TEACHER GUIDE

Includes Quizzes & Tests

טיטיטיטי

Answer Key

Weekly Lesson Schedule

Quizzes & Tests

Master Supply List

3rd-6th Grade

Science

SCIENCE STARTERS: ELEMENTARY CHEMISTRY & PHYSICS

TEACHER GUIDE

3rd-6th Grade

Includes Quizzes
____ & Tests

Science

Answer Key

Weekly Lesson Schedule
Quizzes & Tests

Master Supply List

Science Starters: Elementary Chemistry & Physics

First printing: May 2017 Third printing: May 2019

Copyright © 2017 by Master Books*. All rights reserved. No part of this book may be used or reproduced in any manner whatsoever without written permission of the publisher, except in the case of brief quotations in articles and reviews. For information write:

Master Books®, P.O. Box 726, Green Forest, AR 72638

Master Books® is a division of the New Leaf Publishing Group, Inc.

ISBN: 978-1-68344-090-1

ISBN: 978-1-61458-602-9 (digital)

Printed in the United States of America

Please visit our website for other great titles: www.masterbooks.com

For information regarding author interviews, please contact the publicity department at (870) 438-5288.

Permission is granted for copies of reproducible pages from this text to be made for use within your own homeschooling family activities. Material may not be posted online, distributed digitally, or made available as a download. Permission for any other use of the material must be requested prior to use by email to the publisher at info@nlpg.com.

I'm loving this whole line so much. It's changed our homeschool for the better!

—Amy ★★★★

Your reputation as a publisher is stellar. It is a blessing knowing anything I purchase from you is going to be worth every penny!

—Cheri ★ ★ ★ ★ ★

Last year we found Master Books and it has made a HUGE difference.

-Melanie ★★★★

We love Master Books and the way it's set up for easy planning!

—Melissa ★★★★★

You have done a great job. MASTER BOOKS ROCKS!

—Stephanie ★★★★★

Physically high-quality, Biblically faithful, and well-written.

—Danika ★★★★

Best books ever. Their illustrations are captivating and content amazing!

—Kathy ★★★★

AffordableFlexibleFaith Building

Table of Contents

Using This Teacher Guide	4
Suggested Daily Schedules	7
Quizzes and Tests	
Matter Quizzes Level 1	
Matter Test Level 1	27
Matter Quizzes Level 2	31
Matter Test Level 2	41
Energy Quizzes Level 1	47
Energy Test Level 1	57
Energy Quizzes Level 2	61
Energy Test Level 2	71
Answer Keys	
Matter Quizzes	76
Matter Test	81
Energy Quizzes	83
Energy Test	89
Supply List	
Matter Master Supply List	91
Energy Master Supply List	97

Author Bio:

Tom DeRosa is an experienced science educator, a committed creationist, and founder/director of a growing national creation organization whose chief focus is education. His experience in the public school, Christian school, and homeschool markets for over 35 years has given him special insights into what really works in engaging young minds. He holds a master's degree in education, with the emphasis of science curriculum.

Carolyn Reeves is especially skilled at creating ways to help students develop a greater understanding of not just scientific concepts, but also how these are applied within the world around us. Carolyn retired after a 30-year career as a science teacher, finished a doctoral degree in science education, and now serves as a writer and an educational consultant.

Using This Teacher Guide

Features: The suggested weekly schedule enclosed has easy-to-manage lessons that guide the reading, worksheets, and all assessments. The pages of this guide are perforated and three-hole punched so materials are easy to tear out, hand out, grade, and store. Teachers are encouraged to adjust the schedule and materials needed in order to best work within their unique educational program.

Lesson Scheduling: Students are instructed to read the pages in their book and then complete the corresponding section provided by the teacher. Assessments that may include worksheets, activities, quizzes, and tests are given at regular intervals with space to record each grade. Space is provided on the weekly schedule for assignment dates, and flexibility in scheduling is encouraged. Teachers may adapt the scheduled days per each unique student situation. As the student completes each assignment, this can be marked with an "X" in the box.

	Approximately 30 to 45 minutes per lesson, two to three days a week
	Includes answer keys for quizzes and semester tests
	Multi-level quizzes and tests are included to help reinforce learning and provide assessment opportunities
*	Designed for grades 3 to 6 in a one-year course. Master supply list included.
	Supports activity-based learning

Course Objectives: Students completing this course will:

- ✓ Investigate the physical properties of chemical substances
- → Become familiar with the difference between chemical changes and physical changes
- ✓ Identify the scientist who organized a chart of the known elements
- ✓ Learn why adding heat causes most chemical changes to react faster

- ✓ Study what happens to light waves when we see different colors
- → Discover how to see an invisible magnetic field
- ✓ Learn about how solar energy can be changed into electrical energy
- ✓ Determine the essential parts of an electric circuit

Course Description

Based on the *Investigate the Possibilities* Series, this course comes alive through experiments that demonstrate scientific principles, while affirming a biblical worldview. It has been developed so multi-age students can learn together. This one-year curriculum provides an activity using household items then gives easy-to-understand explanations and descriptions of the scientific process at work. How big is the solar system? How big is the universe? Can we make a model to help us understand God's wonderful creation? These and other questions are answered through a fun and investigative process created for upper elementary students!

Multi-level Quiz & Test Options

The Science Starters curriculum allows multi-age students between grades 3 and 6 to be taught at the same time. For your convenience, we have included two different levels of quizzes and semester tests so that you can choose the ones most appropriate for your student's age and educational abilities. Suggested levels include:

Level 1 – Grades 3 to 4 Level 2 – Grades 5 and 6

Calculating a Final Grade

Add up the numbers for the Final Grade:
Divide the average by 3
Calculate the Average of the student's Projects, Contest & Dig Deeper grades.
Divide the average by 3
Calculate the Average of the student's Questions & Quizzes grades.
Divide the average by 3
Calculate the Average of the student's Activities & Observations grades.

First Semester Suggested Daily Schedule

Date	Day	Assignment	Due Date	\checkmark	Grade
		First Semester-First Quarter — <i>Matter</i>			
	Day 1				
W/ 1 1	Day 2	Investigation #1: The Physical Side of Chemicals Read Pages 4-7 • Matter Book (MB) Complete Page S4 • Student Journal (SJ)			
Week 1	Day 3				
	Day 4	Investigation #1: The Physical Side of Chemicals Read Pages 8-9 • (MB) • Complete Page S5 • (SJ)			
	Day 5				
	Day 6				
	Day 7	Investigation #2: Strange Substances Read Pages 10-11 • (MB) • Complete Page S6 • (SJ)			
Week 2	Day 8				
	Day 9	Investigation #2: Strange Substances Read Pages 12-13 • (MB) • Complete Page S7 • (SJ)			
	Day 10				
	Day 11				
	Day 12	Investigation #3: Light: Chemistry Fun with Bubbles Read Pages 14-15 • (MB) • Complete Page S8 • (SJ)			
Week 3	Day 13				
	Day 14	Investigation #3: Chemistry Fun with Bubbles Read Pages 16-17 • (MB) • Complete Page S9 • (SJ)			
	Day 15				
	Day 16				
	Day 17	Investigation #4: Colors Are Colors Read Pages 18-19 • (MB) • Complete Page S10 • (SJ)			
Week 4	Day 18				
	Day 19	Investigation #4: Colors Are Colors Read Pages 20-21 • (MB) • Complete Page S11 • (SJ)			
	Day 20				
	Day 21	Matter Investigations 1-4 Quiz 1 Level 1 Page 17 • Level 2 Page 31 • Teacher Guide (TG)			
	Day 22				
Week 5	Day 23	Investigation #5: How in the World Can You Separate? Read Pages 22-23 • (MB) • Complete Page S12 • (SJ)			
	Day 24				
	Day 25	Investigation #5: How in the World Can You Separate? Read Pages 24-25 • (MB) • Complete Page S13 • (SJ)			

