PowerSNMP for ActiveX Upgrade Guide

The very successful "PowerSNMP for NET" product was used as our model for this new ActiveX version that
adds the following features:

e SNMP version 3 security

e [Pv6 addressing

e Improved Table retrieval and formatting

e New 64-bit version

e Dart.CoreAx.dll is mtroduced, offering classes for use by Dart. SnmpAx.dll (*marked with asterisks
below)

This guide walks the reader through the changes required to upgrade an existing PowerSNMP for ActiveX
project to use these new features. All product GUIDs are new, so previously licensed products can be installed
'side-by-side' with the new product to make this process easier.

New Vs Old

Considering the added capabilities and reliability goals, our designers decided to model this upgrade after the
seasoned PowerSNMP for .NET product (instead of simply extending the previous design). This had the desired
result of better code reusability/reliability, fewer properties and methods, and enhanced usability. We understand
that this provides our customers with an upfront cost, but are confident the improved design mmimizes life-cycle
costs moving forward.

The following tables summarize what the new class structure looks like. You will note we've borrowed ideas
from the .NET designers.

Class Comparison (New vs Old)

New Classname Old Classname Summary
Agent (control) Agent (control) Functionally the same, with new features.
Manager (control) Manager (control) Functionally the same, with new features.

Holds authoritative engine data. Presented as
AuthoritativeEngine n/a Manager. AuthoritativeEngine and
Agent. AuthoritativeEngine.

Holds authoritative engine data received from remote

Engme na authoritative engines.
: Holds dictionary of Engine objects, indexed by
EngineMap na [PEndPoint. Presented as Manager.EngineCache.
Holds IPv4 and IPv6 addresses. Replaces prior use of
IPEndPoint* n/a parameters/properties for hostnames, addresses, and
ports.
PEndPointList* Wa Holds a list of IPEndPomnt objects. Used to provide a list

oflocal IP endpoints the socket can bind to.

Now initialized with SMIv2 nodes. Improved loading of

Mib SnmpMib
: TP MIB fies.
MibNode Variable Prewou:s. Varlable? class included pode attribute:s as
properties. Creating a new class improved clarity.
Provides MibNode lookup by OID and name. Presented
MibNodeMap wa as Agent.Mib.Nodes and Manager.Mib.Nodes.
MibTrap SnmpTrap Minor changes.
MibTrapMap SnmpTraps Minor changes.
Security n/a Holds SNMPv3 parameters and processing.
SnmpMessage SnmpMessage Minor changes.
Table support simplified and enhanced by creating
wa SnmpTable Manager.Walk() and VariableList. ToTable() methods.
Table support simplified and enhanced by creating
wa SnmpTableRow Manager.Walk() and VariableList. ToTable() methods.
StringList* DartStrings Name change for consistency.
System™ System Will now return a list of local IPEndPoint objects.
User Wa Holds username, passwords, and SNMPvV3 security
algorithms to use. Presented as Security.User.
' Holds a list of User objects. Presented as
UserList n/a Manager. TrapUsers.
Holds a dictionary of User objects, referenced by name.
UserMap wa Presented as AuthoritativeEngine.Users.
No longer used to describe a MibNode, has been
Variable Snmp Variable specialized for use in SnmpMessage. Variables and
Mib.Variables.
: . . Updated name to reflect List nature. Presented as
VariableList Snmp Variables SnmpMessage. Variables and Mib. Variables.
Enum Comparison (New vs Old)
New Enum Old Enum Summary
AuthenticationConstants n/a Enumerates authentication hash algorithm used.
DeliveryContants™* n/a Enumerates direction of message travel.
Obsolete enum superceded with errors defined in
n/a ErrorConstants .
WinError.h
ErrorConstants ExceptionConstants Name updating,
GenericTrapConstants TrapConstants Name updating,
PduConstants TypeConstants Changed to perform as a bit-mask. Identifies the type

of PDU.

PrivacyConstants n/a Enumerates encryption algorithm used.
Security.ReportFlag uses this flag to ndicate a Report

ReportConstants wa message should be sent to the requestor.
SecurrtyLevelConstants n/a Enumerates user security level.
ThreadingConstants* n/a Enumerates threading technique to employ.
UsageConstants n/a Identifies what a MibNode object is used for.
VariableAccessConstants AccessConstants Name updating.

n/a VariableExceptionConstants Functionality replaced with PduConstants.
VariableStatusConstants ~ StatusConstants Name updating.

