
PowerSNMP for .NET 4.6 Upgrade Guide

Overview:

This minor version release includes interface changes that improve core functionality:

1. Manager Inform requests have been generalized for use by Agents.

2. Some events and properties were moved from the Agent and Manager classes into

a common base class to extend functionality. For example the Log event is no
available on the Agent class.

3. Some usability issues associated with naming were addressed. For example,

TrapMessage is now Trap1Message, NotificationMessage is now Trap2Message.

4. Added single-threaded support so simple console and service applications can be
built using blocking communications.

5. Security features have been enhanced for SNMPv3.

Feature Enhancements:

1. Traps - Added ability to send traps from Agent without starting primary Agent

functionality first (Agent.Send() without Agent.Start()).

2. Informs - Added support for sending Informs from an Agent to a Manager.

3. Log event added to Agent (already existed in Manager) to provide robust logging of
all messages.

4. Scripting support added to Agent (messages from managers can now be processed
synchronously using a single thread).

5. Scripting support added to Manager (traps and informs can now be processed
synchronously using a single thread).

6. Usability:

1. Version 1 TrapMessage class renamed to Trap1Message to better indicate

relationship with Trap2Message.

2. Version 2/3 NotificationMessage class renamed to Trap2Message to indicate
functional similarities with Trap1Message.

3. Dart.Snmp.Trap namespace renamed Dart.Snmp.Trap1 to better indicate
relationship with Dart.Snmp.Trap2.

4. Dart.Snmp.Notification namespace renamed Dart.Snmp.Trap2 to better indicate
relationship with Dart.Snmp.Trap1.

5. ManagerSlave class renamed and refactored SnmpSocket to generalize it so
Agent can use it for sending Informs.

6. Agent.CreateDefaultResponse deprecated and renamed to

SnmpBase.CreateResponse.

7. Password class changed to User class, with the addition of a Name property.

8. MibNodes.Populate() - removed unused 2nd parameter.

9. Manager.Security.TrapUsers is now used to contain user details for SNMPv3
trap decoding, instead of Manager.AgentEngines.

10. SysUpTime moved from MessageBase to Agent, and changed from a static to
instance variable to support multiple agents in a single application. This
prevented us from keeping TrapMessage and NotificationMessage as
deprecated classes in this release.

7. Security properties (Username, AuthenticationPassword, AuthenticationPassword,

PrivacyPassword, PrivacyProtocol) grouped together as a single User property.

1. Enhances encryption performance by supporting caching of encrypted
intermediate results.

2. Links use of AuthoritativeEngines to user identification and processing.

3. Optimizes specification and reuse of security parameters.

8. Security decoding operations have been relaxed to provide a decoded message

whenever possible.

1. Previously, the username included in a v3 packet was required to be in the

AuthoritativeEngine or a remote AuthoritativeEngine, or a DecodingException
was thrown. Now, no username check is made. The decoded
Message.Security.User.Name property may be checked for a valid value.

2. Previously, if the message did not pass the authentication check it would throw a
DecodingException. Now, no DecodingException is ever thrown if authentication
fails. The new Message.AuthenticatedState property indicates whether the
authenication process passed.

3. Consequently, only decryption failures will typically cause a DecodingException.
The username from the packet is included in the DecodingException to help
trouble-shoot configuration problems.

Guidelines for Upgrading from version 4.5.

Note: Although this list is not short, most applications will only need slight modifications.

1. Replace "Dart.Snmp.Notification" namespace references with "Dart.Snmp.Trap2".

2. NotificationMessage class deprecated. Replace with Trap2Message.

3. Dart.Snmp.SlaveThreadStart renamed Dart.Snmp.ThreadStart, and the first

parameter changed from type ManagerSlave to SnmpSocket.

4. Manager.Start(new SlaveThreadStart(userFunction) ...) changed to
Manager.Start(new Dart.Snmp.ThreadStart(userFunction) ...).

5. ManagerSlave removed and replaced with SnmpSocket that derives from Socket

base class.

6. Manager.AgentEngines deprecated. Replace with SnmpBase.Security.EngineCache.

• Used to cache SNMPv3 security information (EngineId, EngineBoots, EngineTime)
for InformMessage requests sent by either Manager or Agent to other managers.

7. Agent.Start(ThreadStart ...) added. Use for sending InformMessage request to a

Manager.

8. ManagerSlave.Manager property (of type Manager) changed to SnmpSocket.Entity
(of type SnmpBase).

9. Replace references to SnmpBase.AuthoritativeEngine with

SnmpBase.Security.AuthoritativeEngine.

Summary of Benefits:

1. Previously, Agent.Start() had to be used to create a Socket before Agent.Send()
could be used to send a trap. Now, Agent.Send() can be used to send a trap (a
Socket is automatically created for use).

