This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2020.3023284, IEEE

Transactions on Biomedical Engineering

IEEE TBME-00209-2020.R1

Evaluation of a Wireless Tongue Tracking System
on the Identification of Phoneme Landmarks

Nordine Sebkhi', Nina Santus?, Arpan Bhavsar!, Shayan Siahpoushan', and Omer T. Inan', Senior Member, IEEE

Abstract—Objective: Evaluate the accuracy of a tongue track-
ing system based on the localization of a permanent magnet
to generate a baseline of phoneme landmarks. The positional
variability of the landmarks provides an indirect measure of the
tracking errors to estimate the position of a small tracer attached
on the tongue. The creation of a subject-independent (universal)
baseline was also attempted for the first time. Method: 2,500
tongue trajectories were collected from 10 subjects tasked to
utter 10 repetitions of 25 phonemes. A landmark was identified
from each tongue trajectory, and tracking errors were calculated
by comparing the distance of each repetition landmark to a
final landmark set as their mean position. Results: In the
subject-dependent baseline, the tracking errors were found to
be generally consistent across all phonemes and subjects, with
less than 25% of the errors reported to be greater than 5.8 mm
(median: 3.9 mm). However, the inter-subject variability showed
that current limitations of our system resulted in appreciable
errors (median: 55 mm, Q3: 65 mm). Conclusion: The tracking
errors reported in the subject-dependent case demonstrated the
potential of our system to generate a baseline of phoneme
landmarks. We have identified areas of improvement that will
reduce the gap between the subject-dependent and universal
baseline, while lowering tracking errors to be comparable to
the gold standard. Significance: Creating a baseline of phoneme
landmarks can help people affected by speech sound disorders
to improve their intelligibility using visual feedback that guides
their tongue placement to the proper position.

Index Terms—articulograph, machine learning, permanent
magnet localization, phoneme, speech sound disorder, tongue
tracking.

I. INTRODUCTION

HONEMES are one of the elementary building blocks for

the production of speech and are the result of a complex
mechanism that involves the motion and coordination of the
articulators (i.e. tongue, lips, jaw), the vocal folds, and breath-
ing patterns. The intricate mechanism of phoneme production
is hindered for individuals affected by speech sound disorders
(SSD) which are characterized by diminished motion planning
capabilities (apraxia of speech) and/or reduced range of motion
due to muscle weakness of the articulators (dysarthria) [1].
In the United States alone, 7.5 million people and nearly 1
out of 12 children [2] are diagnosed with SSD, resulting in
a reduction of their ability to communicate effectively. This
has negative consequences for their quality of life because
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many daily activities involve verbal communication. In an
attempt to improve speech intelligibility, patients affected by
SSD receive therapy services provided by a speech-language
pathologist (SLP) whose main objective is to correct the
articulators’ placement and motion to produce proper sounds.
Among all articulators, the tongue is the most important for
speech productions [3] but it is also the most difficult to see
during speech as it is hidden inside the oral cavity at times
during production. This visualization difficulty is a significant
issue because it also prevents SLPs from modeling the proper
tongue placement to their patients, in the same way they are
able to model the lips and jaw that are clearly visible.

As an indirect method to guide patients towards proper
tongue placement, SLPs rely on tactile markers to indicate
a target landmark for a specific phoneme. Examples of such
markers include: tongue depressors, straws, a gloved finger,
tongue models, and even flavored lollipops in pediatric prac-
tices [4]. Unfortunately, traditional treatment methods that rely
on these tools can fail to deliver perceivable progress in proper
sound production, as reported with /r/ sounds in children [5].
Additionally, the SLPs assessment of improper tongue place-
ment during therapy can be inaccurate and subjective because
s/he has no access to a visualization of how the patient’s
tongue is moving during examination or while practicing. In
short, an SLP cannot see the patient’s tongue placement during
speech and the patient cannot see the SLP’s tongue when
modeling proper placement. Furthermore, SLPs only have
access to general textbook descriptions of phoneme landmarks
which might not be reflective of their actual positions in
individual patients.

