewave cross N hergoidal wave function|100 and 2450 MHz /™™ In Lin and Wu (1977),, peak SAR was
3.6 [polarization P inn  [plotted for f=10-3000 MHz fora=3 cm

lexpansion

and b=2 cm.

[Up to man-size
model a =0.875, a/b
= 6.34

IPlanewave

[Extended boundary
icondition method

IAt and slightly pastg
resonance (-60 MHz
for 2/3 muscle tissue
of man-size model)

Good results up to resonance for average-
man model. Frequency limited because of
ill- conditioned matrix. For lower
dielectric constants, the method can be
used up to higher frequency limits.

Man and animal
sizes

IPlanewave

(Geometrical optics

20-100 GHz for man
imodel, f> 80 GHz
for rat model

i, qq

Based on dividing surface of prolate
spheroid into small planar subareas, all
power transmitted into the spheroid is
lassumed to be absorbed and secondary
internal reflections are neglected. Lower
frequency limit is based on convergence
within 20% of Mie solution for sphere
with a radius = b of the spheroid.

a/b=6.34,a=0.875

[E-polarized

[Empirical curve-

Provides simple empirical formula for
calculating average SAR over broad-

m, weight =70 kg [planewave fittingprocedure 10 Mhz-10GHz o frequency band. Formula is only for E-
polarized incident planewaves.
IPlanewave E, H, . . . .
land K Geome.trlca'l optics 6 GHz and beyond  |ss Method valid only in th.e frequency range
o lapproximation where the body dimensions >>A
[polarization
1.25<ab< 1.5, .
0.297 <a<0.335 Planewave E, H, [Point-matching [Up to resonance of Absm:bed power density plf)tted for
_ and K . tt  [spherical-like model. Solution does not
m, volume = 0.07 o technique 130 MHz
I [polarization converge for a/b > 1.5.
Near field of oscillages around i planewave value
a/b = 6.34, 2 =0 875plectric dipole, E Extended boundary IResults at 27 MHz |uu [For K polarization, SRA distribution

m, volume = 0.7 m?

and K
[polarization

condition method

suggests possible enhancement at regions
of small radius of curvature.
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la/b=6.34,a=0.875

[Electric dipole
located paralle to

ILong-wavelength

|Analysis useful where long-wavelength
lapproximation is valid but wave

m, weight = 70 kg fmajor axis of lapproximation method IResults at 27 MHz |[vv |impedances are not 377 ?, and for near-
’ . field irradiation in which incident fields
spheroid R
lare quasi-uniform.
|Average SARs in a prolate spheroidal
model of man are essentially the same as
INear field of a Lone-wavelenath those for a block model of man at 27.12
short electric analg sis & 27.12 MHz ww [MHz, even in near fields. For purposes of
dipole Y laverage SAR, this allows use of the
simpler and less expensive prolate
spheroidal calculations.
IAverage SAR and the SAR distribution
due to near fields of large and small
laperture sources are given. Calculated
INear fields of  |Extended boundary xx, [results conform to the understanding
o 27 MHz R . .
laperture sources condition method lyy [previously obtained from studying

irradiation of the spheroidal models by
[EM planewave and by n ear fields of
various elementary radiation sources.

Spherically
capped cylinder

The average man
imodel and the small
rat model

IEM planewave

Surface integral equation

80 MHz to 2.45 GHz

zz

IAverage SAR curves for E, H, and K
polarizations intersect at a frequency just
labove resonance, about 800 MHz for man
models. This may be useful in cases
where the average SAR must be
lindependent of animal position.

