

Agenda for Today's Presentation

- Our Project what and why
- Who We Are
- The Plan (what we're doing)
- Methods (how we are doing it)
- Results to date
- Interpretations
- Next Steps & Collaboration Opportunities
- Summary

- **Small-scale (<12 acres)** production of staple crops using mostly manual labor with common equipment and minimal off-farm inputs
- **Crops** of interest: amaranth, barley, beans, buckwheat, maize, millet, milo, oats, potatoes, rye, sunflower, triticale, & wheat
- Agronomic analysis includes: yield per sq ft; energy inputs (calorie, diesel); growing degree days
- **Year 1** of a two year project so not all topics covered today
- Southeast Michigan (~45 minutes north of Detroit)

The Crops (Year 1)

Amaranth: source of summer greens; nutritional grain crop widely consumed in Africa and the Caribbean

- **Barley** (**hull-less**): a medieval staple easy to cook into portage (gruel)
- Barley (hulled): animal feed or made into beer
- **Buckwheat**: gluten-free flour for pancakes & soba noodles (needs de-hulling!)
- **Einkorn & Emmer**: ancient, tasty but hulled grains - difficult to remove hull*
- Maize: corn bread, polenta, nixtamalized to make masa for tortillas; Central American civilizations were powered by this staple crop
- **Millet**: porridge as a major source of food in Africa

Milo (grain sorghum): major food source in Indonesia, Malaysia and Singapore

- **Oats**: besides an animal food, Scottish porridge
- **Potatoes**: major calorie food group for northern Europe
- **Rye**: commonly used for porridge or baked as bread
- **Sunflowers**: valuable source of cooking oil; important biodiesel food-stock
- **Triticale**: hull-less grain combines cultivation advantages of rye with the utility of wheat
- Wheat: commonly made into flour for bread, biscuits & cookies; enjoyed as whole berries

What Motivated our Project?

- COVID and escalating social turmoil
- A shift away from "casual gardening" more growers intentionally mindful of caloric and nutritional benefits
- Food security personal / community
- Questions from our customers and on various forums:
 - Our **"Sizing Your Plot to Meet Your Food Needs"** page is the second most accessed page on our site after our homepage
 - "How much [wheat] will I get if I plant [plot size]?"
 - "How much [triticale] do I need to plant to feed my chickens?"
- Agronomic data more aligned to the cultivars and methods of pre-1950s industrial cultivation that do not rely on modern chemicals and accounts for modern shifts in weather patterns is essential

Our Project Goals

Currently most agronomic data available focuses on **large-scale**, **industrialized cultivation**

• **not easily relevant for or applicable** to the manual labor, minimal input cultivation methods employed by an increasing number of North Central small-scale producers (2-12 acres)

Data generated based on **our actual small-scale experience** using common equipment, mostly manual labor, and minimal off-farm inputs

• **inform best-practice methods** to enable small-scale farmers to successfully incorporate staple crops into their sustainable, ecologically responsible production rotation

About Eleanor and Great Lakes Staple Seeds

• Long time grower

growers

- Love of seed stories and seed connections Johnny Dewlen Blue Dent Corn
- Gained an appreciation of small-scale, manual labor agriculture while living in and traveling throughout Asia for nearly a decade
- Desire to enrich and enhance my family's homegrown food security
- Desire to preserve and expand available biodiversity for northern, short-season

"Any crop you would really want in your larder in the event of a national economic crisis like the Great Depression."

– John Sherck Nov. 2013

- high calorie
- nutrient rich
- utility / functional

Our seeds are

- 100% Michigan grown
- **open-pollinated** and non-treated

Our seeds offer

- food security
- self-sufficiency
- improved **biodiversity**

About Scott 1984 (High School)

Aerospace Engineering vs Horticultural Plant Breeder Hobbies & Making Things

4-H & Interests

Ended up at General Motors (1994-?)

- Manufacturing Engineering
- Lived in China for 8 years
- Built factories, machines & ventilators
- Support Great Lakes Staple Seeds
- Vacation days chosen by weather

Interest in This Topic

• Food security

We know people who grew up when food was rationed, and they were HUNGRY

Interest in This Topic:

"How much land does it take to feed one person?"

