

A retrospective study of monogenic diabetes in two population health studies

Alexandre Bolze¹, Simon White¹, Elizabeth T. Cirulli¹, Lavania Sharma¹, Karen A. Schlauch^{2,3}, Gai Elhanan^{2,3}, Joseph J. Grzymski^{2,3}, Nicole L. Washington¹, James T. Lu¹

¹Helix, San Mateo, CA, USA ² Desert Research Insitute, Reno, NV, USA ³ Renown Institute for Health Innovation, Reno, NV, USA

Introduction

Clinical impact

- Monogenic Diabetes accounts for 1 2% of all diabetes cases^{1,2}.
- Majority of monogenic diabetes caused by heterozygous loss-of-function variants in *GCK*, *HNF1A* & *HNF4A*².
- Sequencing GCK, HNF1A and HNF4A in T2D patients allows for better treatment (insulin is not necessary for these patients)^{1,2}.
- The clinical importance of identifying a pathogenic variant in an asymptomatic individual is not known because few studies have been conducted in the general population.
- In a large 'unselected' cohort, we aimed to:
 - Calculate the prevalence of carriers of monogenic diabetes pathogenic variants.
 - Assess the clinical impact of being a carrier.
- Participants: 20K (Healthy NV Project) + 50K (UK Biobank)
- Data: Exome + EHR + vitals + lab results for all.

Prevalence of carriers in the population

Figure 1: Absolute risk of being diagnosed with T2D in HNP.

Type 2 Diabetes diagnosis was assessed as having at least one ICD10 code starting by E11 in the EHR. Basic characteristics of the carriers: sex:{19 F, 8M}; age:{mean: 52 yo, median: 53 yo, 8 < 40 yo, 3 < 30 yo}.

In a small sample size group, carriers of P/LP in GCK, HNF1A or HNF4A had a ~30% chance of being diagnosed with T2D.

Meta-analysis HNP + UK Biobank

Healthy NV Project [™]	Variant type	counts in GCK	counts in <i>HNF1A</i>	counts in <i>HNF4A</i>	
Analytical	All	1,291	1,124	1,936	
filter	high quality	608	714	869	
Vep	NS or FS	0	10	6	
	splice	1	1	0	
filter	missense	41	149	80	
	unknown	1	10	6	
Interpretation	VUS	34	122	68	
	P/LP	7	9	4	

Table 1: Filtering and interpretation of variants.

Vep annotation based on the most severe consequence. NS: nonsense, FS: frameshift. As a control, we looked at numbers of putative loss-of-function variants in gnomAD³: o/e(GCK) = 0.19, o/e(HNF1A) = 0.14, o/e(HNF4A) = 0.26. The higher number for HNF1A may be the result of looking at impact across all HNF1A transcripts.

Interpretation was based on a combination of ClinVar, Varsome ACMG interpretation⁴, and a final manual review for variants with conflicting interpretations. 27 individuals carried one of the 20 P/LP variants.

rank	gene	P-meta	P-UKBB	P-HNP
1	GCK	1.16E-09	4.00E-05	4.80E-08
		•••		•••
283	HNF4A	0.0134	0.012	0.66
7,942	HNF1A	0.485	0.54	0.023

Table 2: Result of gene-burden tests for T2D in the 2 cohorts.

Results of this experiment were analyzed to assess the association of these 3 genes with EHR entries of diabetes.

17,570 genes tested. *GCK* was ranked as top gene. Coding model: (nonsynonymous in canonical transcript) AND (polyphen and SIFT not benign). MAF < 0.1% in each gnomAD population and these cohorts. BOLT-LMM for HNP- and UKB- only tests. Meta-analysis with PLINK.

Discussion

- Difficult to interpret variants. Large number of VUS
- Need larger cohort to draw conclusions on absolute and relative

More details in BioRxiv⁶ + Liz Cirulli's talk: Thursday 10AM, session 40: "Genome-wide rare variant analysis for thousands of phenotypes in 70,000+ exomes" + ukb.research.helix.com

0.15% (27 of 18,581) of participants in the Healthy NV Project carry a P/LP variant in *GCK*, *HNF1A* or *HNF4A*.

risk of carrying a pathogenic variant for monogenic diabetes

- Main questions:

- Why is only a fraction of carriers diagnosed with diabetes?
- What can be done to help carriers avoid diabetes?

Donath et al., *BMC Medicine* 17(1): 132, 2019
Naylor et al., "Maturity-Onset Diabetes of the Young Overview", *Gene Reviews*, 2018
gnomad.broadinstitute.org/ (accessed 2019/10/10)
varsome.com (accessed 2019/10/06)

www.americashealthrankings.org/explore/annual/measure/Diabetes/state/NV (accessed 2019/10/10)
Cirulli et al., "Genome wide rare variant analysis for thousands of phenotypes in 54,000+ exomes", *BioRxiv*, 2019.