-a/b=6.34,a=
0.875 m, weight = SAR distribution and average SAR are
70 kg . plotted as a function of separation
Prolate spheroid | a/b=3.1,a=20 lsorgalilg;?rizl Sg;g?gzg Eﬁ;ﬁgzry 10-600 MHz ab |distance from the loop. For distances less
cm, weight = 3.5 kg P than 5X, average SAR values oscillate
-a/b=3,a=3.5cm, labout the far-field value.
weight =20 g
|An iterative procedure for improving
stability and extending frequency range of]
B _ [terative extended the extended boundary condition method
Prolate spheroid érlr/lbv;eéi.ﬁf 7_ 001{'875 ;laneiwgvc:t]i andboundary condition 27-300 MHz ad, (EBCM). Calculated data for SAR
> weight = g polanzations  thod B¢ \distribution and average SARs in the
resonance and postresonance frequency
range are presented.
IModel composed of upper concentric
Axisymmetric [height = 22.6 cm spheres and lower concentric spheroids.
K o > 3 [EM planewave [Finite element method |l and 3 GHz af  |Curves for SAR distribution in brain
cranial structure [volume = 4189 cm .
region are presented for detached model
of the human cranial structure.
First-order analysis valid for long-wave-
length a/A < 0.1. Curves of SAR vs.
frequency show SAR to be strong
Ellipsoidal Man model a = ) ‘ 1-30 MHz for man fuqctiqn Qf size.an_d orientation of the
model 0.875 I§1, volume = [Planewave IPertgurbation technique model ag |ellipsoid in the incident field. Strongest
0.07 m’, and b/c =2 labsorption was found when electric-field
vector of the incident planewave was
lalong the longest dimension of the
ellipsoid.
Man and animal
model 0.05 < 2a < _ _ [Up to 30 MHz for Data used_ to e)_(trfipolate resglts o.f
IPlanewave IPerturbation technique man model andto 1 [ah [observed irradiation effects in animals to

1.8,1.7<a/b <45,
and 1.3 <b/c <2

GHz for the mouse

those expected to be observed in humans.
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Model of breast

Three-dimensional and densitographic

L carcinoma . Boundary value solution Results at 2450 . |pictures of electromagnetic-field
Ellipsoid embedded in IPlanewave X . . IMHz, 5.8 GHz, 10 jai RO p .
. in spheroidal coordinates distribution with locations of hot spots
nonabsorbing GHz
. . shown.
dielectric
Sphere resting on  [Vertically and Stron_gest power dep osmgn s f9r field
Body-of- . . . . polarized along longest dimension and for
. base of conical horizontally Surface integral equation [Results at 30, 80, . . .
revolution ) S . laj [frequencies near the first resonance (i.e.,
body; total height = |polarized method and 300 MHz . . .
model 80 MHz); hot spots predicted in neck
1.78 m Iplanewave .
region.
Height = 1.7 m, 120 Integr‘al equation solved by dividing the
Block model of |cells; cell size was Tensor integral equation lak. body '1nt9 N cells, assuming a gonstant
? Planewave lUp to 500 MHz > [field inside each cell, and solving for the
man kept smaller than imethod lal . . ;
3N unknowns using point matching. Also,
o/4 .
hot spots are illustrated.
Chen and Guru's work (1977) extended
by
Height = 1.7 m, 180 IMoment-method solution la. Using interpolant between field values
cells; cell size <10 [Planewave of electric-field integral |[Up to 200 MHz lam [at cell centers before carrying out the
cm lequation volume integral.
b. Choosing cell sizes and locations for
realistic model of man.
[Experimental data support numerical
results. Resonant frequency shifts from 77
Height=1.75m, [E-polarized Image theory and IMHz in free space to 47 MHz when
Block model weight = 70 kg Iplanewave moment method Less than 100 MHz - an standing on a ground plane. An order-of-
magnitude enhancement in SAR values is
predicted at frequencies below 30 MHz.
[Numerical calculations of absorbed
. lenergy deposition made for human model
Moment method 10-600 MHz #M lconstructed with careful attention to both
biometric and anatomical diagrams.
Results for average SAR are compared
IPlanewave, . . .
\vertical. and Tensor integral equation with existing experimental results.
L Up to 500 MHz a0 [Resonance and the effect of body
horizontal method . .
. heterogeneity on the induced field are
polarization .
studied.
IWhole-body and part-body average SAR
Inhomosencous for man in free space and under grounded
g Height=- 1.75 m, IMoment method with ~ [27.12 MHz and 77 conditions are given as function of angle
block model of o Planewave . . lap L .
weight = 70 kg Ipulse basis function IMHz of incident. In general for frequencies
man . :
considered, average SAR varies smoothly
with angle between the extrema.
[Empirical formula for average SAR in
L iman under a two-dimensional near-field
Block model of He}ght B 1.75m,  Near-field |JAn empirical relationship|Less than 350 MHz |aq |exposure. Average SAR is lower for n
man weight = 70 kg lexposure
lear-field exposure than for planewave
lirradiation conditions.
Temperature distribution in cylindrical
model of man is calculated by a finite
element solution of the transient heat
kot i~ 95, NS0 Mo ot nd 5 M S0, pondion st n i e
y weight = 70 kg finite element method  jand 200 MHz las g

imodel of man

Iwire antenna

labsorption of EM energy. At least 50 W
incident power is required before the body|
lexperiences any significant thermal effect
from the near-zone antenna fields.
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IBlock model

Height = 1.68 m,
max diameter = 0.36|
m; height = 2.22
lcm, max diameter =
3.8 m

Uniform RF
magnetic field

Solution of vector
[potential by moment
method

10-750 MHz

at

Electric fields induced by RF magnetic
field inside a sphere, finite circular
cylinder, and phantom models of humans
lare calculated. Calculated data are
verified by experimental values and
lexisting theoretical results.