- Where: Biggest impact, sets up your challenges
 - Growing Degree Days (GDD)
 - Micro-climate: Rainfall, frost free season, critters
- What: One can not live on spinach alone
 - Staple Crops provide the calories to thrive, not just survive
 - Diversity to overcome seasonal variation
- Who: People, not corporations
 - Small groups of motivated people on 2~12 acres
- Methods: Homestead scale
 - Primarily hand tools, limited power equipment
- Timing
 - Various varieties will spread the work load (and weather risk) over weeks

^{Irish} potato famine

Not commercial SCale

Plot Size:

Our Current Scale

Square feet

- 10—test a few varieties, grow a bit for decorating
 - Everything with hand tools
- 100—taste one or two varieties, holiday treats
 - Hoe comes in handy
- 1000—eat something special weekly
 - Gas power tiller and the right hoe will be appreciated
- 10,000—serious homestead baking
 - Tools with a wheel or two will become useful for cultivation
- 100,000 (2+ acres)
 - Tradeoff between more equipment and time
- 1,000,000 (23+ acres)
 - Tractors with serious implements
- 10,000,000 (230+ acres)
 - Significant investments

Show of Hands:

- Who has any garden?
 - <u>Could</u> it be bigger than 32 ft by 32 ft (a thousand square feet)?
- Who grows any portion of their dinner?
- Who grinds their own flour?
- Who cooks 'grain berries'?

By your presence, you've some interest in the necessary skills....

The Problem Statement

"How much land does it take to feed one person?"

- What keeps you from growing your own food?
 - Percentage of the diet is not plant based
 - Livestock need their food grown too
 - Tools and equipment
 - Human labor
 - Fuel powered equipment saves time
 - Critters trying to eat your crops

The Plan

Reward of a successful harvest must exceed the inputs

- Each crop type has differences:
 - Will require different amounts of effort (human calories & diesel) to produce
 - Will require different amounts of space depending on how many calories are desired and type of crop
- Each crop has a **specific role** in meeting your needs:
 - Nutritional profile
 - Timing of harvest
- Plant spacing:
 - Row width (between rows) and in-row (between plants) result in different "Area per Plant"
 - Plant spacing for our manual methods may be different that those used by modern equipment with chemicals or animal power

The Plan

For long term success, harvest must exceed the inputs

- Measuring the inputs for each phase of production
 - Fitbit to track steps and calories

Victorian era laborers typically consumed > 5,000 calories

- Timer to measure how much time was used per unit of plot size
- Graduated cylinder to measure diesel usage (vegetable oil needed to make diesel is a proxy for space and human work required to make it)
- Outputs can be measured after harvest
 - Pounds (grams) of finished clean 'food' ready to be eaten by a person
 - Calorie equivalent using commonly accepted nutritional standards

The Plan

323 'samples' from 13 crop types harvested in 2023

Count of ApP (sq in ea) lumn L 💌					
Row Labels	🕶 Fall	Spring	Winter	Summer	Grand Total
Barley	89	20			109
Wheat	18	9			27
Triticale	16				16
Emmer	4		6		10
Rye	43				43
Oats	3	25			28
Einkorn			24		24
Corn				20	20
Amaranth				17	17
Sunflower				7	7
Millet				11	11
Buckwheat				6	6
Potato				5	5
Grand Total	173	54	30	66	323

Some are still being processed, cleaned and weighed

- Labor tasks, manual and diesel powered:
 - Soil Preparation: Mowing, tilling, harrowing, raking, & planting
 - **Tending:** Seeding, thinning, weeding, & hilling
 - Harvesting: Measuring, cutting, drying, threshing, winnowing & measuring

Soil Preparation: **Mowing** to chop up the previous crop residue

No good manual method other than animal grazing

Soil Preparation: **Tilling** to incorporate debris that needs to decompose

Manual method: broad fork Powered is a massive time saver!