Date	Day	Assignment	Due Date	√	Grade
	Day 26	3			
	Day 27	Investigation #6: Water Is the Standard Read Pages 26-27 • (MB) • Complete Page S14 • (SJ)			
Week 6	Day 28				
	Day 29	Investigation #6: Water Is the Standard Read Pages 28-29 • (MB) • Complete Page S15 • (SJ)			
	Day 30				
	Day 31	Investigation #7: Bending Streams of Water Read Pages 30-31 • (MB) • Complete Page S16 • (SJ)			
	Day 32				
Week 7	Day 33	Investigation #7: Bending Streams of Water Read Pages 32-33 • (MB) • Complete Page S17 • (SJ)			
	Day 34				
	Day 35	Investigation #8: Drops of Water Read Pages 34-35 • (MB) • Complete Page S18 • (SJ)			
	Day 36	Investigation #8: Drops of Water Read Pages 36-37 • (MB) • Complete Page S19 • (SJ)			
	Day 37				
Week 8	Day 38	Matter Investigations 5-8 Quiz 2 Level 1 Page 19 • Level 2 Page 33 • (TG)			
	Day 39				
	Day 40	Investigation #9: Oil and Water Don't Mix Read Pages 38-39 • (MB) • Complete Page S20 • (SJ)			_
	Day 41	Investigation #9: Oil and Water Don't Mix Read Pages 40-41 • (MB) • Complete Page S21 • (SJ)			
	Day 42				
Week 9	Day 43	Investigation #10: Acids and Bases Read Pages 42-43 • (MB) • Complete Page S22 • (SJ)			
	Day 44				
	Day 45	Investigation #10: Acids and Bases Read Pages 44-45 • (MB) • Complete Page S23 • (SJ)			
		First Semester-Second Quarter — <i>Matter</i>			
	Day 46				
Week 1	Day 47	Investigation #11: Basically—Is It Acid or Base? Read Pages 46-47 • (MB) • Complete Page S24 • (SJ)			
	Day 48				
	Day 49	Investigation #11: Basically—Is It Acid or Base? Read Pages 48-49 • (MB) • Complete Page S25 • (SJ)			
	Day 50				

Date	Day	Assignment	Due Date	√ Grade
		Investigation #12: Salt—An Ordinary Substance		
	Day 51	Read Pages 50-51 • (MB) • Complete Page S26 • (SJ)		
	Day 52	T		
Week 2	Day 53	Investigation #12: Salt—An Ordinary Substance Read Pages 52-53 • (MB) • Complete Page S27 • (SJ)		
	Day 54			
	Day 55	Matter Investigations 9-12 Quiz 3 Level 1 Page 21 • Level 2 Page 35 • (TG)		
	Day 56	Investigation #13: More about the Amazing Periodic Table Read Pages 54-55 • (MB) • Complete Page S28 • (SJ)		
	Day 57			
Week 3	Day 58	Investigation #13: More about the Amazing Periodic Table Read Pages 56-57 • (MB) • Complete Page S29 • (SJ)		
	Day 59			
	Day 60	Investigation #14: Electricity and Salt Water Read Pages 58-59 • (MB) • Complete Page S30 • (SJ)		
	Day 61	Investigation #14: Electricity and Salt Water Read Pages 60-61 • (MB) • Complete Page S31 • (SJ)		
	Day 62			
Week 4	Day 63	Investigation #15: Changes—Are They Chemical or Physical? Read Pages 62-63 • (MB) • Complete Page S32 • (SJ)		
	Day 64			
	Day 65	Investigation #15: Changes—Are They Chemical or Physical? Read Pages 64-65 • (MB) • Complete Page S33 • (SJ)		
	Day 66	Investigation #16: Clues of a Chemical Reaction Read Pages 66-67 • (MB) • Complete Page S34 • (SJ)		
	Day 67			
Week 5	Day 68	Investigation #16: Clues of a Chemical Reaction Read Pages 68-69 • (MB) • Complete Page S35 • (SJ)		
	Day 69			
	Day 70	Matter Investigations 13-16 Quiz 4 Level 1 Page 23 • Level 2 Page 37 • (TG)		
	Day 71			
	Day 72	Investigation #17: A Heavy Gas Read Pages 70-71 • (MB) • Complete Page S36 • (SJ)		
Week 6	Day 73			
	Day 74	Investigation #17: A Heavy Gas Read Pages 72-73 • (MB) • Complete Page S37 • (SJ)		
	Day 75			
	Day 76			
	Day 77	Investigation #18: Large or Small? Hot or Cold? Read Pages 74-75 • (MB) • Complete Page S38 • (SJ)		
Week 7	Day 78			
	Day 79	Investigation #18: Large or Small? Hot or Cold? Read Pages 76-77 • (MB) • Complete Page S39 • (SJ)		
	Day 80			

Date	Day	Assignment	Due Date	\checkmark	Grade
	Day 81	Investigation #19: Understanding Phase Changes Read Pages 78-79 • (MB) • Complete Page S40 • (SJ)			
	Day 82				
Week 8	Day 83	Investigation #19: Understanding Phase Changes Read Pages 80-81 • (MB) • Complete Page S41 • (SJ)			
	Day 84				
	Day 85	Investigation #20: The Race to Evaporate Read Pages 82-83 • (MB) • Complete Page S42 • (SJ)			
	Day 86	Investigation #20: The Race to Evaporate Read Pages 84-85 • (MB) • Complete Page S43 • (SJ)			
	Day 87				
Week 9	Day 88	Matter Investigations 17-20 Quiz 5 Level 1 Page 25 • Level 2 Page 39 • (TG)			
	Day 89				
	Day 90	Matter Investigations 1-20 Test Level 1 Page 27 • Level 2 Page 41 • (TG)			
		Mid-Term Grade			