Therefore, access by SLPs and patients to a real-time
visualization of tongue motion during speech would be ben-
eficial during the treatment of SSD. Previous studies [6], [7]
have shown that providing such visualization combined with
overlaid visual targets for tongue placement can improve the
quality of the produced sounds. Aligned with these findings,
the overall objective of this research is to develop such visual
feedback through the gamification of tongue placement. As
illustrated in Fig. 1 (bottom-left), the patient will be able to
compare the phoneme landmarks (shown as flowers) to the
current placement of her tongue (shown as a bee), and a score
will be generated based on the distance errors between them.
This score will serve as an objective measure of speech per-
formance which could be used to reinforce good practice and
result in improved recovery. To develop this visual feedback,
a tongue tracking system is needed not only to provide the
tongue position in real-time but also to find where the phoneme
landmarks are located. Because of the challenges inherent to
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Fig. 1. Overview of the research objective with this work being focused on evaluating the tracking error of the tongue tracking system during speech by
calculating error distances from phoneme landmarks identified from tongue motion. These landmarks will then serve as a baseline and display in a game as
visual targets to help patients with SSD to better correct their tongue placement.

tracking the tongue, few solutions are available in the market
and only two systems are used with regularity by researchers
in speech science: the electromagnetic articulograph (EMA)
that tracks the motion of multiple points on the tongue using
wired sensor probes [8], [9], and the electropalatograph (EPG)
that detects points of contact between the tongue and the
palate thanks to electrodes embedded in a wired over-the-
palate mouthpiece [10], [11]. Although EMA is the gold
standard in research because of high tracking accuracy, the
tongue probes are wired which are not only an impediment
to natural speech [12] but also require a well-trained therapist
to be safely attached, and its cost (>$40,000) is significantly
beyond the budget of SLP practices. Conversely, EPG is more
affordable and is being used by a limited number of SLPs
to provide such visual feedback, but it is restricted to the
few phonemes that can be produced by tongue-palate contact
patterns and the wired mouthpiece is obtrusive which may
impede the natural motion of the tongue.

To address some of the aforementioned shortcomings, a
tongue tracking system has been developed that (1) minimally
impedes natural tongue motion by using a wireless tracking
method based on the localization of a permanent magnet
attached on the tongue (referred in this paper as tracer), (2)
is affordable by using mass-produced components, and (3)
can track the tongue anywhere in the oral cavity. The basic
functioning of this system is to estimate the 3D position of
the tracer from its magnetic field as measured by an array of
magnetometers. By affixing the tracer on a desired location

on the tongue, this system allows the motion of this marked
location to be tracked in real-time and wirelessly. Although the
orientation of the tracer can also be tracked, the focus for this
study is on the position of the tongue since it has more useful
information for speech. In earlier work, the tracking accuracy
of the first prototype was assessed in an in-lab test setup [13]
and a feasibility study on generating a baseline of phoneme
landmarks was conducted [14]. The knowledge obtained from
these studies led to the creation of a new version of the system
[15] in which the main changes included a complete redesign
of the body in the form of a headset to enable the system to
be wearable and reduce head/body motion artifacts, and the
implementation of a more robust tracking algorithm utilizing
deep learning of a feedforward neural network. However, the
assessment of the tracking accuracy was performed using an
in-lab test setup that emulated tongue motion thanks to a
positional stage that accurately placed the tracer at desired,
and thus known, positions [15].

To generate a baseline of phoneme landmarks, the tracking
accuracy for actual, rather than emulated, tongue motion
must be assessed. This is challenging because there is no
obvious ground-truth to compare against. In [16], [17], the
researchers used an EMA system and attached two probes on
the buccal surface of the jaw and at a known distance. The
subjects were asked to read a paragraph while the positions
of the probes were recorded. The actual distance between the
probes remained constant throughout the recording session,
thus the tracking error was assessed as its deviation when
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compared to the measured distances. This method is well
suited to indirectly assess tracking accuracy during speech,
but it requires at least two probes to be tracked simultaneously
while only one tracer can be tracked in our system design as
a trade-off to allow the wireless tracking method. Therefore,
our research team constructed a different method to estimate
the tracking accuracy of our system during speech.

In this paper, the evaluation of tracking accuracy of our sys-
tem during actual speech is performed indirectly by generating
a baseline of phoneme landmarks. Using the assumption that
a phoneme landmark for a person without any SSD is always
located at a same position for that individual, any positional
variability in tongue placement around that landmark can thus
be interpreted as a tracking error. Indeed, if a speaker utters a
same phoneme with many repetitions, its positional variability
provides a measure of how far apart the landmarks are, and
consequently, an indirect measure of how accurate our system
is at tracking tongue motion. In reality, the assumption that a
phoneme landmark is always located at the same position is
not valid because there is a natural positional variability when
we produce a phoneme [18], [19]. Therefore, the variability
measured with this method is effectively an upper bound
for the system’s tracking error since it also includes this
natural tongue placement variability that, although unknown,
is supposed to be roughly within a range of 1-3 mm [18].