Soil Preparation: Harrowing & Raking (seed bed preparation)

Planting: Seeding

Single hand hoe works, but slow Wheel hoe is very efficient

Planting: Labeling

Orange wooden labels get lost in grain fields and do fade Pencil on plastic on snow poles!

Tending: Thinning

Amaranth thinning are great in stir fry (roots and all)

Methods Tending: Weeding

scuttle knife blade

Scuttle wheel hoe is very efficient between rows

Don't crowd the amaranth

Hand tool for between plants within row

Tending: Hilling Potatoes

Methods:

- Loosen soil by scuttle then handheld hoe
- Wheel hoe hiller tool

Harvesting: Data Collection

In-Row 'plant spacing'

Count how many plants are within a fixed distance (not tillers, but actual 'plants')

Between-Row

Measure between the row on either side, divide by 2 Measure start and end of strip, take average

Harvesting: Cutting

Label clearly & carefully both on the plants and in a notebook

Stook

Methods Harvesting: Drying

Harvesting: Threshing

 By "hand" by rubbing over a screen, beating a sack with a rubber hose, or flail on a threshing floor

Harvesting: **Winnowing** separates the seeds from the chaff/debris Windy day or window fan!

Some types also ^{need} a 'dehulling' step to remove the seed cover (emmer/einkorn)

Harvesting: Digging Potatoes

min/ft cal/ft ft/L Manual: 1.1 8.9 N/A potato fork Diesel: 0.2 0.7 1600 root digger

Remove plant material to make this go more smoothly

Harvesting: Digging Potatoes

min/ft cal/ft ft/L Manual: 1.1 8.9 N/A potato fork Diesel: 0.2 0.7 1600 root digger Yield of 1.5 lbs/ft giving 500 calories

> So, 500 ft row of potatoes, 750 pounds, 167k calories needs: 9 hrs to dig by hand consuming 4500 calories, or, 1.7 hrs burning 350 calories 1.2 quarts of diesel and that diesel needs ~5 pounds of sunflower seeds which represents 2.5 pounds of shelled seeds (6500 calories if eaten)

> Of course, the soil had to be prepared, planted, weeded, bugs picked, and hilled before we get to the Harvest!

Results

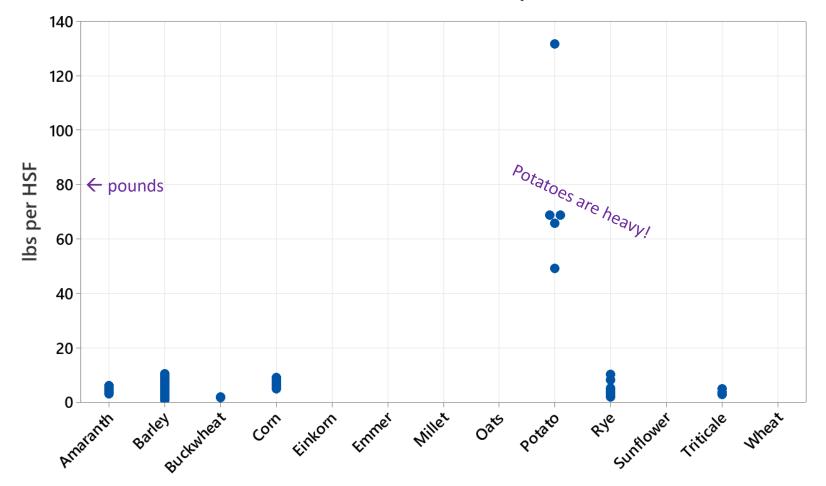
GOAL MET

Measurement of the work performance to grow these crops

• Energy consumption (human & diesel) by task and soil type

GOAL NOT MET

31,353 steps

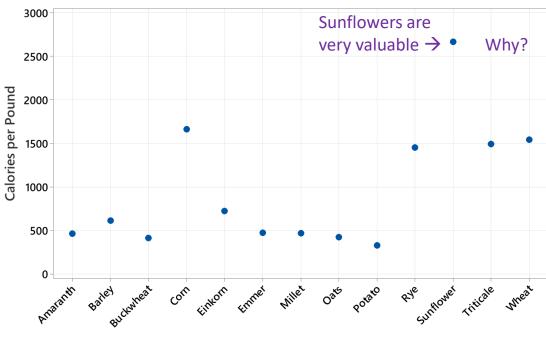

Best Day: Sat, May 13

Increase Over Previous 28 Days

90% more steps

Results

Pounds per 100 Square Feet: How many pounds of clean 'crop' after threshing (or shelling), winnowing (or digging) and weighing!