2. Previously, there was no Agent support for sending an InformMessage from an Agent
to a Manager

1. Manager.Start() functionality has been moved to the common base class

SnmpBase, so Agent.Start() can be used the same way Manager.Start() works.
2. ManagerThreadStart delegate renamed to ThreadStart delegate to reflect its

newly generalized applicability to Agents.
3. ManagerSlave class renamed SnmpSocket to reflect its newly generalized

applicability to Agents (additionally, derived SnmpSocket from Socket and
removed Socket property to better indicate the functionality of the class).

3. Previously, TrapMessage indicated a version 1 trap and Notification indicated a

version 2 trap. This naming convention caused customer confusion. Renamed Trap
version 1 to Trap1 and Notification to Trap2 (applied to message classes and
namespaces).

4. Previously, Manager.AgentEngines was used to cache remote engine information like

EngineId, Reboots, and Uptime.

1. Deprecated Manager.AgentEngines in favor of new
SnmpBase.Security.EngineCache to reflect its newly generalized applicability to
Agents (supporting Inform requests), and its use sending Inform requests to other
managers.

2. Moved SnmpBase.AuthoritativeEngine to SnmpBase.Security.AuthoritativeEngine.

3. Added new SnmpBase.Security.TrapUsers list that better supports the decoding
of SNMPv3 traps.

4. SnmpBase.Security, of type SessionSecurity, can now be used to easily serialize

all session parameters, preserving all values found during "discovery" and
password caching.

Interface Tables:

The following tables map the interface changes required to upgrade from a previous
version of PowerSNMP for .NET to PowerSNMP for .NET 4.6.

Namespace

Previous New

Dart.Snmp.Trap Dart.Snmp.Trap1

Dart.Snmp.Notification Dart.Snmp.Trap2

Classes

Previous New

ManagerSlave SnmpSocket

NotificationMessage (removed due to
structural changes)

 Trap2Message

Passwords User (or the new TrapUser for decoding
traps – See Manager.Security.TrapUser)

TrapMessage (removed due to
structural changes)

 Trap1Message

Delegates

Previous New

ManagerMessageReceived NotificationReceived

SlaveThreadStart ThreadStart

Agent Class Members

Previous New

Agent.AuthoritativeEngine
(deprecated)

Agent.Security.AuthoritativeEngine

Agent.CreateDefaultResponse()
(deprecated)

Agent.CreateResponse()

Agent.Send() (deprecated) Agent.Send() (inherited from SnmpBase)

Agent.Send(Messagebase, String) Agent.Send(MessageBase,
new Dart.Snmp.IPEndPoint
(String, Manager.DefaultPort))

Agent.Send(Messagebase, String,
Int32)

Agent.Send(MessageBase, new
Dart.Snmp.IPEndPoint(String, Int32))

Manager Class Members

Previous New

Manager.AgentEngines (deprecated) Manager.Security.EngineCache

Manager.AuthoritativeEngine
(deprecated)

Manager.Security.AuthoritativeEngine

Manager.Start(SlaveThreadStart...) Manager.Start(ThreadStart...)

Manager.Start
(ManagerMessageReceived...)

Manager.Start(NotificationReceived...)

Manager.Log Manager.Log (inherited from SnmpBase)

ManagerSlave Class Members

Previous New

ManagerSlave.Manager SnmpSocket.Entity

MibTraps Class Members

Previous New

MibTraps.CreateGenericTrapMessage
(Dart.Snmp.TrapName, string)

MibTraps.CreateGenericTrapMessage
(Dart.Snmp.TrapName, string, long)*

MibTraps.CreateSpecificTrapMessage(E
num)

MibTraps.CreateSpecificTrapMessage(E
num, long)*

*Use Agent.SysUpTime for the last argument

Security Class Members

Previous New

Security.AuthenticationPassword Security.User.AuthenticationPassword

Security.AuthenticationProtocol Security.User.AuthenticationProtocol

Security.PrivacyPassword Security.User.PrivacyPassword

Security.PrivacyProtocol Security.User.PrivacyProtocol

Security.Username Security.User.Name

Trap Message Class Members

Previous New

Trap.coldStart(string) Trap1.coldStart(string, long)*

Trap.warmStart(string) Trap1.warmStart(string, long)*

Trap.linkDown(string) Trap1.linkDown(string, long)*

Trap.linkUp(string) Trap1.linkUp(string, long)*

Trap.authenticationFailure(string) Trap1.authenticationFailure
(string, long)*

Trap.egpNeighborLoss(string) Trap1.egpNeighborLoss(string, long)*

Trap.SpecificTrap(int, string) Trap1.SpecificTrap(int, string, long)*

Trap.Encode() Removed

*Use Agent.SysUpTime for the last argument

Notification Class Members and Methods

Previous New

Notification.coldStart() Trap2.coldStart(long)*

Notification.warmStart() Trap2.warmStart(long)*

Notification.authenticationFailure() Trap2.authenticationFailure(long)*

Notification.Encode() Removed

* Use Agent.SysUpTime for the last argument

