Name:

1) What is the sum of
$$\frac{5}{3}x^2 - \frac{8}{5}x + \frac{7}{8}$$
 and $-\frac{3}{5}x^2 - \frac{1}{2}x + \frac{1}{4}$?
A) $\frac{2}{15}x^2 - \frac{9}{10}x + 1$ C) $x^2 - \frac{9}{7}x + \frac{2}{3}$
B) $\frac{8}{15}x^2 - \frac{9}{10}x + 2$ D) $\frac{16}{15}x^2 - \frac{21}{10}x + \frac{9}{8}$

2) Identify the Greatest Common Factor for the terms of the given polynomial expression. Write the polynomial in an equivalent factored form. [*All coefficients should be rational.*]

$$xy - \frac{1}{2}y^3$$

- 3) Which one of the following equations represents a polynomial function that is neither odd nor even?
 - A) $f(x) = 3x^4 + 5x^2 2x + 4$
 - B) $f(x) = 4x^2 + 2$
 - C) $f(x) = x^3$
 - D) $f(x) = x^5 + 6x$
- 4) Which one of the following fractions is defined for *all* real numbers?

A)	$\frac{x^2 - 1}{(x - 1)^2}$	C) $\frac{x^2 - 1}{x^2}$	[
B)	$\frac{x^2-1}{x^2+1}$	D) $\frac{x^2 - 1}{x + 1}$	_

5) The length of a rectangular picnic blanket is represented by the expression $\frac{3a}{4b}$ and the width is represented by $\frac{2c}{3d}$. What is an expression that can be used to represent the area of the picnic blanket?

A)	$\frac{9ad}{8bc}$	C)	$\frac{2ac}{bd}$
B)	$\frac{6ac}{4b+3d}$	D)	$\frac{ac}{2bd}$

- 6) Simplify: $2\sqrt{3}(3\sqrt{6} 3\sqrt{3})$ A) 18
 - A) 18C) $12\sqrt{3} 18$ B) $3\sqrt{6} 6\sqrt{3}$ D) $18\sqrt{2} 18$
- 7) What is the exact length of side x in the triangle below?

- 8) What is the *greatest* possible integral value of x for which $\sqrt{x-5}$ is an imaginary number?
 - A) 5 B) 6 C) 3 D) 4
- 9) Write a polynomial equation in standard form having roots 3 and 2 ± 7*i*.

Show all work.

Answer: _____

10) What is the solution set for the system below?

$$x^{2} + y^{2} = 25$$

$$x - y = 1$$

A) (5,4), (-4,-5)
B) (4,3), (-3,-4)
C) (3,4), (-4,-3)
D) (4,3), (-4,-3)

- 11) Given the equation $y^2 4x 4y + 4 = 0$, what are the coordinates of the vertex and focus?
 - A) Vertex: (2,0)
 C) Vertex: (-2,0)

 Focus: (-2,1)
 Focus: (2,1)

 B) Vertex: (0,-2)
 D) Vertex: (0,2)
 - 3) Vertex: (0,-2) D)
 Vertex: (0,2)

 Focus: (1,-2) Focus: (1,2)

2224 - 1 - Page 2

- 12) Which of the following statements below are true based on the definition of the logarithm function $f(x) = \log_b (x 2)$?
 - I. $x \neq 4$ II.b > 0III. $b \neq 1$ IV.x > 2A)II, III, and IV, onlyC)B)II, onlyD)Iand III, only
- 13) Use the accompanying randomization distribution to determine the probability of obtaining the described Diff value. Also state whether the Diff value would be likely or unlikely to occur. [*Justify your response*.]

Diff = 5

Show all work.

Answer: P(Diff) = _____

14) In right triangle $\triangle ABC$, AC = 1 and $CB = \tan \theta$. What is the length of AB?

5) The expression
$$\left(64^{-\frac{1}{2}}-16^{\frac{1}{4}}\right)^{\frac{1}{2}}_{is}$$

- A) an irrational number
- B) a perfect square
- C) a non-real number
- D) a negative real number
- 16) Which one of the following represents an onto function?

- 17) Prove the statement $\tan \theta + \cot \theta = \sec \theta \csc \theta$ is an identity for the values of θ for which the statement is defined. Describe this set of values. *Show all work.*
- 18) Which of the following best describes the series

$$\sum_{k=1}^{25} 2(3)^{k-1}?$$

- A) arithmetic; a = 2, d = 3
- B) geometric; a = 2, r = 3
- C) geometric; a = 3, r = 2
- D) arithmetic; a = 3, d = 2