Individual Value Plot of Ibs per HSF

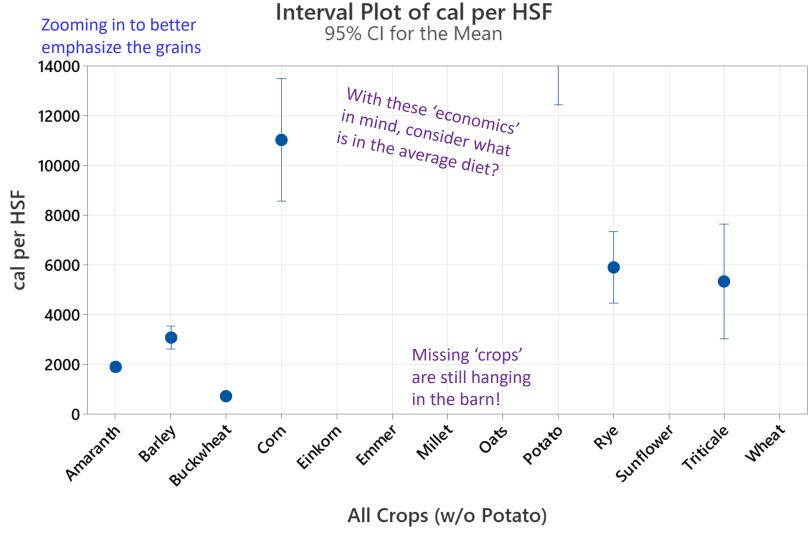
HSF = Hundred Square Feet

All Crops

However, all 'pounds' are not created equal in terms of their value of providing calories


Туре	Calories per Pound	Notes
Potato	332	as dug
Buckwheat	413	with hull
Oats	427	hull-less
Amaranth	463	
Millet	469	
Emmer	476	with hull
Barley	612	hull-less
Einkorn	726	with hull
Rye	1452	
Triticale	1492	
Wheat	1543	
Corn	1662	Flint
Sunflower	2665	unshelled

Individual Value Plot of Calories per Pound


All Crops

<u>Calories per 100 Square Feet</u>: How much energy can these crops provide our person for the same amount of growing space?

Individual standard deviations are used to calculate the intervals.

Calories per 100 Square Feet: Focusing on the grain, corn is king!

Individual standard deviations are used to calculate the intervals.

Results (Barley)