To generate such a baseline, a human study was conducted
to record the tongue motion of 10 SLP students, recruited from
the Communication Sciences and Disorders (CMSD) major,
that were asked to utter 10 repetitions of a set of 25 phonemes
found in American-English and for which tongue placement is
critical for their production. As illustrated in Fig. 1, for each
phoneme uttered by a subject, a tracking error was calculated
between each of the 10 landmarks (one per repetition) and their
mean position. These landmarks were also used to generate a
universal (i.e. subject-independent) baseline.

The rest of the paper is organized as follows: Section II
provides more details about the system, data collection, and
analysis; Section III provides the positional variability of
the phoneme landmarks; Section IV discusses these results;
Section V concludes on the significance of our results and
broader impact of this work.

II. METHODS

Fig. 1 provides an overview of the method used to evaluate
the tracking accuracy of the system. The tongue motion
of 10 subjects were recorded wirelessly while each subject
produced a set of 25 phonemes for 10 repetitions. Each tongue
trajectory was processed to identify a phoneme landmark, and
the resulting 2,500 landmarks were analyzed to calculate the
tracking errors. More details are provided in the following
sections.

A. Tongue Tracking System

Fig. 2 provides an overview of the tongue tracking system
and more details can be found in [15]. The tracer generates a
magnetic field that is measured by an array of magnetometers
at a sampling frequency of 100 Hz. The cylindrical tracer is

Localization

Magnetometers

Fig. 2. The system tracks the 3D position of a magnetic tracer attached on
the tongue. This wireless tracking relies on a localization algorithm, based
on a neural network, that converts the measurements of the tracer’s magnetic
field by an array of magnetometers to its position. The magnetometers are
embedded in a custom-designed headset that transmits all recorded data to a
computer using a USB connection.

non-toxic, has a diameter of 4.8 mm and a thickness of 1.6
mm, and is attached on the tongue’s blade using an FDA-
approved oral adhesive (PeriAcryl®, GluStitch Inc., Canada).
The magnetometers are embedded in a stationary headset,
designed and 3D-printed in the researchers’ lab, and are
placed on each side of the mouth. Additionally, the headset
houses a microphone for voice recording (96 kHz), and a
communication interface to transmit data (i.e. magnetic and
voice) to a computer using a standard USB connection. The
headset is safely secured on the subject’s head thanks to an
adjustable strap, and is tethered to an external support to
prevent undesired head/body motion. Although this system has
the capability to track lip motion, this feature is not used in
this study.

In earlier work [15], a new localization algorithm was
developed based on a feedforward neural network that mapped
the magnetic field read by the magnetometers to the 3D
position of the tracer. Our localization algorithm was trained
by collecting 1.7 million samples where each sample is a
unique combination of 3D positions and 2D rotations of the
tracer, and enclosed in a 10x10x10cm? volume chosen because
that dimension encompasses all sizes of human oral cavities.
The median positional error of the localization was reported
to be 1.4 mm. The innovative approach of this localization
method is that the tracking is performed wirelessly since no
wires nor electronics are present in the mouth which enables
the user to speak more naturally than other existing tongue
tracking systems (e.g. EMA, EPG).

B. Data Collection

Ten CMSD students at the University of Georgia were
recruited based on the following criteria: having passed a
phonetics class, having no history of speech disorders, and
having no intra-oral magnetic device that would interfere with
the magnetometers. All subjects were female, between the
age of 21-36 y.o., and were raised in the state of Georgia
(USA) except for subject #10 from Chicago (Illinois, USA).
This study was approved by the Georgia Tech Institutional
Review Board and carried out at the University of Georgia.
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Fig. 3. Illustration of a subject using our tongue tracking system during a
data collection session.

