

Chemical Identification and Purity Determination of β-Nicotinamide Mononucleotide by NMR Spectroscopy

Report: R2023492.01

Date: 18 Sep 2023

Project: 2023480

Prepared for: Kevin Toman Natural Pet. Health

Byon bu

09/18/2023

Byungsu Kwon, Ph. D., Director of NMR

Date

Reviewer:

Author:

09/18/2023 Date

Aeri Park, Ph.D., Chief Operating Officer

Date

This is a non-cGMP report and has not been reviewed by QA.

1. Introduction

Natural Pet. Health submitted β -nicotinamide mononucleotide (NMN) (**Figure 1**), lot B220634F for chemical identification and purity determination by proton nuclear magnetic resonance (¹H NMR) spectroscopy. The acquired ¹H NMR spectrum of the submitted sample was compared to its reference ¹H NMR spectrum for chemical identification (1). The purity determination of the sample was performed by quantitative NMR (qNMR) analysis using dimethyl sulfone as an internal standard. The client submitted two identical samples (TCL20600 and TCL20601), but only TCL20600 was utilized for NMR analysis. The detailed sample information is summarized in **Table 1**. Throughout this report, the β -nicotinamide mononucleotide, lot B220634F will be referred to as NMN.

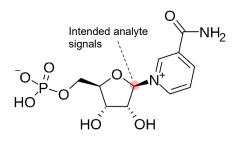


Figure 1. The chemical structure of β -nicotinamide mononucleotide.

Triclinic Labs' Identifier	Compound	Lot Number	Sample ID	NMR Filename	Analysis
20600	β-nicotinamide mononucleotide	B220634F	1288-60-1	NMR1-3609	Chemical ID/Purity
20601	β-nicotinamide mononucleotide	B220634F	-	-	-

Table 1. Summary of samples analyzed by ¹H NMR and qNMR spectroscopy

2. Results

The ¹H NMR spectrum (**Figure 2**) of NMN was compared with its reference ¹H NMR spectrum (**Figure 3**) (1). The chemical shifts (peak positions) and integrations of the acquired spectrum correspond to its reference spectrum, confirming the chemical identity. There are no visible impurities or residual solvents present in the NMR spectrum. **Table 2** summarizes the qNMR results showing the purity of NMN. A single measurement was performed¹ (**Figure 4**) using dimethyl sulfone² as an internal standard. The proton signal in the ribose sugar ring (**Figure 1**) at 6.25 ppm (doublet) were chosen due to its distinct separation from other peaks in the

¹ Typical qNMR analysis is performed by triplicate analysis, however the client requested a single measurement. ² The chemical shift of dimethyl sulfone (3.17 ppm) does not interfere with the analyte peaks.

spectrum. Based on the qNMR results, the purity of NMN is approximately 98.5%. The qNMR equation is below:

$$P_a(purity) = \frac{A_a}{A_{IS}} * \frac{N_{IS}}{N_a} * \frac{Wt_{IS}}{Wt_a} * \frac{MW_a}{MW_{IS}} * P_{IS}$$

Where, P_a is the purity of the analyte, A_a is integral of the analyte, A_{IS} is integral of the IS, N_{IS} is the number of IS protons, N_a is the number of analyte protons, W_{IS} is mass of the IS, Wt_a is mass of the analyte, MW_a is the molecular weight of the analyte, MW_{IS} is the molecular weight of the IS, and P_{IS} is the purity of the IS.

Table 2: Determination of purity of β -nicotinamide mononucleotide, lot B220634F.

Sample ID	Wta	Aa	Ais	Na	NIS	MWa	MWIs	Wt _{is}	P _{IS (%)}	P _{a (%)}
1288-60-1	34.994	5.38	6	1	6	334.22	94.13	1.804	100	98.5

3. Conclusion

The chemical identity of β -nicotinamide mononucleotide, lot B220634F was confirmed, and no visible impurities and residual solvents are present in the ¹H NMR spectrum. The purity was determined to be 98.5% by NMR spectroscopy analysis.

4. References

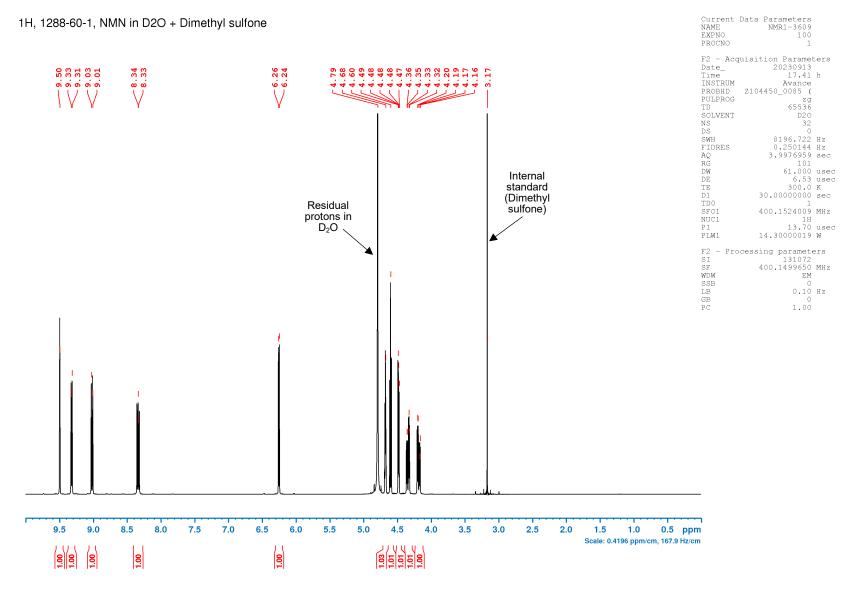
1. https://www.nutralion.com/product/%CE%B2-nicotinamide-mononucleotide-nmn/.