Wintermalt Barley

Zou Xian Song Mang Da Mai Barley

Schuyler Barley

Black Russian Barley

Bai Chin Ke Barley

Eve Barley

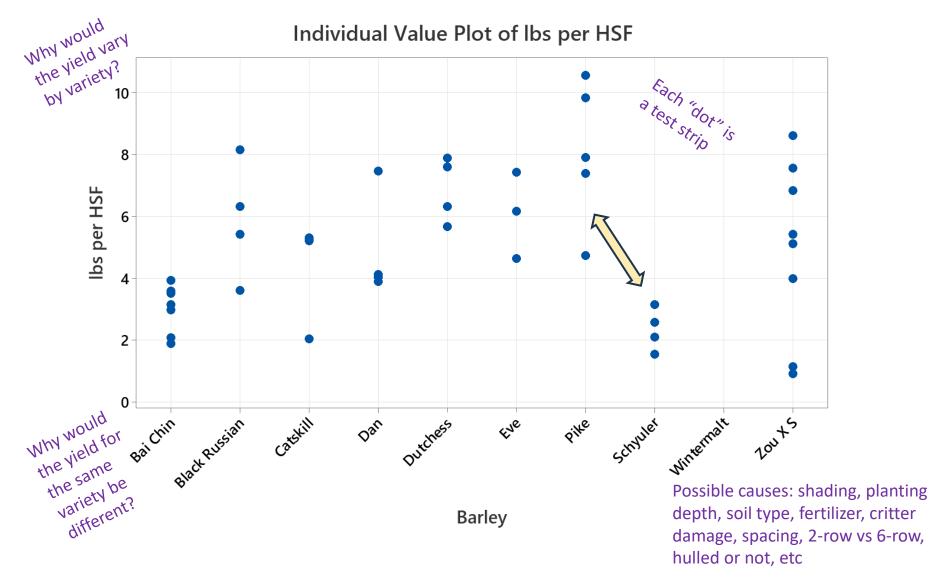
Black Hull-less Barley

Dan Barley

Fall Sardinian Barley

Curly Barley

Pike Barley


Gobal Barley

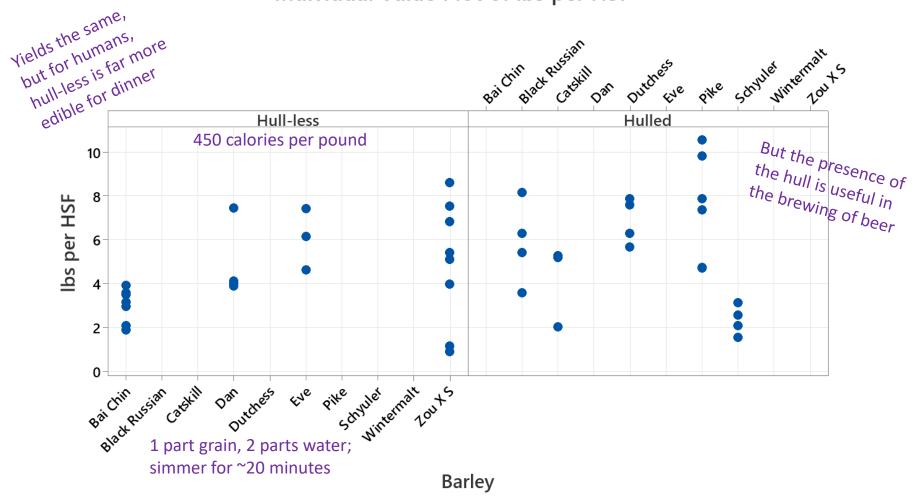
Almost 30 pounds of fall planted barley spanning 13 varieties were planted in 2022 and harvested in 2023

Fall harvest of the barley ran from **6/25 thru 7/9** – to lessen the chance of crop loss to a single weather event!

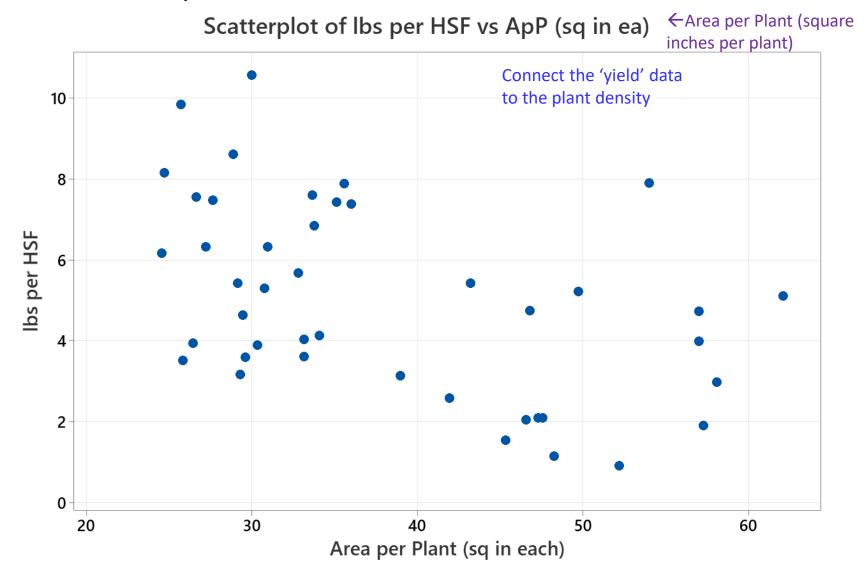
Row Labels	Hulled	Hull-less
2-Row Early		
6-Row Early		
Bai Chin		1,716
Black Russian	2,234	
Catskill	536	
Dan		1,890
Dutchess	832	
Eve		449
Fimbul		
Pike	2,600	
Schyuler	800	
Wintermalt		
Zou X S		1,064
Grand Total	7,003	5,119
Weight in Pounds	s 15.4	11.3
	1	26.7