A new and sterilized tracer was used for each subject and
placed mid-line on the blade of the tongue using the adhesive
(~1 cm from the tip). The subjects were first asked to read the
Grandfather Passage [20] to become accustomed to speaking
with the tracer, and then asked to repeat each phoneme in the
following lists with 10 repetitions:

e 1 sound: [or, arr, ar, auT, I, 1]

e vowel: [®,0,€,9,9 ¢,1, 1, u,u]

e consonant: [d,1,n,s,t,z, |3, 0]

The phonemes were produced in isolation except for the
consonants that were followed by a vowel. The subject’s voice
was also recorded by the headset’s built-in microphone, and
a clicker was used by the subject to start/stop the recording
of each repetition. The subjects were instructed to elongate
and articulate their speech, and were allowed to record back
any repetition if they feel it was said in error. In an attempt to
minimize variation in phoneme production between subjects, a
reference audio file was played before each new phoneme and
a word was displayed to provide a context in which the target
phoneme is used. At the end of the recording session, the tracer
was detached from the tongue and disposed. An illustration
of a subject using the tongue tracking system during a data
collection session is shown in Fig. 3.

C. Data Analysis

The data analysis is roughly composed of three steps (Fig.
4) with each step explained in more details in the following
subsections.

1) Landmark Identification: The first step is to identify a
landmark for each of the 2,500 tongue trajectories collected
in this study (10 subjects x 25 phonemes x 10 repetitions).
First, a raw tongue trajectory from our database is extracted
for a given subject, phoneme, and repetition. Then, by using
its associated audio recording, the period of active speech is
identified and the non-speech parts of the raw trajectory are
trimmed out. This intermediate step is designed to facilitate
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Fig. 4. Overview of our data analysis in which (1) the phoneme landmarks are
identified from the tongue trajectories that were pre-processed by trimming out
non-speech components, (2) positional variability are calculated in a subject-
dependent case, and (3) the final landmarks for each phoneme and subject are
combined together to generate a universal baseline.

the identification of the phoneme landmark. To better automate
this step, a software was developed (Fig. 5) and is composed of
the following parts: (1) a settings bar where the investigators
can select a particular trajectory from the database, play the
recorded voice, and set the start/stop time markers of the
active speech period; (2) trajectory displayed as three time
series (one per axis) with the positions recorded during active
speech highlighted in color; (3) voice waveform with active
speech highlighted in blue. The 3D position of a landmark
is set by clicking on a target point on any of the time
series, typically the longitude (Y) or height (Z), where the
investigators estimated that it is representative of that phoneme
(the other 2 values are automatically set based on the time
stamp of the selected point). To further assist the investigators,
a candidate landmark is automatically selected by an algorithm
that implements the following steps for each axis: generate a
histogram of the positions, and then select the bin with the
highest distribution. This algorithm is only used to provide an
initial estimation, but the investigators are tasked to set the
final landmark by selecting this candidate or manually mark
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Fig. 5. User interface of the phoneme landmark identification program that
displays the tongue trajectory as three time series, one per axis, and its
associated voice waveform.

another position.

2) Positional Variability for Subject-Dependent Baseline:
The objective of this step is to measure the positional variabil-
ity of the phoneme landmarks for each subject individually
to evaluate the ability of our system to generate a subject-
dependant baseline. First, a subject’s final phoneme landmark
is set as the mean position of all the 10 repetition landmarks
for that phoneme. Then, for each phoneme’s repetition, a
tracking error is defined as the Euclidean distance between
that repetition and its final landmark. Finally, a positional
variability is set per subject and by combining all the tracking
errors together.

3) Positional Variability for Universal Baseline: The end
goal of the overall research is to generate a baseline of
phoneme landmarks that can be used for anyone, i.e. a baseline
that is subject independent (referred here as universal). Since a
final phoneme landmark was identified for each subject in the
previous step, a universal phoneme landmark can be defined
as the mean position among all the subjects’ landmarks for a
given phoneme. Similar to the previous step, an error can be
measured as the Euclidean distance between each subject’s and
its universal phoneme landmark. An inter-subject variability is
then created by combining these errors.

III. RESULTS

Fig. 6 shows a summarized view of all tracking errors (top
right) along with more detailed views of the errors split by
subject (top left) and by phonemes (bottom). Overall, 75%
of the phoneme landmarks identified from the tongue motion
are within 5.8 mm of their estimated true position, while the

median tracking error is 3.9 mm. Compared to the tracking
errors reported in our in-lab test setup [15], these results are
roughly three times higher than the testing set (median: 1.4,
Q3: 1.8) but only 2x higher than the validation set (median:
2.3, Q3: 3.1). The highest errors are found for subject #7 with
a Q3 of 7.4 mm, and the lowest for subject #2 with a Q3 of
4.2 mm. Interestingly, there is no demographically distinctive
features that were found between these two subjects: both
were born and raised in state of Georgia, are the same age
(22 y.0), same ethnicity, and have similar accent (slightly
southern). Regarding the split by phonemes, the variability is
more consistent with slightly higher errors for the /r/ sounds
and lower values reported for the consonants.

