FROM CHAPTER 1 - FUNCTIONS AND LIMITS

1) The graph of y = h(x) is shown below.

Which of the following represents the graph of y = |h(x)|?

2) Let function f be an odd function and decreasing on the closed interval [2,5]. Which of the following is also decreasing on [-5,-2]?

$$I. -f(x)$$

$$II. f(-x)$$

$$III. -f(-x)$$

$$A I, only$$

$$B I and III, only$$

$$C I, II, and III$$

$$D IIII, only$$

$$E II and III, only$$

3) What is the fundamental period of the

function <i>y</i> =	$= 3 \sin\left(\frac{x}{3} \cdot \frac{3}{2}\right)?$	
Α 6π	Β 3π	C 3
$\mathbf{D} \ \frac{\pi}{3}$	${f E}~{2\over 3}\pi$	

4) If
$$k \neq 0$$
, then $\lim_{x \to k} \frac{k^2 - x^2}{x^4 - k^4}$ is
A nonexistent **B** 0
C $-\frac{1}{k^2}$ **D** $\frac{1}{2k^2}$

$$\mathbf{E} - \frac{1}{2k^2}$$

5) Given the functions $f(x) = x^2 \cdot 2x + 4$ and $g(x) = \begin{cases} \frac{x^3 + 8}{x + 2}, & x \neq -2 \\ k, & x = -2 \end{cases}.$

What is the value of k that will make function f equivalent to function g?

A 4	B 0	C -12
D 12	E -2	

FROM CHAPTER 4 - INTEGRALS

6) The expression
$$\frac{1}{100} \left(\frac{100^2}{1} + \frac{100^2}{4} + \frac{100^2}{9} + ... + \frac{100^2}{100^2} \right)$$
 is a Riemann sum approximation for
A $\int_0^1 \frac{1}{x^2} dx$ B $\frac{1}{100} \int_0^{100} \frac{1}{x^2} dx$ C $100 \int_0^1 x^2 dx$
D $\int_0^1 \frac{100^2}{x^2} dx$ E $\frac{1}{100} \int_0^1 x^2 dx$

7) Evaluate the given integral.

 $\int t^4 \sqrt[3]{1-3t^5} dt$

8) In the graph below, the areas of regions A, B, and C are A = 3.2, B = 1.6, and C = 4.4.

What is the value of $\int_{0}^{8} (f(x) - 2) dx$?

 A 16.4
 B -0.4
 C -16.4

 D -15.6
 E -2.4

9) For k > 0, if $\int_0^k (6kx - k) dx = 2k$, then k =

A 1	$\mathbf{B} \ \frac{2}{3}$	C 2
$\mathbf{D} \ \frac{3}{2}$	${f E} \; {1\over 2}$	

10) The average value of $f(x) = x^2 \sin^2 x$ on the closed interval $[-\pi,\pi]$ is

Α	8.765	В	1.395
С	0.541	D	2.356
\mathbf{E}	3.402		

11) According to the graph below, which of the following is false for function f when the Riemann sums are used to approximate the value of $\int_{a}^{b} f(x) dx$?

- A right hand sum \geq midpoint sum
- **B** left hand sum \geq trapezoidal sum
- C midpoint sum \leq trapezoidal sum
- **D** left hand sum \leq right hand sum
- **E** trapezoidal sum \leq right hand sum
- 12) The table of values below represents a continuous function f.

X	f (<i>x</i>)
1	20
3	40
4	60
7	50

Using the subintervals [1,3], [3,4], and [4,7], what is the trapezoidal approximation of $\int_{1}^{7} f(x) dx$?

A 270	B 135	C 305
D 290	E 275	