Height = 1.7 m,
weight = 68 kg

INear field of a
dipole antenna

Moment method with
Ipulse basis function

27, 80, and 90 MHz

au

IAverage SAR in the body as a function of
lantenna-body spacing is calculated at 27
IMHz. Calculated SAR-distribution data
lagree qualitatively with the experiment
values.

Inhomogeneous
block model

Height = 1.75 m,
weight = 70 kg

INear field of an
IRF sealer

IMoment method with
pulse basis function

ILess than 350 MHz

av

Planewave spectrum approach used to
calculate average SAR and SAR
distribution in an inhomogeneous block
model of man for a prescribed two-
dimensional leakage electric field.

IAverage SAR under near-field conditions
lis always less than or equal to the far-field
lplanewave value.

Inhomogeneous
block model of
man

Height = 1.75 m,
weight =70 kg

Moment method with
Ipulse basis functions

IPlanewave E

polarization 27.12 MHz

|Average SAR and SAR distributions are
obtained for man models with 180-1132
cells by the moment method with pulse
basis function. Calculated values of
laverage SAR increase with the number of
cells used.

aw
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Chapter 6. Calculated Dosimetric Data

6.1. CALCULATED PLANEWAVE DOSIMETRIC DATA FOR AVERAGE
SAR

Calculated dosimetric data for the average SAR of humans and various animals irradiated by
planewaves with incident-power density of | mW/cm?® in free space are presented in Figures 6.1-
6.30.

Figure 6.1 shows the average SAR for the six standard polarizations in an ellipsoidal model of an
average man. The average SAR in ellipsoidal models of different human-body types, for EKH
polarization, are compared in Figure 6.2.

Figures 6.3-6.19 show the average SAR for the three standard polarizations in prolate spheroidal
and cylindrical homogeneous models of humans and test animals in the frequency range 10
MHz-100 GHz. These data were calculated by several different techniques, as described in
Section 5.1.1 and shown in Figure 5.1. For frequencies below 10 MHz, the 1/f* principle can be
applied to the 10-MHz SAR data to determine SARs at lower frequencies. See Chapter 8 for a
comparison of calculated and measured values.

The data in Figures 6.20-6.22 illustrate the effects of tissue layers on average SAR, in contrast to
the data for homogeneous models in the previous figures. These data were calculated for a man
model consisting of multiple cylinders, each cylinder representing a body part such as an arm or
leg (Massoudi et al., 1979b). For a cylindrical model with layers that simulate skin and fat, the
average SAR is different from the homogeneous models only for frequencies above about 400
MHz, where the wavelength is short enough that a resonance occurs in a direction transverse to
the layers. The frequencies at which the resonances occur are primarily a function of the
thicknesses of the layers and are not affected much by the overall size of the body. Figures 6.23
and 6.24 show the relationships between the frequency at which the peaks in average SAR due to
the transverse resonance occur and the thicknesses of the layers.

Figures 6.25-6.30 show average SARs as a function of frequency for a few models irradiated by
circularly and elliptically polarized planewaves.
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The dotted line is calculated from Equation 5.1; the dashed line is estimated values.
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Figure 6.4. Calculated planewave average SAR in a prolate spheroidal model of an average
ectomorphic (skinny) man for three polarizations; a=0.88 m, b =0.113 m, V = 0.04718 m’.
The dotted line is calculated from Equation 5.1; the dashed line is estimated values.