VariableTypeConstants ~ VariableTypeConstants Name updating,

Common Usage Scenarios

Agent Responds to Requests from Managers

Old VB6 code

' Start listening on port 161
Agentl.Open 161

' Request event is raised when request message arrives and is decoded
Private Sub Agentl Request()

' Agentl.Message contains decoded request
End Sub

Private Sub Agentl Response ()
' Agentl.Message now contains the default Response
End Sub

New VB6 code

' Add all users to AuthoritativeEngine so we can respond to v3 requests
Dim user as New User

user.Name = "joe"

' Set other user properties for authentication and privacy if required
Agentl.AuthoritativeEngine.Users.Add user

' Add other users

' Use "Start" to listen on port 161

' Use new IPEndPoint instead of Nothing if:

! 1. IPv6 interface is desired

! 2. Selection of non-default IP interface is desired

! 3. Selection of special port is desired

' Use additional (non-default) parameter to specify FreeThreading for console
applications

Agentl.Start Nothing

' Request event is raised when request messages arrive
Private Sub Agentl Request (ByVal requestMessage As DartSnmpCtl.ISnmpMessage)
Dim response As SnmpMessage

Set response = Agentl.CreateResponse (requestMessage)
Agentl.SendResponse response, requestMessage.Origin
End Sub

To summarize, the new interface:

e removes the SnmpMessage.Message property in favor of making it a parameter of the Request event
e removes the Response event in favor of using CreateResponse() and SendResponse()

e provides a more declarative and explicit interface

¢ adds free-threading support for console, web, service applications

* adds user-based security for v3 by configuring AuthoritativeEngine properties

Agent Sends a Trap

Old VB6 code

' Open an ephemeral port on a new Agent for sending a trap
Agent2.0Open

' Initialize Trap Message

Agent?2.Message.Reset

Agent2.Message.Type = snmpTrapl
Agent2.Message.GenericTrap = snmpWarmStart
Agent2.Message.Enterprise = "MyEnterprise"

'Add sysUpTime Variable to Trap

Dim var As New SnmpVariable

var.0id = Mib.Variables.GetOIDFromName ("sysUpTime")
var.Type = snmpTimeTicks

var.value = (GetTickCount - startTime) / 10 'hundredths ofa second
Agent2.Message.Variables.Add var

' Set destination and Send
Agent2.TrapManagers.Clear

Agent2.TrapManagers.Add txtDestination.Text
Agent2.Send

New VB6 code

' No need to Open a port...SendTrap takes care of that...reuse SysUpTime from Agentl
Dim msg as New SnmpMessage
msg.Type = pduTrapl

msg.GenericTrap = trapWarmStart

msg.Enterprise = "MyEnterprise"

' Agentl.SysUpTime is used for first variable value during trap encoding

' Send trap to IPEndPoint (agentEndPoint) initialized elsewhere...uses an ephemeral
port

Agentl.SendTrap msg, agentEndPoint, Nothing
To summarize, the new interface:

¢ removes the Agent. TrapManagers property in favor of explicit use of an [IPEndPomt in Agent.SendTrap (this
enables [Pv6 addressing)

e automatically uses Agent.SysUpTime property as required for first variable binding

e operates independently of Agent.Start method (except for initialization of SnmpMessage.SysUpTime

property)
e adds user-based security for v3 by setting SnmpMessage.Security. User properties (not shown)

Manager Receives a Trap or Inform Request

Old VB6 code

' Open a port for receiving traps
Managerl.Open 162

' Open a port for receiving traps...previous manager did not process inform requests
Private Sub Managerl Trap ()

'Fires when manager receives a trap

'Add trap info to trap log

trapLog = trapLog + "Trap received @ " & Now & " from host " + Managerl.AgentName
+ vbCrLf

Dim var As SnmpVariable

For Each var In Managerl.Message.Variables

trapLog = trapLog + var.0id + " " + v.value + vbCrLf

Next

End Sub

New VB6 code

' Open a port for receiving traps and inform requests...binds to IPv4 port 162 by
default
Managerl.Start Nothing

Private Sub Managerl Trap (ByVal trapMessage As DartSnmpCtl.ISnmpMessage)
' Trap message has arrived. No acknowlegement required. ToString () method replaces

old code.
trapLog = traplog + trapMessage.ToString() + vbCrLf
End Sub

Private Sub Managerl Inform(ByVal informMessage As DartSnmpCtl.ISnmpMessage)
' Inform message has arrived. Send back a response (acknowlegement)
Dim message As SnmpMessage
Set message = Managerl.CreateInformResponse (informMessage)
Managerl.SendResponse message, informMessage.Origin