Pounds per 100 Square Feet: How many pounds of clean grains after threshing, winnowing and weighing!

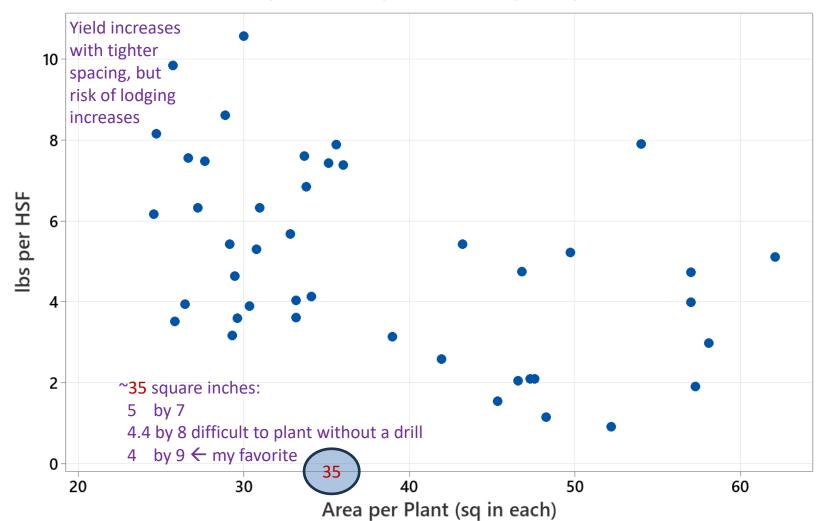
Bai Chin Ke Barley (Hull-less, that is, "no hull")


Schuyler Barley (hulled, that is, "with hull")

Both are ~3 pounds per HSF


Same data, now grouped by 'hull-less' and 'hulled'

Individual Value Plot of Ibs per HSF



Panel variable: Hull

Area per plant: How many square inches surrounding each "seed" that was planted!

Area per plant: How many square inches surrounding each "seed" that was planted!

Scatterplot of lbs per HSF vs ApP (sq in ea)

Lodging \rightarrow Plants fall over

Averaging across all varieties for "pounds per 100 square feet

Variable	Туре	Mean	StDev	Minimum	Maximum		
Ibs per HSF	Amaranth	4.119	0.675	3.203	5.994		
	Barley	5.040	2.395	0.918	10.562		
Could this have been a 'poor'	Buckwheat	1.768	0.205	1.551	2.044		
buckwheat year?	Corn	7.226	1.084	<mark>4</mark> .871	8.996		
Try again in 2024	Einkorn	*	*	*	*		
Good reason to diversify!	Emmer	*	*	*	*		
,	Millet	*	*	*	*		
	Oats	*	*	*	*		
	Potato	76.8	31.7	49.2	131.5		
	Rye	4.060	2.098	2.012	10.188		
	Sunflower	*	*	*	*		
	Triticale	3.573	0.973	2.865	4.944		
	Wheat	*	*	*	*		

Let's see how much land is needed to feed our '1 person'

Each crop type will use a sub-set of these 'energy tasks'