153



1P

__i.,;'T| = I :"i‘!_ﬂ_i_::l'_#
e IR U s s O G el ol v
_I T
. i i
.. I [~ - |. 4 ! [ r__I.
s : | |- Il k i
s B g = L1
- T . E
& — i —
’E || ! N1 Fairn EI P R
L FIHHIRN - 0
i | Y il 1"
o I .-/;" [ ] =T 11i
£ i dilp i ! [
2 e A e LU
o — 7 uit| e m i1 o _;'ZZ
< A : i "+ 3 | FH
i | " ——
S 4 /s 1 A
& ' e !
RN/ Rt
| I 'i al
i , AR
I I Y LS U : I
‘o | |! I |
gt 10% 10° 10* 10°

FREQUENCY {MHz}

Figure 6.5. Calculated planewave average SAR in a prolate spheroidal model of an average
endomorphic (fat) man for three polarizations; a=0.88 m, b =0.195 m, V = 0.141 m>. The
dashed line is estimated values.
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Figure 6.6. Calculated planewave average SAR in a prolate spheroidal model of an average
woman for three polarizations; a = 0.805 m, b = 0.135 m, V = 0.06114 m’. The dotted line is
calculated from Equation 5.1; the dashed line is estimated values.
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Figure 6.7. Calculated planewave average SAR in a prolate spheroidal model of a large

woman, for three polarizations; a =0.865 m, b =0.156 m, V = 0.08845 m’. The dotted line is
calculated from Equation 5.1; the dashed line is estimated values.

s

—

T 1 T T
1 11T 1 | 1Y
-I'r IJ___I_____ T E
“T1T T : [
e T
| 4 ! :
| | '\_ Bl :.|
| b 4l !
. i Al | :
— 'g h _l L 1
v ES iissi |
=1 E
% f o | 2]
C LS A liinsitl WA
g Al 1L f| | I RN
o H | ik
£ o LTI L
— - Fd X114 : ._:_
¥ 1 M e Sl = 2 .
"I | ,_L!__-_ >
= AR LY | o i )
. ] 1 I !
5 | !! | il _ i
B 1 1
= o i | : ]
4 "'_ __I
TN 1 ! i Hit
7 T - y ST P R 41
| H T
. | il i L
Ta /i | ly ik &
oy -1
! 1t 10? 10* 10

FREQUENCY [MKz)

Figure 6.8. Calculated planewave average SAR in a prolate spheroidal model of a 5-year-
old child for three polarizations; a = 0.56 m, b = 0.091 m, V = 0.0195 m’. The dotted line is
calculated from Equation 5.1; the dashed line is estimated values.
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Figure 6.9. Calculated planewave average SAR in a prolate spheroidal model of a 1-year-
old child for three polarizations; a=0.37 m, b =0.08 m, V = 0.01 m’. The dashed line is
estimated values.
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Figure 6.12. Calculated planewave average SAR in a prolate spheroidal model of a Brittany
spaniel for three polarizations; a=0.344 m, b =0.105 m, V = 0.0159 m’>. The dashed line is
estimated values.
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Figure 6.13. Calculated planewave average SAR in a prolate spheroidal model of a rabbit
for three polarizations; a=0.2 m,b=0.0345m, V=1x 10 m>. The dotted line is
calculated from Equation 5.1; the dashed line is estimated values.
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Figure 6.14. Calculated planewave average SAR in a prolate spheroidal model of a guinea
pig for three polarizations; a=0.11 m, b =0.0355m, V=5.8 x 10 m’. The dashed line is

estimated values.
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Figure 6.15. Calculated planewave average SAR in a prolate spheroidal model of a small
rat for three polarizations; a=0.07 m, b =0.0194 m, V=1.1 x 10 m>. The dashed line is
estimated values.
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Figure 6.16. Calculated planewave average SAR in a prolate spheroidal model of a medium
rat for three polarizations; a=0.1 m,b=0.0276 m, V=3.2 x 10 m>. The dashed line is
estimated values.
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Figure 6.17. Calculated planewave average SAR in a prolate spheroidal model of a large
rat for three polarizations; a=0.12 m, b =0.0322 m, V =5.2 x 10 m>. The dashed line is
estimated values.
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Figure 6.18. Calculated planewave average SAR in a prolate spheroidal model of a medium
mouse for three polarizations; a=3.5cm,b=1.17 cm, V =20 cm’. The dashed line is
estimated values.
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Figure 6.19. Calculated planewave average SAR in a prolate spheroidal model of a quail
egg for three polarizations; a 1.5 cm, b = 1.26 cm, and V = 10 cm’
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Figure 6.20. Calculated planewave average SAR in homogeneous and multilayered models
of an average man for two polarizations.
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Figure 6.21. Calculated planewave average SAR in homogeneous and multilayered models
of an average woman for two polarizations.
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Figure 6.22. Calculated planewave average SAR in homogeneous and multilayered models
of a 10-year-old child for two polarizations.
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Figure 6.23. Layering resonance frequency as a function of skin and fat thickness for a
skin-fat-muscle cylindrical model of man, planewave H polarization. The outer radius of
the cylinder is 11.28 cm.</P
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Figure 6.24. Layering resonance frequency as a function of skin and fat thickness for a
skin-fat-muscle cylindrical model of man, planewave E polarization. The outer radius of