Second Semester Suggested Daily Schedule

Date	Day	Assignment	Due Date	√	Grade
		Second Semester-Third Quarter — <i>Energy</i>			
	Day 91				
**** 1 .	Day 92	Investigation #1: Where Exactly Does Energy Go? Read Pages 4-7 • Energy Book (EB) Complete Page S4 • Student Journal (SJ)			
Week 1	Day 93				
	Day 94	Investigation #1: Where Exactly Does Energy Go? Read Pages 8-9 • (EB) • Complete Page S5 • (SJ)			
	Day 95				
	Day 96				
	Day 97	Investigation #2: Stored or Active? Read Pages 10-11 • (EB) • Complete Page S6 • (SJ)			
Week 2	Day 98				
	Day 99	Investigation #2: Stored or Active? Read Pages 12-13 • (EB) • Complete Page S7 • (SJ)			
	Day 100				
	Day 101				
	Day 102	Investigation #3: Light: Reflected and Absorbed Read Pages 14-15 • (EB) • Complete Page S8 • (SJ)			
Week 3	Day 103				
	Day 104	Investigation #3: Light: Reflected and Absorbed Read Pages 16-17 • (EB) • Complete Page S9 • (SJ)			
	Day 105				
	Day 106				
	Day 107	Investigation #4: Light and Lenses Read Pages 18-19 • (EB) • Complete Page S10 • (SJ)			
Week 4	Day 108				
	Day 109	Investigation #4: Light and Lenses Read Pages 20-21 • (EB) • Complete Page S11 • (SJ)			
	Day 110				
	Day 111	Energy Investigations 1-4 Quiz 1 Level 1 Page 47 • Level 2 Page 61 • Teacher Guide (TG)			
	Day 112				
Week 5	Day 113	Investigation #5: Waving the Red, Green, and Blue Read Pages 22-23 • (EB) • Complete Page S12 • (SJ)			
	Day 114				
	Day 115	Investigation #5: Waving the Red, Green, and Blue Read Pages 24-25 • (EB) • Complete Page S13 • (SJ)			

Date	Day	Assignment	Due Date	\checkmark	Grade
	Day 116	Investigation #6: Did You Hear That? Read Pages 26-27 • (EB) • Complete Page S14 • (SJ)			
	Day 117				
Week 6	Day 118	Investigation #6: Did You Hear That? Read Pages 28-29 • (EB) • Complete Page S15 • (SJ)			
	Day 119				
	Day 120	Investigation #7: When Things Get Hot Read Pages 30-31 • (EB) • Complete Page S16 • (SJ)			
	Day 121	Investigation #7: When Things Get Hot Read Pages 32-33 • (EB) • Complete Page S17 • (SJ)			
	Day 122				
Week 7	Day 123	Investigation #7: When Things Get Hot—Conducting Read Pages 34-35 • (EB)			
	Day 124				
	Day 125	Investigation #8: Feeling the Heat Read Pages 36-37 • (EB) • Complete Page S18 • (SJ)			
	Day 126	Investigation #8: Feeling the Heat Read Pages 38-39 • (EB) • Complete Page S19 • (SJ)			
	Day 127				
Week 8	Day 128	Energy Investigations 5-8 Quiz 2 Level 1 Page 49 • Level 2 Page 63 • (TG)			
	Day 129				
	Day 130	Investigation #9: Magnets Are Very Attractive Read Pages 40-41 • (EB) • Complete Page S20 • (SJ)			
	Day 131	Investigation #9: Magnets Are Very Attractive Read Pages 42-43 • (EB) • Complete Page S21 • (SJ)			
	Day 132				
Week 9	Day 133	Investigation #10: Magnetism Is Pretty Special Read Pages 44-45 • (EB) • Complete Page S22 • (SJ)			
	Day 134				
	Day 135	Investigation #10: Magnetism Is Pretty Special Read Pages 46-47 • (EB) • Complete Page S23 • (SJ)			
		Second Semester-Fourth Quarter — <i>Energy</i>			
	Day 136				
	Day 137	Investigation #11: How Do Magnets Become Magnets? Read Pages 48-49 • (EB) • Complete Page S24 • (SJ)			
Week 1	Day 138				
	Day 139	Investigation #11: How Do Magnets Become Magnets? Read Pages 50-51 • (EB) • Complete Page S25 • (SJ)			
	Day 140				

Date	Day	Assignment	Due Date	\checkmark	Grade
	Day 141	Investigation #12: If It's Invisible, How Can You See It? Read Pages 52-53 • (EB) • Complete Page S26 • (SJ)			
	Day 142				
Week 2	Day 143	Investigation #12: If It's Invisible, How Can You See It? Read Pages 54-55 • (EB) • Complete Page S27 • (SJ)			
	Day 144				
	Day 145	Energy Investigations 9-12 Quiz 3 Level 1 Page 51 • Level 2 Page 65 • (TG)			
	Day 146	Investigation #13: Static Electricity Read Pages 56-57 • (EB) • Complete Page S28 • (SJ)			
	Day 147				
Week 3	Day 148	Investigation #13: Static Electricity Read Pages 58-59 • (EB) • Complete Page S29 • (SJ)			
	Day 149				
	Day 150	Investigation #14: A Place Where Electrons Get Read Pages 60-61 • (EB) • Complete Page S30 • (SJ)			
	Day 151	Investigation #14: A Place Where Electrons Get Read Pages 62-63 • (EB) • Complete Page S31 • (SJ)			
	Day 152				
Week 4	Day 153	Investigation #15: Switching on a Series Circuit Read Pages 64-65 • (EB) • Complete Page S32 • (SJ)			
	Day 154				
	Day 155	Investigation #15: How Rocks and Dirt Catch a Ride Read Pages 66-67 • (EB) • Complete Page S33 • (SJ)			
	Day 156	Investigation #16: Is a Parallel Circuit Better Than Read Pages 68-69 • (EB) • Complete Page S34 • (SJ)			
	Day 157				
Week 5	Day 158	Investigation #16: Is a Parallel Circuit Better Than Read Pages 70-71 • (EB) • Complete Page S35 • (SJ)			
	Day 159				
	Day 160	Energy Investigations 13-16 Quiz 4 Level 1 Page 53 • Level 2 Page 67 • (TG)			
	Day 161	Investigation #17: The Dishwashing Liquid and Electric Read Pages 72-73 • (EB) • Complete Page S36 • (SJ)			
	Day 162				
Week 6	Day 163	Investigation #17: The Dishwashing Liquid and Electric Read Pages 74-75 • (EB) • Complete Page S37 • (SJ)			
	Day 164				
	Day 165	Investigation #17: The Dishwashing Liquid and Electric Read Pages 76-77 • (EB)			

Date	Day	Assignment	Due Date	\checkmark	Grade
	Day 166				
	Day 167	Investigation #18: Solar Energy Makes a Change Read Pages 78-79 • (EB) • Complete Page S38 • (SJ)			
Week 7	Day 168				
	Day 169	Investigation #18: Solar Energy Makes a Change Read Pages 80-81 • (EB) • Complete Page S39 • (SJ)			
	Day 170				
	Day 171				
	Day 172	Investigation #19: Wind or Water Energy Read Pages 82-83 • (EB) • Complete Page S40 • (SJ)			
Week 8	Day 173				
	Day 174	Investigation #19: Wind or Water Energy Read Pages 84-85 • (EB) • Complete Page S41 • (SJ)			
	Day 175				
	Day 176	Investigation #20: Nuclear Energy Read Pages 86-87 • (EB) • Complete Pages S42-43 • (SJ)			
	Day 177				
Week 9	Day 178	Energy Investigations 17-20 Quiz 5 Level 1 Page 55 • Level 2 Page 69 • (TG)			
	Day 179				
	Day 180	Energy Investigations 1-20 Test Level 1 Page 57 • Level 2 Page 71 • (TG)			
		Final Grade			

Quizzes and Test

for Use with

Matter

Testing:

This series is appropriate for elementary students from 3rd to 6th grades. Because of this, we have included quizzes and tests in two different levels, which you can choose from based on your child's abilities and understanding of the concepts in the course.