5. Experimental

¹H NMR Spectroscopy

The ¹H NMR spectrum was acquired on a Bruker NEO 400 MHz spectrometer using TopSpin GxP 4.1.4 software at Triclinic Labs. The acquired spectrum was processed using TopSpin GxP 4.1.4 and referenced to the chemical shift of the residual solvent peak (e.g., D_2O at 4.79 ppm). More detailed NMR sample preparation and acquisition parameters are provided in **Tables 3 and 4**. The NMR sample was prepared under ambient laboratory conditions.

TCL Number	Sample ID	Sample Preparation
TCL20600	1288-60-1	34.9935 mg of TCL20600 was dissolved in a mixture of 0.5 mL of dimethyl sulfone stock solution ³ and 0.5 mL of D_2O .


Table 4: Acquisition parameters

Parameter Name	Parameter Value
Sequence	zg
Size of FID (TD)	65536
Acquisition Time	4 sec
Spectral Width	8197 Hz
D1 (relaxation delay)	30 sec
Number of Scans	32
Transmitter Frequency	400.15 MHz
Transmitter Frequency Offset (O1P)	6.0 ppm
Line Broadening	0.1 Hz

 $^{^3}$ 18.04 mg of dimethyl sulfone was dissolved in 5 mL of D₂O.

6. Figures

Figure 2. The ¹H NMR spectrum of 1288-60-1 (β -nicotinamide mononucleotide, lot B220634F)

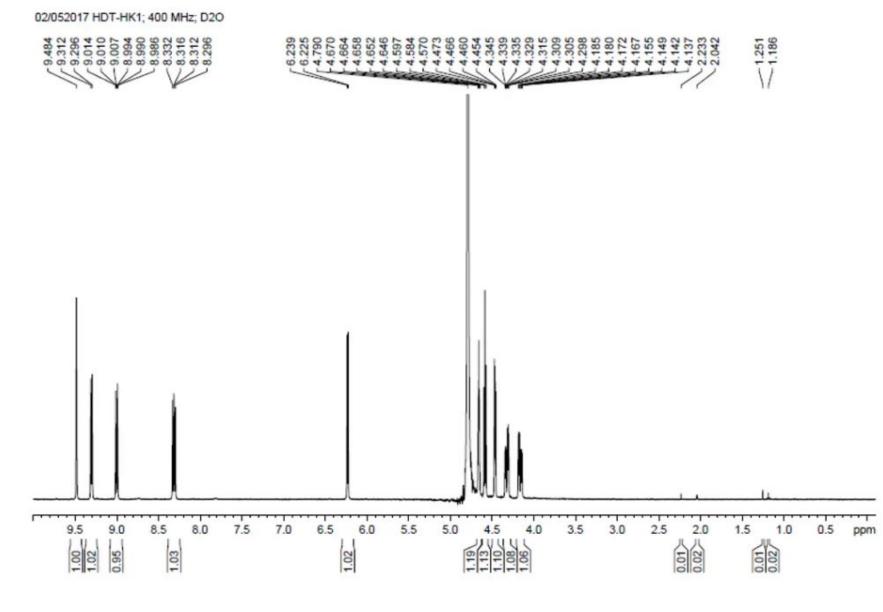
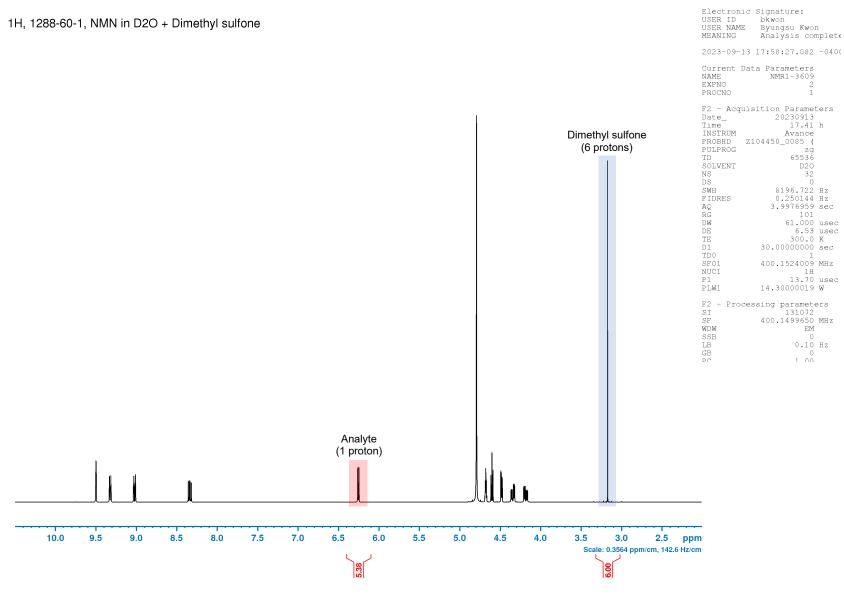



Figure 3. The reference ¹H NMR spectrum of β -nicotinamide mononucleotide (1).

Triclinic Labs Report

R2023492.01

Figure 4. The ¹H qNMR spectrum of 1288-60-1 (β -nicotinamide mononucleotide, lot B220634F) with an internal standard. The integration values for the analyte and internal standard were utilized for purity determination.