the cylinder is 11.28 cm.
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Figure 6.25. Calculated planewave average SAR in a prolate spheroidal model of an
average man irradiated by a circularly polarized wave, for two orientations; a=0.87S m, b
=0.138 m, V=0.07 m’.
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Figure 6.26. Calculated planewave average SAR in a prolate spheroidal model of a sitting
rhesus monkey irradiated by a circularly polarized wave for two orientations; a=0.2 m, b
=0.0646 m, V=3.5x10" m’.
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Figure 6.27. Calculated planewave average SAR in a prolate spheroidal model of a medium
rat irradiated by a circularly polarized wave for two orientations; a=0.1 m, b = 0.0276 m,

V=32x10"*m’.
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Figure 6.28. Calculated planewave average SAR in a prolate spheroidal model of an

average man irradiated by an elliptically polarized wave, for two orientations; a = 0.875 m,

b=0.138m, V=0.07 m’.
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Figure 6.30. Calculated planewave average SAR in a prolate spheroidal model of a medium
rat irradiated by an elliptically polarized wave, for two orientations; a= 0.1 m, b =0.0276

m,V=32x10"m’.
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6.2. CALCULATED NEAR-FIELD DOSIMETRIC DATA FOR AVERAGE
SAR

6.2.1. Short-Dipole and Small-Loop Irradiators

Figures 6.31-6.36 show the calculated average SAR in prolate spheroidal models of an average
man and a medium rat irradiated by the near fields of a short electric dipole. The radiation
characteristics of the dipole are shown in Figures 6.37-6.40. Figures 6.41-6.42 show the average
SAR, as a function of frequency and dipole-to-body spacing, in spheroidal models of an average
man exposed to the near fields of a short electric dipole and a short magnetic dipole respectively.

To emphasize the near-field absorption characteristics, the average SAR in Figures 6.31-6.36 for
all frequencies is normalized to unity at a distance of one wavelength from the source. The
relative SAR curves thus obtained lie close together and oscillate around the (A/d)* curve that
describes the approximate variation of the far-field absorption characteristics as a function of
distance from the source. Of particular interest is the possible reduction in the average SAR
below the far-field value. In other words, although the reactive fields are stronger near the
source, they are absorbed at a rate less than that for planewaves (far fields). This was first
observed by Iskander et al., then verified experimentally and explained in terms of the variation
of the incident electric and magnetic fields (Iskander et al., 1981). A detailed explanation of the
relationship between the average SAR and the incident field is given in Section 3.3. These
qualitative relations show that in spite of the complex characteristics of the near fields, including
arbitrary angle between E and H and a wave impedance that is different from 377 €, the near-
field absorption characteristics can still be explained on the same basis as the far-field SARs.
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Figure 6.33. Calculated normalized average SAR as a function of the electric dipole
location for E polarization in a prolate spheroidal model of an average man.
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Figure 6.32. Calculated average SAR (by long-wavelength approximation) as a function of
the electric dipole location for K polarization at 27.12 MHz in a prolate spheroidal model of
an average man.
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Figure 6.33. Calculated average SAR (by long-wavelength approximation) as a function of
the electric dipole location for H polarization at 27.12 MHz in a prolate spheroidal model of
an average man.
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Figure 6.34. Calculated average SAR (by long-wavelength approximation) as a function of
the electric dipole location for E polarization at 100 MHz in a prolate spheroidal model of a

medium rat.