Level 1: suggested for younger ages or those who struggle with application of the concepts beyond just definitions and basic concepts

Level 2: suggested for older ages or those who can both grasp the scientific concepts and apply them consistently

infrared kinetic liquids medical polymers pressure smaller solids surface temperature viscosity Fill in the Blank: Each question is worth 4 points. 1 chemistry includes what chemicals are present, their characteristics, and how much is present. 2 labs might test blood and urine for the presence of many kinds of substances. 3. An agency may use a lab that analyzes chemical substances to help identify pollutants in the air and water and environment. 4. A would have the same properties as the whole substance. 5. The properties of a piece of pure iron are the same anywhere pure iron is found. 6 can be explained by how slowly a liquid pours from a container or how hard it is to push something through the liquid. 7. Viscosity of oils and molasses is often affected by 8 (and temperature) affects the viscosity of MX.	abs	orb	analytical	chemicals	chromatography		
infrared kinetic liquids medical minerals mixtures physical polymers pressure smaller solids surface temperature viscosity Fill in the Blank: Each question is worth 4 points. 1	coh	esion	elasticity	environmental	faster		
minerals mixtures solids surface remperature viscosity Fill in the Blank: Each question is worth 4 points. 1 chemistry includes what chemicals are present, their characteristics, and how much is present. 2 labs might test blood and urine for the presence of many kinds of substances. 3. An agency may use a lab that analyzes chemical substances to help identify pollutants in the air and water and environment. 4. A would have the same properties as the whole substance. 5. The properties of a piece of pure iron are the same anywhere pure iron is found. 6 can be explained by how slowly a liquid pours from a container or how hard it is to push something through the liquid. 7. Viscosity of oils and molasses is often affected by 8 (and temperature) affects the viscosity of MX. 9. A baby diaper has the unusual property of being able to enormous amounts of liquids. 10 are made of many similar small chemicals (called monomers) that were joined together to form long chains of molecules. 11. Generally, the attraction between molecules is greater in than in liquids. 12. Generally, the attraction between molecules that are found at the surface of a liquid is called tension. 14. The property of matter that causes like molecules to attract each other is called tension. 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called than others.	cur	ved	fragment	higher	inertia		
pressure smaller viscosity Fill in the Blank: Each question is worth 4 points. 1	infr	ared	kinetic	liquids	medical		
Fill in the Blank: Each question is worth 4 points. 1	mir	nerals	mixtures	physical	polymers		
Fill in the Blank: Each question is worth 4 points. 1 chemistry includes what chemicals are present, their characteristics, and how much is present. 2 labs might test blood and urine for the presence of many kinds of substances. 3. An agency may use a lab that analyzes chemical substances to help identify pollutants in the air and water and environment. 4. A would have the same properties as the whole substance. 5. The properties of a piece of pure iron are the same anywhere pure iron is found. 6 can be explained by how slowly a liquid pours from a container or how hard it is to push something through the liquid. 7. Viscosity of oils and molasses is often affected by 8 (and temperature) affects the viscosity of MX. 9. A baby diaper has the unusual property of being able to enormous amounts of liquids. 10 are made of many similar small chemicals (called monomers) that were joined together to form long chains of molecules. 11. Generally, the attraction between molecules is greater in than in liquids. 12. Generally, the attraction between molecules for a liquid is called tension. 14. The property of matter that causes like molecules to attract each other is called tension. 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called tension. 16. Paper chromatography is used to separate than others.	pre	ssure	smaller	solids	surface		
1 chemistry includes what chemicals are present, their characteristics, and how much is present. 2 labs might test blood and urine for the presence of many kinds of substances. 3. An agency may use a lab that analyzes chemical substances to help identify pollutants in the air and water and environment. 4. A would have the same properties as the whole substance. 5. The properties of a piece of pure iron are the same anywhere pure iron is found. 6 can be explained by how slowly a liquid pours from a container or how hard it is to push something through the liquid. 7. Viscosity of oils and molasses is often affected by 8 (and temperature) affects the viscosity of MX. 9. A baby diaper has the unusual property of being able to enormous amounts of liquids. 10 are made of many similar small chemicals (called monomers) that were joined together to form long chains of molecules. 11. Generally, the attraction between molecules is greater in than in liquids. 12. Generally, the attraction between molecules is greater in than in gases. 13. The attraction between molecules that are found at the surface of a liquid is called rension. 14. The property of matter that causes like molecules to attract each other is called tension. 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called tension. 16. Paper chromatography is used to separate than others.	tem	perature	viscosity				
much is present. 2	Fill	in the Blank: Each q	uestion is worth 4 points.				
much is present. 2	1.		chemistry includes w	hat chemicals are present, tl	heir characteristics, and how		
substances. 3. An agency may use a lab that analyzes chemical substances to help identify pollutants in the air and water and environment. 4. A would have the same properties as the whole substance. 5. The properties of a piece of pure iron are the same anywhere pure iron is found. 6 can be explained by how slowly a liquid pours from a container or how hard it is to push something through the liquid. 7. Viscosity of oils and molasses is often affected by 8 (and temperature) affects the viscosity of MX. 9. A baby diaper has the unusual property of being able to enormous amounts of liquids. 10 are made of many similar small chemicals (called monomers) that were joined together to form long chains of molecules. 11. Generally, the attraction between molecules is greater in than in liquids. 12. Generally, the attraction between molecules is greater in than in gases. 13. The attraction between molecules that are found at the surface of a liquid is called tension. 14. The property of matter that causes like molecules to attract each other is called 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called 16. Paper chromatography is used to separate 17. Some of the dyes carried up the paper moved than others.			•	1			
substances. 3. An agency may use a lab that analyzes chemical substances to help identify pollutants in the air and water and environment. 4. A would have the same properties as the whole substance. 5. The properties of a piece of pure iron are the same anywhere pure iron is found. 6 can be explained by how slowly a liquid pours from a container or how hard it is to push something through the liquid. 7. Viscosity of oils and molasses is often affected by 8 (and temperature) affects the viscosity of MX. 9. A baby diaper has the unusual property of being able to enormous amounts of liquids. 10 are made of many similar small chemicals (called monomers) that were joined together to form long chains of molecules. 11. Generally, the attraction between molecules is greater in than in liquids. 12. Generally, the attraction between molecules is greater in than in gases. 13. The attraction between molecules that are found at the surface of a liquid is called tension. 14. The property of matter that causes like molecules to attract each other is called 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called 16. Paper chromatography is used to separate 17. Some of the dyes carried up the paper moved than others.	2.		labs might test blood	d and urine for the presence	of many kinds of		
pollutants in the air and water and environment. 4. A				_	·		
4. A would have the same properties as the whole substance. 5. The properties of a piece of pure iron are the same anywhere pure iron is found. 6 can be explained by how slowly a liquid pours from a container or how hard it is to push something through the liquid. 7. Viscosity of oils and molasses is often affected by 8 (and temperature) affects the viscosity of MX. 9. A baby diaper has the unusual property of being able to enormous amounts of liquids. 10 are made of many similar small chemicals (called monomers) that were joined together to form long chains of molecules. 11. Generally, the attraction between molecules is greater in than in liquids. 12. Generally, the attraction between molecules is greater in than in gases. 13. The attraction between molecules that are found at the surface of a liquid is called tension. 14. The property of matter that causes like molecules to attract each other is called 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called 16. Paper chromatography is used to separate 17. Some of the dyes carried up the paper moved than others.	3.	An	agency may use a	a lab that analyzes chemical	substances to help identify		
5. The properties of a piece of pure iron are the same anywhere pure iron is found. 6 can be explained by how slowly a liquid pours from a container or how hard it is to push something through the liquid. 7. Viscosity of oils and molasses is often affected by 8 (and temperature) affects the viscosity of MX. 9. A baby diaper has the unusual property of being able to enormous amounts of liquids. 10 are made of many similar small chemicals (called monomers) that were joined together to form long chains of molecules. 11. Generally, the attraction between molecules is greater in than in liquids. 12. Generally, the attraction between molecules is greater in than in gases. 13. The attraction between molecules that are found at the surface of a liquid is called tension. 14. The property of matter that causes like molecules to attract each other is called tension. 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called than others.		pollutants in the air a	nd water and environment.				
can be explained by how slowly a liquid pours from a container or how hard it is to push something through the liquid. 7. Viscosity of oils and molasses is often affected by 8	4.	A	would have the sam	ne properties as the whole su	ıbstance.		
can be explained by how slowly a liquid pours from a container or how hard it is to push something through the liquid. 7. Viscosity of oils and molasses is often affected by 8	5.	The	properties of a pie	ce of pure iron are the same :	anywhere pure iron is found.		
it is to push something through the liquid. 7. Viscosity of oils and molasses is often affected by 8							
8 (and temperature) affects the viscosity of MX. 9. A baby diaper has the unusual property of being able to enormous amounts of liquids. 10 are made of many similar small chemicals (called monomers) that were joined together to form long chains of molecules. 11. Generally, the attraction between molecules is greater in than in liquids. 12. Generally, the attraction between molecules is greater in than in gases. 13. The attraction between molecules that are found at the surface of a liquid is called tension. 14. The property of matter that causes like molecules to attract each other is called 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called 16. Paper chromatography is used to separate 17. Some of the dyes carried up the paper moved than others.				, 1 1			
9. A baby diaper has the unusual property of being able toenormous amounts of liquids. 10 are made of many similar small chemicals (called monomers) that were joined together to form long chains of molecules. 11. Generally, the attraction between molecules is greater in than in liquids. 12. Generally, the attraction between molecules is greater in than in gases. 13. The attraction between molecules that are found at the surface of a liquid is called tension. 14. The property of matter that causes like molecules to attract each other is called 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called 16. Paper chromatography is used to separate 17. Some of the dyes carried up the paper moved than others.	7.	Viscosity of oils and r	molasses is often affected by				
9. A baby diaper has the unusual property of being able toenormous amounts of liquids. 10 are made of many similar small chemicals (called monomers) that were joined together to form long chains of molecules. 11. Generally, the attraction between molecules is greater in than in liquids. 12. Generally, the attraction between molecules is greater in than in gases. 13. The attraction between molecules that are found at the surface of a liquid is called tension. 14. The property of matter that causes like molecules to attract each other is called 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called 16. Paper chromatography is used to separate 17. Some of the dyes carried up the paper moved than others.	8.		(and temperature) at	ffects the viscosity of MX.			
joined together to form long chains of molecules. 11. Generally, the attraction between molecules is greater in	9.	-	e unusual property of being	able to	enormous amounts		
11. Generally, the attraction between molecules is greater in than in liquids. 12. Generally, the attraction between molecules is greater in than in gases. 13. The attraction between molecules that are found at the surface of a liquid is called tension. 14. The property of matter that causes like molecules to attract each other is called 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called 16. Paper chromatography is used to separate 17. Some of the dyes carried up the paper moved than others.	10.				l monomers) that were		
12. Generally, the attraction between molecules is greater in than in gases. 13. The attraction between molecules that are found at the surface of a liquid is called tension. 14. The property of matter that causes like molecules to attract each other is called 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called 16. Paper chromatography is used to separate 17. Some of the dyes carried up the paper moved than others.		joined together to for	m long chains of molecules				
 13. The attraction between molecules that are found at the surface of a liquid is called	11.	Generally, the attracti	ion between molecules is gro	eater in	than in liquids.		
tension. 14. The property of matter that causes like molecules to attract each other is called 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called 16. Paper chromatography is used to separate 17. Some of the dyes carried up the paper moved than others.	12.	Generally, the attracti	ion between molecules is gro	eater in	than in gases.		
15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called 16. Paper chromatography is used to separate 17. Some of the dyes carried up the paper moved than others.	13.						
 15. The property of matter that allows bubbles to stretch without breaking (up to their limits) is called 16. Paper chromatography is used to separate 17. Some of the dyes carried up the paper moved than others. 	14.			to attract each other is calle	ed		
17. Some of the dyes carried up the paper moved than others.	15.	The property of matte	er that allows bubbles to str	etch without breaking (up to	o their limits) is		
	16.	Paper chromatograph	y is used to separate	.			
18 in a mixture keep their own properties.	17.	Some of the dyes carr	ied up the paper moved	than other	rs.		
	18.	ir	n a mixture keep their own	properties.			