Task	Crop	Mode	Metric	Labor	Time		Labor Energy		Diesel
				(sq ft/min)	(ft/min)	(calories/sq ft)	(sq ft/calories)	(calories/ft)	(mL/sq ft)
Mow	All	BCS	Area	133	-	0.053	19	-	0.05
Till, Rough	All	BCS	Area	199	-	0.050	20	-	0.08
Till, Finish	All	BCS	Area	109	-	0.071	14	-	0.10
Harrow	Grains	BCS	Area	136	-	0.048	21	-	0.04
Plant	All	Human	Linear	-	10.0	-	-	1.2	-
Weed	All	Human	Linear	-	tbd	-	-	tbd	-
Hill	Potatoes	Human	Linear	-	tbd	-	-	tbd	-
Harvest	Potatoes	BCS	Linear	-	tbd	-	-	0.7	0.06
Harvest	Grain	Human	Linear	-	0.9	-	-	tbd	-
					Totals>	0.222	74	1.9	0.33
						(calories/sq ft)	(sq ft/calories)	(calories/ft)	(mL/sq ft)
								(calories/ft) Work in Progress	
						4.5	0.0	WORK 0.5	3.0
						(sq ft/calorie)	(calorie/sq ft)	(ft/calorie)	(sq ft/mL)

0.1 mL is one drop from an eye dropper

1 teaspoon is 5 milliliter (mL)

BCS = 2-wheel tractor model BCS 853 Human = me

Interpretation

- Let's make the calculation with the data we have for 1 adult
- Dividing the year into seasons

One ha	One hard working adult									
Days	Calories	Season								
73	3,000	Winter								
73	4,500	Planting								
73	3,500	Tending								
73	4,500	Harvesting								
73	4,500	Planting								
365	4,000	< avg daily needs								

 The harvest needs to return an average of 4,000 calories which doesn't take into account any safety factors, taxes, critters, etc.

The Internet recommends 2000 to 2400 calories per adult for emergency food purposes.

Interpretation

• Let's make preliminary calculation for 1 adult

	Potato	Buckwheat	Oats	Amaranth	Millet	Emmer	Barley	Einkorn	Rye	Triticale	Wheat	Corn	Sunflower
yield (lb/100 sq ft)	76.8	1.8	3.4	4.1	3.2	3.9	5	3.9	4.1	3.6	6.9	7.2	2.9
calores per pound	332	413	427	463	469	476	612	726	1,452	1,492	1,543	1,662	2,665
planted space	1,450	3,000	2,000	2,200	3,000	500	650	500	2,000	700	3,000	3,000	1,000
harvest, pounds	1,114	54	69	90	96	20	33	20	82	25	207	216	29
harvest, calories	369,715	22,302	29,408	41,763	45,220	9,288	19,890	14,167	119,064	37,598	318,802	358,992	76,475
calories per day	1,013	61	81	114	124	25	54	39	326	103	873	984	210
Sub-Totals	Food	Biodiesel		Totals								Diesel, L	37.7
calories per day	4,007											Diesel, gal	l 10.0
biodiesel, liters	37.7										sunflo	ower oil, lbs	5 76.5
farmed land, sq ft	23,000	2667		25,667							S	q ft needed	2667
farmed land, acres	0.5			0.6									

- Only grown calories are considered
- Calories & diesel to grow the crops not included (yet)
- Time & seasonal constraints not yet applied
 - You can't plant oats in June, or corn in April
- No consideration to protein (yet)
- No meat!

Interpretation

- Adding a portion of chicken to your 'staple crop' diet, what happens to your field size?
- Our homestead raised meat chickens needed 4.5 pounds of mixed grains (7,000 calories) to become 1 pound of meat (600 calories).
- So, the planting space will grow rapidly if you want a chicken dinner!

In Summary

- Explained why this topic is relevant to self-sufficiency
- Identified the types of work required to grow & harvest staple crops
- Demonstrated how to collect agronomic data at the homestead scale
- Using barley as a focus crop, showed how planting density impact yield efficiency (lbs/HSF)
- Compared calorie yield relative to the crop weight
- Estimated 0.6 acres are needed to supply the plant-based calories for 1 adult per year (no meat or eggs)

Questions?

Eleanor & Scott Hucker Great Lakes Staple Seeds seeds@greatlakesstapleseeds.com

SARE PROJECT NUMBER FNC23-1378

Predictive yields for small-scale staple crop production in North Central States using common homestead equipment and minimal inputs