Optimised Engineered Lumber

USING OEL™ - SPECIFICATION AND INSTALLATION¹

OEL™ is an engineered, glue laminated timber intended for use as structural or non-structural framing members in all timber frame construction within the scope and limitations of the OEL™ pass™. It may be used as a direct substitute for the equivalent solid lumber or LVL lumber; for instance GL8 may be substituted for SG8 or LVL8. This document is to be read in conjunction with:

- Wood Engineering Technology Ltd OEL™ pass™
- Wood Engineering Technology Care & Maintenance
- NZS 3604:2011² (as modified by B1/AS1 Amd 18), or NZS 3603:1993³ and AS 1170:20024 (as modified by B1/VM1 Amd 18)
- Building Consent documentation (where applicable).

SPECIFICATION

Specification of OEL™ is no different from specifying solid lumber or LVL. Table 1 below compares the characteristic design values of OEL™ with that of solid lumber⁵.

From this table is can be seen that the characteristic values of GL8 and GL10 exceed that of SG8 and SG10 (respectively). Therefore when specifying GL8 and GL10 NZS, 3604:2011 span tables may be relied on.

Some of the characteristic values of GL12 are less than SG12. Wood Engineering Technology Ltd has prepared GL12 OEL™ specific span tables that must be used when specifying GL12 OEL™.

Where relying on pre-engineered software (such as Mitek or Pryda) ensure that the glulam option has been selected.

All other aspects of specification to be in accordance with NZS 3604:2011 (as modified by B1/AS1 Amd 18), or NZS 3603:1993 and AS 1170:2002 (as modified by B1/VM1 Amd 18) depending on the project scope.

The specification of OEL™ should be undertaken or supervised by a suitably qualified person such as LBP licensed to the applicable design license class.

Table 1

	Characteristic strengths (MPa)								Elastic Moduli (GPa)			
Grade	Bending <i>fb</i>		Tension parallel to grain ft		Shear in beams <i>Fs</i>		Compression parallel to grain fc		Modulus of elasticity parallel to grain		Modulus of rigidity for beams	
	GL	SG	GL	SG	GL	SG	GL	SG	GL	SG	GL	SG
12	25	28	12.5	14	3.7	3.8	29	25	11.5	12.0	0.77	
10	22	20	11	8	3.7	3.8	26	20	10.0	10.0	0.67	
8	19	14	10	6	3.7	3.8	24	18	8.0	8.0	0.53	

FABRICATION

Where used in the manufacture of roof trusses or prefabricated wall framing, the manufacturer must be a member of the Frame and Truss Manufacturers' Association of NZ (FTMA-NZ) or another, relevant, recognised industry association.

- This document supersedes OEL™ Handling, Storage & Installation Requirements v2.0 Sept 2018
- NZS 3604:2011 Timber-framed Buildings
- NZS 3603:1993 Timber Structures Standard
- AS/NZS 1170:2002 Structural Design Actions
- Glulam characteristic values as per AS1720.1:2010 and solid lumber values as per NZS 3604:2011.

CONSTRUCTION

PREPARATION

Health and Safety

Take all necessary steps to ensure your safety and the safety of others:

- ensure adequate ventilation or mechanical dust extraction when cutting or drilling
- ensure the lumber are well supported when cutting
- > wear appropriate safety equipment, clothing and footwear
- use all tools in accordance with relevant instruction manuals
- clear the work area of any obstructions before work starts.

For further information refer to:

- WorkSafe July 2018. Small Construction Sites, The Absolutely Essential Health and Safety Toolkit.
- WorkSafe December 2016. Health and Safety at Work, Quick Reference Guide.

These documents are available at www.worksafe.govt.nz.

STORAGE & HANDLING

When taking delivery of OEL™, handle and store as for solid lumber or LVL:

- Do not tip from truck, man-handle or use flexible lifting strops where possible.
- Keep dry and free from moisture; store on full width packers, off the ground and ensure a good air flow to keep the OEL™ timber dry.
- Store flat so as to avoid warping.
- Cover where exposed.
- Avoid damage from sharp objects, loose debris and scaffold projections.

SKILL LEVEL REQUIRED

Installation of OEL™ should be undertaken or supervised by a suitably qualified person such as an LBP (carpentry), or a skilled DIYer.

TOOLS REQUIRED:

- standard carpentry tools
- ensure all cutting and drilling tools are sharp and fit for purpose.
- power driven nails are acceptable.

INSTALLATION

OEL™ must be installed in accordance with the building consent/ specific engineering. Where the building consent does not provide adequate information or the work is not subject to a building consent, installation must be in accordance with section 8, NZS 3604:2011 (as modified by B1/AS1 Amd 18). For work outside the scope of NZS 3604:2011, installation must rely on a specific design to NZS 3603:1993 and AS 1170:2002 (as modified by B1/VM1 Amd 18).

Supplementary Treatment

Supplementary treatment is required for cut ends and holes where OEL™ H3.2 is used. OEL™ treated to H1.2 does not require supplementary treatment.

Wood Engineering Technology Ltd recommends Brush-On Eco Wood, Metalex, Preschen or similar.

Fixings

All fixings are to be in accordance with the building consent and/ or specific engineering. Where the building consent/specific engineering does not specify fixings, then fixings are to be to in accordance with NZS 3604:2011, section 8.

Where the project falls outside the scope of NZS 3604:2011, fixings are to be specifically designed to NZS 3603:1993.

Moisture Content

Do not install internal linings where the moisture content (mc) exceeds 18%. Be sure to check the mc before installing internal linings.

Notches and holes

Notches and holes are to be in accordance with NZS 3604:2011.

USEFUL INFORMATION

For further information on OEL™ visit www.woodeng.co.nz.