19. If two samples of ink produce the same the ink samples are the same kind of ink.	pattern and colors, it's a good chance that
20. Hard water contains more dissolved	than soft water.
Short Answer: Each question is worth 5 points.	
21. What are physical properties of chemical substances?	
22. Give several physical properties of MX.	
22. W/l	
23. When scientists want to know what chemical substar shape, and amount of the item. Why is that?	nces are in an item, they seidom consider the size,
24. Suppose a chromatograph was made from a colored a pink spot. Does this give you a good clue that there a	
Bonus Question (worth 5 points):	
25. Give examples of physical properties used by scientis	ts to describe a chemical substance.

4	Matter	Quiz 2	Scope:	Total score:	Name
	Concepts & Comprehension	Level 1	Chapters 5-8	of 100	

adŀ	nesion	centimeter	chemically	circle
	nsity	displacement	distillation	evaporating
gra		largest	liquid	milligram
	liliter	mixed	negative	polar
rise		separated	sink surface	smallest tetrahedron
soli vol	ume	square water	surface	tetranedron
	•	uestion is worth 4 points.		
1.	When two or more purpoperties.	ire substances are	together, t	hey keep their individual
2.	When two or more purproperties.	are substances are combined	d,	they do not keep their individual
3.	is	s a way of separating mixtu	res of liquids, a proces	s that depends on differences in
	their boiling points.	, 1		•
4.	A substance that is not filter paper.	t dissolved in a liquid can b	oe	from the liquid by a funnel and
5.	You can separate a mix	xture of salt and water by _	the	e water.
6.	An example of a metri	c unit that is used to meas	ure volume is a	·
7.	An example of a metri	c unit that is used to meas	are length is a	·
8.	An example of a metri	c unit that is used to meass	ure an object's mass is	a
9.	The density of puremilliliter (1 g/mL).	is one g	ram per cubic centime	eter (1 g/cm3) or one gram per
10.	If a substance has a de	ensity of 2.5 g/mL, a block	of this substance will _	in water.
11.	A	shape explains one reason	why water molecules	are polar.
12.	negative charge on the		ecting bonds with a po	ositive charge on one end and a
13.	Water is a	at room temperat	ure.	
14.	The formula for	$_{}$ is H_2O .		
15.	An atom is the	particle of ar	element that is still t	nat element.
16.	n	nolecules do not break apar	t easily; one end is slig	ghtly positive, and the other end is
	slightly negative.			
17.	Soap breaks down the	tension	on of water.	
18.	There is an attraction	between the water and the	glass (or plastic) in a g	graduated cylinder known as

19.	If you divide the mass of a substance by its volume, you are calculating the of the substance.
20.	One end of a water molecule is positive and one end is
Sh	ort Answer: Each question is worth 5 points.
21.	Which of the following are examples of mixtures: salt and sand stirred together, crude oil, salt water, distilled water?
22.	How would you find the volume of a small, irregularly shaped piece of rock?
23.	All matter is made up of what kinds of charges?
24.	If several drops of water are placed on a clean penny, what kind of shape will the water have? Why is this?
Во	nus Question (worth 5 points):
25.	What happens to a person's mass as their distance from the earth increases? What happens to the person's weight?

