FROM CHAPTER 1 - FUNCTIONS AND LIMITS

1) The graph of $y=\mathrm{h}(x)$ is shown below.

Which of the following represents the graph of $y=|\mathrm{h}(x)|$?

2) Let function f be an odd function and decreasing on the closed interval [2,5].
Which of the following is also decreasing on $[-5,-2]$?
I. $-\mathrm{f}(x)$
II. $\mathrm{f}(-x)$
III. $-\mathrm{f}(-x)$

A I, only
B I and $I I I$, only
C I, II, and III
D III, only
E II and III, only
3) What is the fundamental period of the function $y=3 \sin \left(\frac{x}{3}-\frac{3}{2}\right)$?
A 6π
B 3π
C 3
D $\frac{\pi}{3}$
E $\frac{2}{3} \pi$
4) If $k \neq 0$, then $\lim _{x \rightarrow k} \frac{k^{2}-x^{2}}{x^{4}-k^{4}}$ is
A nonexistent
B 0
C $-\frac{1}{k^{2}}$
D $\frac{1}{2 k^{2}}$
$\mathbf{E}-\frac{1}{2 k^{2}}$
5) Given the functions $\mathrm{f}(x)=x^{2}-2 x+4$ and $\mathrm{g}(x)=\left\{\begin{array}{cc}\frac{x^{3}+8}{x+2}, & x \neq-2 \\ k & , x=-2\end{array}\right\}$.

What is the value of k that will make function f equivalent to function g ?
A 4
B 0
C-12
D 12
E-2

FROM CHAPTER 4 - INTEGRALS

6) The expression $\frac{1}{100}\left(\frac{100^{2}}{1}+\frac{100^{2}}{4}+\frac{100^{2}}{9}+\ldots+\frac{100^{2}}{100^{2}}\right)$ is a Riemann sum approximation for
A $\int_{0}^{1} \frac{1}{x^{2}} d x$
B $\frac{1}{100} \int_{0}^{100} \frac{1}{x^{2}} d x$
C $100 \int_{0}^{1} x^{2} d x$
D $\int_{0}^{1} \frac{100^{2}}{x^{2}} d x$
E $\frac{1}{100} \int_{0}^{1} x^{2} d x$
7) Evaluate the given integral.
$\int t^{4} \sqrt[3]{1-3 t^{5}} d t$
8) In the graph below, the areas of regions A, B, and C are $A=3.2, B=1.6$, and $C=4.4$.

What is the value of $\int_{0}^{8}(\mathrm{f}(x)-2) d x$?
A 16.4
B -0.4
C -16.4
D -15.6
E-2.4
9) For $k>0$, if $\int_{0}^{k}(6 k x-k) d x=2 k$, then $k=$
A 1
B $\frac{2}{3}$
C 2
D $\frac{3}{2}$
E $\frac{1}{2}$
10) The average value of $\mathrm{f}(x)=x^{2} \sin ^{2} x$ on the closed interval $[-\pi, \pi]$ is
A 8.765
B 1.395
C 0.541
D 2.356
E 3.402
11) According to the graph below, which of the following is false for function f when the Riemann sums are used to approximate the value of $\int_{a}^{b} \mathrm{f}(x) d x$?

A right hand sum \geq midpoint sum
B left hand sum \geq trapezoidal sum
C midpoint sum \leq trapezoidal sum
D left hand sum \leq right hand sum
E trapezoidal sum \leq right hand sum
12) The table of values below represents a continuous function f .

x	$f(x)$
1	20
3	40
4	60
7	50

Using the subintervals [1,3], [3,4], and [4,7], what is the trapezoidal approximation of $\int_{1}^{7} \mathrm{f}(x) d x$?
A 270
B 135
C 305
D 290
E 275