For the universal baseline, the inter-subject variability is
shown in Fig. 7 and split across phonemes. Overall, the errors
are much higher (median: 55 mm, Q3: 65 mm) and less
consistent (interquartile range: >20 mm). These results are
an order of magnitude (>10x) higher than the ones reported
for the subject-dependent case and show that the generation
of a universal baseline of phoneme landmarks is not feasible
with the current version of our tongue tracking hardware and
software. A discussion of the potential reasons for such a
limitation of our system is provided in the following section.

IV. DISCUSSION

As far as we know, this work is the first attempt to produce
a universal baseline of phoneme landmarks. Although the
generation of a universal baseline is not the objective of our
current study but the ultimate goal of the overall research,
it allows us to better identify the limitations of our current
system and facilitates the creation of a roadmap for our future
work. For instance, because the subject-dependent errors are
much lower, a poor alignment of the trajectories between
subjects could be the main reason for such high errors. Indeed,
since the head of each subject is placed at a different position
and orientation in the headset, the tongue trajectories for each
subject were projected into a common frame of reference for
inter-subject comparison. This projection of coordinates relied
on estimating the position of five specific points in the oral
cavity using a method similar as that in [19]. This procedure
was not tested with our system, and thus can introduce signif-
icant errors due to alignment rather than tracking. Although
unlikely as significant as alignment errors, additional errors
are introduced by the fact that there is no method currently
available to ensure that the tracer is placed at the same position
on the tongue between subjects. Also, as reported in [19], the
morphology and dimension of the oral cavity have an impact
on the placement of phonemes. In future studies, we will verify
that a reduction of these effects would decrease the differences
in errors between the subject-dependent and universal cases.

For the subject-dependent baseline, the shortcomings of the
universal case are generally not applicable since, as long as
the data collection occurs in a single session, there is no need
for a projection of coordinates and to account for differences
in tracer placement and mouth morphology. However, errors
unrelated to tracking can still occur. For instance, the process
of selecting a landmark by a human, either by approving the
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Fig. 6. Box plots of the tracking errors. The top-left plot shows the errors split by subject, the bottom plot by phoneme, and the top-right plot shows the

final result with the tracking errors calculated across all landmarks.
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automated selection or manual identification, can add errors
since this method is prone to subjectivity. Regarding the errors
split by phonemes, the consonants have generally lower errors
and this could be explained by the fact that the placement
of the tongue’s blade has a more important impact on the
production of these phonemes. Indeed, the tongue’s blade is
in contact with the palate and/or front teeth, which increases
the proprioception of the position of the tongue, and thus
improves our ability to accurately place the tongue in a same
location. In addition, higher errors in the /r/ phonemes may be
attributed to different tongue configurations that can produce
that phoneme [21]. These differences can occur both across
and within speakers [22].

It is challenging to make an insightful analysis of the results

r er or aor air ar |All

Inter-subject variability of the positional errors for the phoneme landmarks, with the right-most box plot being the variability with all phonemes

because the science in speech sound production is still in its
infancy with only few studies that have attempted to record
tongue motion during speech production including, but not
limited to, the studies in [7], [12], [18], [23], [24]. There are
many reasons for the lack of research in that field such as
the fact that tracking the tongue during speech and without
impeding its natural motion is difficult to achieve, and because
of the inherent complexity in articulation, motor control, voic-
ing, among other mechanisms involved in speech production.
For instance, the majority of the phonemes were produced in
isolation while some consonants were followed by a vowel (C-
V sequence). We found that it was more challenging to identify
a characteristic landmark when a phoneme was produced in
isolation and it might be more more difficult for the subjects
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to place their tongue in a consistent location when producing
the phonemes in that manner instead of a C-V-C or V-C-V
sequence as done in other studies [19]. Additionally, it was
observed that the subjects were not consistent between each
other in how they uttered some phonemes even though our
data collection was designed to reduce such variability. Indeed,
a reference sound was played when a new phoneme was
displayed, a word was shown alongside the target phoneme to
provide a context for its pronunciation, and the subjects were
CMSD students in the same program that recently passed a
phonetic class where they learned how to properly produce
these phonemes.