[4	Matter	Quiz 3	Scope:	Total score:	Name
	Concepts & Comprehension	Level 1	Chapters 9-12	of 100	

All the terms may not be used and some may be used more than once:

acidic	acid(s)	basic	bases
bitter	boxy	carbonic	circular
easy	elements	formula	hard
indicators	left	magnet	magnetic
neutral	non-polar	north	polar
popular	protons	right	salt
soap	sour	sweet	symbol
water			

Fill in the Blank: Each question is worth 4 points.

T.II	in the blank: Each question is worth 4 points.
1.	Some of the most important properties of water occur because water molecules are slightly positive at one end and slightly negative at the other end. These kinds of molecules are called molecules.
2.	Oil molecules are
3.	Generally,substances will not dissolve in polar substances.
4.	molecules have a polar end that can dissolve polar substances and a non-polar end that can dissolve non-polar substances.
5.	It isto wash oil off your hands using only water because water, a polar compound, cannot dissolve oil, a non-polar compound.
6.	Citrus fruits contain
7.	Many common cleaners contain
8.	Acids and bases are usually found in solutions .
9.	Acids usually have a taste.
10.	Chemicals that change color in acids and bases are called
11.	acid forms when there is a chemical reaction between carbon dioxide and water.
12.	Water and a form when an acid and a base react chemically.
13.	Ordinary rain water is slightly
14.	A pH number of 7 tells you it is
15.	A pH of 2 indicates a strong
16.	The Periodic Table contains
17.	Metals are found to the of the dividing line on the Periodic Table.

18. A chemical on the Periodic Table.	is one or two letters that have been assigned to identify an element
19. A chemical and numbers to tell how many of ea	contains symbols to tell which elements are present in a compound ach kind of atom are present.
20. Sodium chloride crystals have a	shape.
Short Answer: Each question is worth	5 points.
21. Why is it hard to get oily substances	s, such as lipstick, out of clothing using only water?
22. What happens to acids and bases wl	hen they are in water solutions?
23. Give some examples of indicators.	
24. What kinds of elements are generall	ly found in salt?
Bonus Question (worth 5 points): 25. If you accidentally spilled a strong a	acid or base on your skin, what is the first thing you should do?

4	Matter	Quiz 4	Scope:	Total score:	Name
	Concepts & Comprehension	Level 1	Chapters 13-16	of 100	

	•	•		
AC		atom(s)	blanks	carbon
che	emical	electricity	electrolysis	energy
gas		good	horizontally	hydrogen
1		less	long	mechanical
	tals	more	negative	nonmetals
	ean tides	oxygen	physical	positive
-	pperties	repel thin	solid ultraviolet	steam vertically
sca wa	·	tiiii	umaviolet	vertically
Fil	l in the Blank: Each qu	uestion is worth 4 points.		
1.	Similar groups of elem	nents are found	on the Periodic	Table.
2.	Except for hydrogen,	you find	on the left side of the Ta	able.
3.	A block of gold weigh	sthat	n an equal size block of urai	nium.
4.	. Dmitri Mendeleev organized the known elements into a Periodic Table and left where he predicted undiscovered elements would go.			
5.	Krypton is a	·		
6.		is a chemical change produ	aced by an electrical current	
7.	When water is separat	ed by electrolysis,	forms at the p	oositive electrode.
8.	When water is separat	ed by electrolysis,	forms at the r	negative electrode.
9.	Pure	will not conduct an e	lectric current.	
10.	. When water is separat	ed by electrolysis, there are	more	_ bubbles formed.
11.	During a chemical cha	ange, new compounds with	different	form.
12.	·	is the black substance that	is left after sugar decompos	es.
13.	released from sugar.	is the name of the white sr	moke that forms when hydr	ogen and oxygen atoms are
14.	The decomposition of	sugar is a	change.	
		ater is a		
16.	. Adding vinegar to bak changes.	ting soda and combining an	acid and a base are exampl	es of
17.	A color change and th reaction occurred.	e formation of an insoluble	substance are two clues tha	nt a
18.	. In	changes, the arrangeme	nt of the atoms and molecu	les remains the same.
19.	. In	changes, there is a rearra	angement of the atoms and	molecules.
20.	Bubbles and a temper	ature change are two clues t	that a	reaction occurred.

Sho	ort Answer: Each question is worth 5 points.
	Predict: Which element in each pair would be more dangerous or more reactive — potassium or calcium; sulfur or chlorine; krypton or selenium?
22.	Give several examples of physical changes.
23.	Give several examples of chemical changes.
24.	What are four clues that a chemical reaction has taken place?
25.	nus Questions (worth 5 points): Suppose someone in the 1500s had invented some method to separate water into oxygen and hydrogen gases. This would have been strong evidence against what popular theory?

ĘΥ	Matter	Quiz 5	Scope:	Total score:	Name
	Concepts & Comprehension	Level 1	Chapters 17-20	of 100	

air		burn	carbon dioxide	cold
connected electric		controls	cooling	dry ice
		electricity	evaporation	freeze
gas		heat	infrared	light
liqu	ıid	molecules	natural gas	nuclear energy
oil		oxygen	physical	procedure
soli	d	surface	temperatures	warming
wat	er	wind		
Fill	in the Blank: Eac	h question is worth 4 pe	oints.	
1.		is the name of t	he gas that is produced when	vinegar and baking soda react.
2.	In order for any su	bstance to burn,	must be	e present.
3.		is very cold ca	arbon dioxide in a solid state.	
4.	Carbon dioxide is	colorless, odorless, heav	ier than ordinary air, and doe	sn't
5.	A green plant take	s in and uses	as it makes	food.
	In order for two _ each other.		_to react chemically with eac	ch other, they need to bump into
	Addingenergy.	cause	s atoms and molecules to mo	ve faster, farther, and with more
8.	Steel production rebetter.	equires very high	to caus	e a chemical reaction to proceed
9.		are the things	that are kept the same in scie.	ntific experiments.
			experiment is conducted.	•
			nan they are in a	
12.	Molecules are close	er together in a	than they	are in a liquid.
13.	Phase changes are_		changes.	
	Whentogether.	is adde	d to a substance, the molecule	es begin to move slower and closer
15.		_ is an important excep	otion to the general rule that s	olids shrink when they are frozen.
16.	Substances go into	the	when they evaporate.	
17.	Substances take th	e form of a	after they evaporate	
18.	Heat and moveme	nt of air increase the rat	re of	
19.	Evaporation is a _	proc	ess.	
20.	Evaporation occur	s at the	of a liquid.	