End Sub

To summarize, the new interface:

* adds support for responding to inform requests from other managers
e SnmpMessage, VariableList and Variable have new ToString() method that creates a readable description
of the object

Manager Sends a Get Request

Old VB6 code

' Open an ephemeral port
Managerl.Open

Managerl.AgentName agentHostName

Managerl.AgentPort = 161

Managerl.Timeout = 5000

Managerl.Message.Reset

Dim var As New SnmpVariable

'Add ".0" to the end of non-table OID

var.0id = Managerl.Mib.Variables.GetOIDFromName ("sysDescr") + ".0";
Managerl.Message.Variables.Add var

Managerl.Send
textBoxSysDescr.Text = Managerl.Variables[1l].Value
Managerl.Close

New VB6 code

' No need to Open a port...GetResponse() always creates a new socket for its use
Dim request as new SnmpMessage

request.Variables.Add Managerl.Mib.Nodes (NodeNames.sysDescr) .CreateVariable
request.Type = pduGetl

Dim response As SnmpMessage

' agentEndPoint describes any IPv4 or IPv6 address, "Nothing" indicates any local
IPEndPoint may be used

Set response = Managerl.GetResponse (request, agentEndPoint, Nothing)

textBoxSysDescr.Text = response.Variables[0].Value
To summarize, the new interface:

e removes the need to open/close a socket

e can use blocking, asynchronous, or pseudo-blocking (while processing message loop), whereas old
mterface was blocking or asynchronous only

* using the asynchronous option, can now make multiple requests in parallel (worker threads operate
independently)

e VariableList is now indexed using a 0-based integer

* adds user-based security for v3 by setting SnmpMessage.Security.User properties (not shown)

Manager Gets a Table

Old VB6 code

' Open a port for getting table
Managerl.Open
Managerl.AgentPort = 161
Managerl.AgentName = agentHostname
Dim tableVariables As New SnmpVariables
Dim tableOid As String
'find table's 0id in mib
tableOid = Managerl.Mib.Variables.GetOIDFromName ("ifTable")
Dim v As New SnmpVariable
v.0id = tableOid
'start with table's 0id and send getnext requests until end of table is reached
(called a "Walk")
Do True
Managerl.Message.Reset
Managerl.Message.Type = snmpGetNextl

Managerl.Message.Variables.Add v
'Stop if error occurs
Managerl.Send
'Add variable in response to tableVariables collection
'Stop if response is not part of table
If Mid(Managerl.Message.Variables(l) .0id, 1, Len(tableOid)) = tableOid Then
tableVariables.Add Managerl.Message.Variables (1)
Else
' Id does not fall under table tree, so exit loop
Exit Do
End If
'Use 0id in response for next getnext request
v.01id = Managerl.Message.Variables (1) .0id
Loop
' Formating code not shown because it was so complex

New VB6 code

' No need to Open a port...Walk takes care of that
' table is a 2-dimensional array
Dim variables As Variablelist
Dim table() As Variant
' Walk () returns a VariableList that is built using technique indicated by specified
parameters:
! tableOid - the "root" 0id, underwhich all MIB values will be included in the
return value
! pdu - signals pdu version and walk 'type' (GetNext or GetBulk)
! community - used for SNMP version 1 or 2
! security - used for SNMP version 3
! agentEndPoint - v4 and v6 addresses are supported
! localEndPoint - optionally binds to the specified interface
Set variables = manager.Walk(tableOid, PduConstants.pduGetBulk2, agent.Community,
agent.security, agent.EndPoint, Nothing)
' variables holds a flat list of Variable objects in the tree
' ToTable () is used to create a 2-dimensional array that is easy to work with
(sparse tables are supported)
table = variables.ToTable (tableOid)
' How to use the table(row, col):
Dim variable As variable
For 1 = 0 To UBound(table, 2)
' Column labels found here
Set variable = table (0, 1)
Dim name As String
name = variable.Definition.Name ListViewl.ColumnHeaders.Add , , table (0,
i) .Definition.name
Next
For 1 = 0 To UBound(table, 1)
Dim item As ListItem
Set item = ListViewl.ListItems.Add(, , table(i, 0).ValueAsString)
For j = 1 To UBound(table, 2)
item.ListSubItems.Add , , table (i, Jj).ValueAsString
Next
Next

To summarize, the new interface provides powerful commands for retrieving and formating tables:

* a single method eliminates the need to code the Walk operation
* a single method formats a flat list of varaiables into a 2-dimensional array that is much easier to work with