Before attempting to conduct a follow-up human study of
clinical value, solutions need to be found to some important
technical challenges. First, we must find a method to either
place the tracer at the same position and in a consistent
manner, or to account for this offset and post-process the
trajectories. Secondly, the dimension of the oral cavity and the
tongue must be taken into account when comparing the land-
mark positions between subjects as indicated in [19]. Third, the
current headset version is stationary and thus forces the user
to remain still for an optimal tracking accuracy because our
system cannot remove magnetic disturbances, mainly due to
interference from the Earth’s magnetic field, when the headset
is moving. However, natural body/head motion cannot be
fully restricted and thus adds motion artifacts in the recorded
trajectories that is not from the tongue. Future plans include
the development of an algorithm to dynamically remove the
magnetic disturbances, similar to the method described in [25],
which will allow the user to freely move while wearing the
headset and ensuring a satisfactory tracking accuracy. Finally,
this study evaluates the repeatability in tracking but not its
precision since the actual value of the tracer’s positions are
unknown. EMA could serve as a ground truth but the two
systems cannot be used at the same time because they will
interfere with each other. A subject could be asked to utter
the same sequence of phonemes in one system at a time, but
this will add some unknown, though likely not significant,
variability due to the fact that the landmarks positions will
be compared from different trajectories. Another possibility
would be to place the tracer at known positions in the oral
cavity, such as teeth and special oral landmarks [18], [19], but
this would provide only a few data points for our evaluation of
tracking precision. The combination of these methods might, at
least, provide some indication of the tracking precision during
actual speech.

Among the main limitations of our system is the fact that
only one tracer can be tracked at a time. Undoubtedly, tracking
multiple tracers simultaneously will provide more articulatory
information about the tongue. A multi-magnet localization is
an ongoing research in this field [26] but the tracking accuracy
will likely decrease as compared to a single magnet due to the
increased complexity of solving the nonlinear optimization in
traditional localization methods or the exponential increase in
the size of the training dataset with each added magnet in
our method based on a neural network. Nonetheless, until a
multi-tracer magnetic localization is available, tracking one
tracer remains useful since studies such as [24], [27] show

that tracking the tongue tip, along with upper and lower lips
that can be tracked using more conventional methods (e.g.
reflective trackers, computer vision), allows for speech to
be recognized with high accuracy (>90% word recognition
[27]). Although some phonemes (e.g. vowels) might likely
be challenging to uniquely identify using one flesh point, the
tracer can be placed in a different location on the tongue for
each phoneme to generate the most useful visualization of
tongue placement. Furthermore, our system is designed to be
used in conjunction with other tongue placement tools, such
as tongue tips or bite blocks, to enhance the range of treatment
tools available to SLPs during speech therapy.

V. CONCLUSION

The creation of a baseline of phoneme landmarks was
carried out in a human study in which 10 CMSD students
were asked to utter 25 phonemes comprised of consonants,
vowels, and variation of /r/ sounds. These phonemes were
selected because of the importance of tongue placement for
their production. A new wireless tracking system captured
the motion of the tongue while a subject was uttering 10
repetitions for each phoneme. The positional variability of
the phoneme landmarks was first calculated in the subject-
dependent case, and the final landmarks for each subject were
used to evaluate the feasibility of a universal baseline. We
found that the inter-subject positional variability is sufficiently
high (median: 55 mm, Q3: 65 mm) to conclude that a universal
baseline cannot be generated by our current system. However,
the positional variability in the subject-dependent case is an or-
der of magnitude lower (median: 3.9 mm, Q3: 5.8 mm) which
shows that the differences are unlikely due to a poor tracking
accuracy of our system but mostly from technical challenges
inherent to comparing tongue trajectories between subjects in
which normalization and alignment have a stronger impact.
Furthermore, the tracking errors reported for the subject-
dependent baseline are effectively upper bounds since they
include natural tongue placement variability. Regardless, in
future work, the tracking error of our system must be reduced
to provide positional variability of phoneme landmarks that
are comparable to EMA [18] while enabling our system to
be fully wearable. Once satisfactory tracking accuracy will be
reached, our tongue tracking system will enable researchers
in speech science to collect valuable information in a way
that minimally impacts natural speech thanks to its wireless
tracking method. Also, the system is affordable because it is
composed of mass-produced components which will enable
more researchers to access this tool and collect data to increase
the body of knowledge about the influence of the tongue in
speech production. More importantly, the overall objective is
to enable our system to be used in speech therapy where it can
help millions of people affected by speech sound disorders to
achieve increased intelligibility, and thus, improve their quality
of life.
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