Short Answer: Each question is worth 5 points. 21. Explain why a burning candle will go out when carbon dioxide is produced around it.
22. Why will small pieces of an effervescent tablet react faster than one big piece?
23. Why are cement sidewalks made with cracks between the blocks?
24. Explain how sweating helps to keep your body cool if you are running on a hot day.
Bonus Question (worth 5 points): 25. What is a peer review?

4, 17	Matter	Test 1	Scope:	Total score:	Name
30	Concepts & Comprehension	Level 1	Chapters 1-20	of 100	

Fill in the Blank Questions: (2 Points Each)

Choose answers from these terms.

adh	esion	analytical	bases	carbon	
carbon dioxide		chemical	cohesion	controls	
	ling	distillation	elasticity	electrolysis	
	porating	heat	indicators	kinetic	
	nerals	metals	nonpolar	oxygen	
	rsical	polar	potential	radiation	
recharge		soap	sour	surface	
swe	eet	viscosity	water	upside-down	
1.		chemistry includes v	what chemicals are present, t	their characteristics, and how	
	much is present.		Γ	,	
2		an be demonstrate	d h.v. h o.v. al o.v.l.v. a li avvi d m o.v	f	
		nething through the liquid.		ars from a container or how	
3.	The property of matt	The property of matter that causes like molecules to attract each other is called			
4.	The property of matter that allows bubbles to stretch without breaking (up to their limits) is called				
5.	Hard water contains more dissolved than soft water.				
	their boiling points.	is a way of separating mixtu	ares of liquids, a process that	t depends on differences in	
7.	You can separate a m	ixture of salt and water by	the wat	er.	
8.	negative charge on th		necting bonds with a positive	e charge on one end and a	
9.	Soap breaks down the	etensi	on of water.		
10.	There is an attraction		e glass (or plastic) in a gradu	ated cylinder known as	
11.		nolecules have a polar end t	hat can dissolve polar substa	unces and a non-polar end	
12.	Many common cleaners contain				
13.	Acids and bases are fo	ound in	_ solutions.		

14. Acids usually have a _	taste.
15. Chemicals that chang	ge color in acids and bases are called
16. Except for hydrogen,	you findon the left side of the Table.
17	is a chemical change produced by an electrical current.
18	is the black substance that is left after sugar decomposes.
19. In	changes the arrangement of the atoms and molecules remain the same.
20. In	changes, there is a rearrangement of the atoms and molecules.
21. In order for any subs	tance to burn, must be present.
22. A green plant takes in	n and uses as it makes food.
23. Addingenergy.	causes atoms and molecules to move faster, farther, and with more
24	are the things that are kept the same in an experiment.
25. Evaporation is a	process.
•	stion is worth 5 points each. operties of chemical substances?
	t to know what chemical substances are in an item, they seldom consider the size, f the item. Why is that?
28. How would you find	the volume of a small, irregularly shaped piece of rock?
29. All matter is made up	o of what kinds of charges?

30. What happens to acids and bases when they are in water solutions?
31. Give some examples of indicators.
32. Give several examples of chemical changes.
33. Why are cement sidewalks made with cracks between the blocks?
34. What happens to a person's mass as the distance from the earth increases?
35. If you accidentally spilled a strong acid or base on your skin, what is the first thing you should do?

Quiz and Test Answers for Use with

Science Starters: Elementary Chemistry and Physics

Matter → Quiz Answer Keys Level 1 & 2

Quiz 1 Level 1, chapters 1-4

- 1. analytical
- 2. medical
- 3. environmental
- 4. fragment
- 5. physical
- 6. viscosity
- 7. temperature
- 8. pressure
- 9. absorb
- 10. polymers
- 11. solids
- 12. liquids
- 13. surface
- 14. cohesion
- 15. elasticity
- 16. mixtures
- 17. faster
- 18. chemicals
- 19. chromatography
- 20. minerals
- 21. Physical properties include characteristics you can see, hear, taste, smell, or feel, but could be any physical characteristic of a substance.
- 22. It is a dull white color. It can flow like a liquid when poured from a container. When pressure is applied quickly, it will have properties like a solid. Its viscosity varies with pressure.
- 23. A substance's physical properties will be present regardless of the size, shape, or amount of the substance. Scientists look for characteristics that will remain the same no matter where the chemical is found.
- 24. Yes, this is a good clue that there are at least two chemicals in the marker.
- 25. Density, boiling point, melting point, solubility in water, color, odor, taste, shininess, hardness, magnetic effects, and many other things.

Quiz 2 Level 1, chapters 5-8

- 1. mixed
- 2. chemically
- 3. distillation
- 4. separated

- 5. evaporating
- 6. milliliter
- 7. centimeter
- 8. milligram
- 9. water
- 10. sink
- 11. tetrahedron
- 12. polar
- 13. liquid
- 14. water
- 15. smallest
- 16. polar
- 17. surface
- 18. adhesion
- 19. density
- 20. negative
- 21. Salt and sand stirred together, crude oil, and salt water are all mixtures. (Distilled water is a pure substance.)
- 22. Measure enough water in a graduated cylinder to cover the rock. Carefully add the rock, and measure the level of water. Subtract the two water levels to find the volume of the rock.
- 23. Positive and negative.
- 24. The water will round up on the penny. There are strong cohesive forces between the water molecules, especially at the surface of the water.
- 25. A person's mass would remain the same. What happens to the person's weight? A person's weight would decrease as the distance from the earth increased.

Quiz 3 Level 1, chapters 9-12

- 1. polar
- 2. non-polar
- 3. non-polar
- 4. soap
- 5. hard
- 6. acids
- 7. bases
- 8. water
- 9. sour
- 10. indicators
- 11. carbonic
- 12. salt
- 13. acidic
- 14. neutral

- 15. acid
- 16. elements
- 17. left
- 18. symbol
- 19. formula
- 20. boxy
- 21. Lipstick and other oily substances are non-polar compounds, and water is a polar compound. Polar compounds do not dissolve non-polar compounds.
- 22. Their molecules break apart. One part becomes positive and one part becomes negative.
- 23. Phenol red, litmus paper, pH paper (many others).
- 24. A metal and a nonmetal (or groups of atoms that behave as if they were a single metal or nonmetal. Examples of such groups of atoms are carbonates, CO3- or phosphates, PO4-).
- 25. You should dilute the chemical by pouring lots of water on your skin.

Quiz 4 Level 1, chapters 13-16

- 1. vertically
- 2. metals
- 3. less
- 4. blanks
- 5. gas
- 6. electrolysis
- 7. oxygen
- 8. hydrogen
- 9. water
- 10. hydrogen
- 11. properties
- 12. carbon
- 13. steam
- 14. chemical
- 15. physical
- 16. chemical
- 17. chemical
- 18. physical
- 19. chemical
- 20. chemical
- 21. Most reactive: potassium, chlorine, and selenium.
- 22. Tearing paper, grinding up chalk, boiling water, freezing water, melting ice, drying wet clothes, and dissolving sugar in a glass of tea are a few examples of physical changes.
- 23. Burning paper, combining vinegar and baking soda, rusting of iron, removing iron from iron ore, and

- combining sulfuric acid and zinc are a few examples of chemical changes. There are many other examples.
- 24. Formation of bubbles, temperature change, formation of an insoluble chemical, and color change.
- 25. This would have been strong evidence against the theory that water was one of the four basic elements.