107
|
hd—-
ks
i S
. 4 AR
o ' ——== {hed)?
7 Y
A
& \
) "
= 5
< R
R
= 3
O »
Z 0 i
Ju} ] ] 1 ]
1055 02 0.4 0.6 04

DISTANCE/ WAVELENGTH

10

Figure 6.35. Calculated average SAR (by long-wavelength approximation) as a function of
the electric dipole location for K polarization at 100 MHz in a prolate spheroidal model of a

medium rat.
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Figure 6.36. Calculated average SAR (by long-wavelength approximation) as a function of
the electric dipole location for H polarization at 100 MHz in a prolate spheroidal model of a
medium rat.
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Figure 6.37. Calculated normalized E-field of a short electric dipole, as a function of y/A at
z=30 cm.
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Figure 6.38. Calculated normalized H-field of a short electric dipole, as a function of y/A at
z=30 cm.
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Figure 6.39. Calculated variation of a as a function of y/A, at z =30 cm, for a short electric
dipole.
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Figure 6.40. Calculated normalized field impedance of a short electric dipole, as a function
of y/A at z=30 cm.
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Figure 6.41. Calculated average SAR in a prolate spheroidal model of an average man
irradiated by the near fields of a short electric dipole, as a function of the dipole to body
spacing, d.
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Figure 6.42. Calculated average SAR in a prolate spheroidal model of an average man
irradiated by the near fields of a small magnetic dipole, as a function of the dipole-to-body
spacing, d.

6.2.2. Aperture Fields

Chatterjee et al. (1980a, 1980b, 1980c) have calculated values of both local and average SARs in
planar and block models of man by expressing the incident fields in terms of an angular spectrum
of planewaves. Some of their data for the model of Figure 6.43 and incident E-field of Figure
6.44 are shown in Figures 6.45 and 6.46. Figure 6.44 shows the incident E, measured near a
27.12-MHz RF sealer. They assumed no variation of the fields in the y direction, and calculated
the Ex that would satisfy Maxwell's equations for the measured E, . Since the magnitude but not
the phase of E, was measured, they assumed that E, had a constant phase over the measured
region. Average whole-body and partial-body SAR values are shown in Figures 6.45 and 6.46
for an incident field having a half-cycle cosine variation as a function of the width of that field
distribution. As the width of the aperture gets large compared to a wavelength, the SAR values
approach those for an incident planewave.

To test the sensitivity of the calculations to the variation of phase of the incident field, Chatterjee
et al. calculated the SARs as a function of an assumed phase variation in E,. Figures 6.47-6.49
indicate that the SARs are not highly sensitive to the E, phase variation. This is an important
result. Measuring the phase of an incident field is difficult; if a reasonable approximation can be
made on the basis of measuring only the magnitude of the incident field, near-field dosimetry
will be much easier than if phase measurement is necessary. Chatterjee et al. have also compared
the SARs calculated from the measured incident field and from a half-cycle cosine distribution
that is a best fit to the measured field distribution. The results indicate that a reasonably
approximate SAR might be obtained by using a convenient mathematical function to
approximate the actual field distribution.

An important result of this work is that the calculated SARs for the incident-field distributions
used in the calculations were all less than the calculated SARs for the corresponding planewave
incident fields.

173



vz: plane of rha
infident

E-field

"

Figure 6.43. The block model of man used by Chatterjee et al. (1980a, 1980b, 1980c¢) in the
planewave spectrum analysis.
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Figure 6.44. Incident-field E, from a 27.12-MHz RF sealer, used by Chatterjee et al. (1980a,
1980b, 1980c¢) in the planewave angular-spectrum analysis.
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Figure 6.45. Average whole- and part-body SAR in the block model of man placed in front
of a half-cycle cosine field, E,; frequency = 27.12 MHz, E,|ax = 1 V/m. Calculated by
Chatterjee et al. (1980a, 1980b, 1980c¢).
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Figure 6.46. Average whole- and part-body SAR in the block model of man placed in front
of a half-cycle cosine field, E, ; frequency = 77 MHz, E, | nax=1 V/m. Calculated by
Chatterjee et al. (1980a, 1980b, 1980c¢).
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Figure 6.47. Whole- and part-body SAR at 77 MHz in the block model of man as a function
of an assumed linear antisymmetric phase variation in the incident E;; E;|m.x=1 V/m.
Calculated by Chatterjee et al. (1980a, 1980b, 1980c).
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Figure 6.48. Whole- and part-body SAR at 77 MHz in the block model of man as a function
of an assumed linear symmetric phase variation in the incident E,; E;|m.x =1 V/m.
Calculated by Chatterjee et al. (1980a, 1980b, 1980c¢).
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Figure 6.49. Whole- and part-body SAR at 350 MHz in the block model of man as a
function of an assumed linear antisymmetric phase va