Quiz 5 Level 1, chapters 17-20

- 1. carbon dioxide
- 2. oxygen
- 3. dry ice
- 4. burn
- 5. carbon dioxide
- 6. molecules
- 7. heat
- 8. temperatures
- 9. controls
- 10. procedure
- 11. gas
- 12. solid
- 13. physical
- 14. cold
- 15. water
- 16. air
- 17. gas
- 18. evaporation
- 19. cooling
- 20. surface
- 21. Carbon dioxide is a heavy gas that doesn't burn. It will settle over the burning candle and cut off the oxygen supply.
- 22. Small pieces of an effervescent tablet have more surface area than one big piece and more places where the water molecules can come in contact with them.
- 23. When the cement gets hotter, its molecules begin to move faster and get farther apart. This causes the cement to expand. The cracks help to keep it from breaking as it expands.
- 24. In order for a liquid to change into a gas, it must absorb energy. As sweat drops evaporate, energy is absorbed from your skin.
- 25. A peer review is where fellow scientists review an experiment someone has conducted. They may comment about the things that were done right, but they especially look for things that should have been done differently or might be a weakness in the experiment. They are often called critical peer

reviews. They are an important part of scientific research.

Quiz 1 Level 2, chapters 1-4

- 1. Physical properties include characteristics you can see, hear, taste, smell, or feel, but could be any physical characteristic of a substance.
- A substance's physical properties will be present regardless of the size, shape, or amount of the substance. Scientists look for characteristics that will remain the same no matter where the chemical is found.
- Density, boiling point, melting point, solubility in water, color, odor, taste, shininess, hardness, magnetic effects, and many other things.
- 4. An element or a compound; a fragment would have the same properties as the whole substance.
- 5. Analytical chemistry includes what chemicals are present, their characteristics, and how much is present.
- 6. Medical labs might test blood and urine for the presence of many kinds of substances.
- 7. These labs might help identify pollutants in the air, water, and environment.
- 8. How slowly a liquid pours from a container or how hard it is to push something through the liquid.
- 9. Pressure (and temperature)
- 10. It has the unusual property of being able to absorb enormous amounts of liquids.
- 11. They are made of many similar small chemicals (called monomers) that were joined together to form long chains of molecules.
- 12. In solids
- 13. In liquids
- 14. Surface tension
- 15. Cohesion
- 16. Elasticity
- 17. Hard water contains more dissolved minerals than soft water. Hard water is more difficult to lather than soft water.
- 18. Surface tension
- 19. Mixture
- 20. A device used to help analyze the chemicals in substances.

Quiz 2 Level 2, chapters 5-8

1. Salt and sand stirred together, crude oil, and salt water are all mixtures. (Distilled water is a pure substance.)

- 2. Every piece of a pure substance has the same properties as the whole substance. A mixture is made of two or more substances that can be separated on the basis of some physical property.
- 3. Yes, except that they may be temporarily hidden from view.
- 4. No
- 5. Their boiling points
- 6. One that is not dissolved in the liquid
- 7. By evaporating the water
- 8. A person's mass would remain the same.
- 9. A person's weight would decrease as the distance from the earth increased.
- 10. Milliliter, liter, cubic centimeter (other units)
- 11. 25 grams
- 12. Positive and negative
- 13. Acids, bases, salts, sugars (many other things)
- 14. Hydrogen and oxygen
- 15. A tetrahedron
- 16. Polar molecules
- 17. Water is a liquid at room temperature; it expands when it freezes; drops of water are rounded in shape; it can dissolve many substances. There are many other properties as well.
- 18. The positive and negative charges attract each other.
- 19. Surface tension
- 20. The density of the substance
- 21. The formula for water is H₂O. H is the symbol for hydrogen and O is the symbol for oxygen. The subscript 2 means there are 2 atoms of hydrogen in each molecule of water. No number after oxygen means there is one atom of oxygen in each molecule of water.
- 22. An atom is the smallest particle of an element that is still that element. A molecule is made up of two or more atoms joined together by a chemical bond.

Quiz 3 Level 2, chapters 9-12

- 1. Polar molecules
- 2. Lipstick is a non-polar compound.
- 3. Water, a polar compound, cannot dissolve oil, a non-polar compound.
- 4. Citrus fruits contain acids.
- 5. Many common cleaners contain bases.
- 6. Acids and bases are found in water solutions.
- Their molecules break apart. One part become positive and one part becomes negative.

Matter → Test Answer Key Level 1 & 2

Test 1 Level 1

- 1. analytical
- 2. viscosity
- 3. cohesion
- 4. elasticity
- 5. minerals
- 6. distillation
- 7. evaporating
- 8. polar
- 9. surface
- 10. adhesion
- 11. soap
- 12. bases
- 13. water
- 14. sour
- 15. indicators
- 16. metals
- 17. electrolysis
- 18. carbon
- 19. physical
- 20. chemical
- 21. oxygen
- 22. carbon dioxide
- 23. heat
- 24. controls
- 25. cooling
- 26. Physical properties include characteristics you can see, hear, taste, smell, or feel, but could be any physical characteristic of a substance.
- 27. A substance's physical properties will be present regardless of the size, shape, or amount of the substance. Scientists look for characteristics that will remain the same no matter where the chemical is found.
- 28. Measure enough water in a graduated cylinder to cover the rock. Carefully add the rock, and measure the level of water. Subtract the two water levels to find the volume of the rock
- 29. Positive and negative
- 30. Their molecules break apart. One part becomes positive and one part becomes negative.
- 31. Phenol red, litmus paper, pH paper (many others).
- 32. Burning paper, combining vinegar and baking soda, rusting of iron, removing iron from iron ore, and

- combining sulfuric acid and zinc are a few examples of chemical changes. There are many other examples.
- 33. When the cement gets hotter, its molecules begin to move faster and get farther apart. This causes the cement to expand. The cracks help to keep it from breaking as it expands.
- 34. A person's mass would remain the same. What happens to the person's weight? A person's weight would decrease as the distance from the earth increased
- 35. You should dilute the chemical by pouring lots of water on your skin.

Test 1 Level 2

- 1. Physical properties include characteristics you can see, hear, taste, smell, or feel, but could be any physical characteristic of a substance.
- A substance's physical properties will be present regardless of the size, shape, or amount of the substance. Scientists look for characteristics that will remain the same no matter where the chemical is found.
- 3. Density, boiling point, melting point, solubility in water, color, odor, taste, shininess, hardness, magnetic effects, and many other things
- 4. An element or a compound; a fragment would have the same properties as the whole substance
- Analytical chemistry includes what chemicals are present, their characteristics, and how much is present.
- 6. Elasticity
- 7. Hard water contains more dissolved minerals than soft water. Hard water is more difficult to lather than soft water.
- 8. Surface tension
- 9. Mixtures
- 10. A device used to help analyze the chemicals in substances
- 11. Salt and sand stirred together, crude oil, and salt water are all mixtures. (Distilled water is a pure substance.)
- 12. Every piece of a pure substance has the same properties as the whole substance. A mixture is made of two or more substances that can be separated on the basis of some physical property.
- 13. Yes, except that they may be temporarily hidden from view.
- 14. No
- 15. Their boiling points