WELCOME TO
THE FAMILY

AT INTENSE, WE HAVE ONE GOAL - TO PROVIDE THE RIDE OF YOUR LIFE //

Our team of designers, engineers and product experts are focused on one thing every day: your experience on the bike. We build bikes that are as thrilling to look at as they are to ride, and we build them for the select few of you who understand the difference and refuse to settle for anything else.

From the early days of Intense, when founder Jeff Steber worked alone in his garage to today, where a crew of talented people work in a Temecula, CA factory, Intense has been a brand built on passion by forward thinkers who, even today, love nothing more than to throw a leg over a sweet bike and head out for a rip. We’re so glad you’ve joined us.

Welcome to Intense, enjoy your experience.

THE M29 //

Racing is where Intense was born and how the M29 came to be. Its superior wheel size for smoothing out rough terrain and clocking faster run times is what this bike is all about. Couple that with proven suspension kinematics, geometry, and precision manufacturing and you’ve got an elite racing machine. Offered in standard production and a limited run, FRO version, you can’t go wrong. This is the Next Big Thing.

REGISTRATION
WWW.INTENSECYCLES.COM/WARRANTY-CARD/

CONTACT CUSTOMER SERVICE
CS@INTENSECYCLES.COM
951-296-9596

Welcome to the family
FRAME FEATURES //
- Rear Travel: 208 mm / 8.2 inches
 with metric 250 x 70 stroke shock.
- 29" wheel size
- Progressive shock curve
- Integrated 157 x 22.25mm dropouts
- Internal cable routing
- FLAMM / DOWNSTRAIGHT /
 AND SEATSTAY PROTECTION
- moulded head tube
- TAPERED HEAD TUBE /
 - ISCG05 MOUNTS
- REPLACEABLE GREASE ZERK ON
 BACK OF LOWER LINK
- TWO BEARINGS IN THE LOWER LINK
 AT LOWER SHOCK CONNECTION
- MAX BEARINGS AND DEDICATED
 FRAME HARDWARE
- NON - SYMMETRIC Rear TRIANGLE
 - ISCG05 MOUNTS
- REMOVABLE BB SHELL
- BB TOOL: 16 NOTCH X 4.4MM

COMPONENT SPEC //
- Fork: Accepts 1.125" straight steer
 or 1.125"/1.5" tapered steer, 29mm
 travel / 79mm diameter axle to
 crown, 30mm offset.
- Shock: 29mm x 22.25mm metric
 shock, 30mm x 1.0mm reducers
 on both ends.
- Chain guide mount (ISCG 05)
- Seat post: 31.6mm
- Headset: Zero Stack 49mm Upper/
 56mm Lower
- Bottom bracket: threaded 83mm
- Rear axle: Boost 157 x 22.25mm
- Drive mount: Post mount for
 31.6mm factor

COMPONENT SPEC NOTE
THE M29 IS DESIGNED AROUND THE USE OF A SINGLE CHAIN RING
ONLY USE OF A DOUBLE OR TRIPLE RING SET WILL NOT ALLOW PROPER
CLEARANCE WITH THE FRAME.

GEOMETRY NOTES
GEOMETRY TAKEN AT TOP OUT WITH 582MM AXLE TO CROWN LENGTH
AND 56MM FORK OFFSET.

GEOMETRY//

<table>
<thead>
<tr>
<th>Component</th>
<th>Medium</th>
<th>Large</th>
<th>X-Large</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Wheel Base</td>
<td>1242 mm / 48.9”</td>
<td>1257 mm / 49.5”</td>
<td>1298 mm / 51.1”</td>
</tr>
<tr>
<td>B Top Tube Length</td>
<td>570.4 mm / 22.5”</td>
<td>591 mm / 23.2”</td>
<td>625 mm / 24.6”</td>
</tr>
<tr>
<td>C Chain Stay Length</td>
<td>456 mm / 17.95”</td>
<td>456 mm / 17.95”</td>
<td>456 mm / 17.95”</td>
</tr>
<tr>
<td>D Head Tube Length</td>
<td>90 mm / 3.54”</td>
<td>90 mm / 3.54”</td>
<td>115 mm / 4.53”</td>
</tr>
<tr>
<td>E Head Tube Angle</td>
<td>63.5˚</td>
<td>63.5˚</td>
<td>63.5˚</td>
</tr>
<tr>
<td>F Reach</td>
<td>435 mm / 17.13”</td>
<td>450 mm / 17.72”</td>
<td>480 mm / 18.9”</td>
</tr>
<tr>
<td>G Stack</td>
<td>610 mm / 24.0”</td>
<td>610 mm / 24.0”</td>
<td>632 mm / 25”</td>
</tr>
<tr>
<td>H BB Height</td>
<td>342.7 mm / 13.5”</td>
<td>342.7 mm / 13.5”</td>
<td>342.7 mm / 13.5”</td>
</tr>
<tr>
<td>BB Drop</td>
<td>30.56 mm / 1.20”</td>
<td>30.56 mm / 1.20”</td>
<td>30.56 mm / 1.20”</td>
</tr>
<tr>
<td>I Seat Tube Angle (Effective)</td>
<td>77˚</td>
<td>77˚</td>
<td>77˚</td>
</tr>
<tr>
<td>J Seat Tube Angle (Actual)</td>
<td>67˚</td>
<td>67˚</td>
<td>67˚</td>
</tr>
<tr>
<td>K Seat Tube Length</td>
<td>459 mm / 18”</td>
<td>459 mm / 18”</td>
<td>459 mm / 18”</td>
</tr>
<tr>
<td>L Frame Height</td>
<td>684 mm / 26.9”</td>
<td>680 mm / 26.6”</td>
<td>684 mm / 26.9”</td>
</tr>
</tbody>
</table>

M29 FRAME FEATURES / SPEC

M29 GEOMETRY

BB Drop
Exploded View and B.O.M.

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
<th>TORQUE SPEC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bearing Cap</td>
<td>Top Link Bearing Cap, Upper</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>2</td>
<td>Bearing Cap</td>
<td>Lower Link Bearing Cap, Lower</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>3</td>
<td>Hanger</td>
<td>Derailleur Hanger, Forged</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>4</td>
<td>Pivot Bolt</td>
<td>Lower Link Expander Bolt</td>
<td>1</td>
<td>7 Nm / 60 in-lbs</td>
</tr>
<tr>
<td>5</td>
<td>5x10 Bearing Cap</td>
<td>Lower Link Expander Bolt Kit</td>
<td>1</td>
<td>13 Nm / 110 in-lbs</td>
</tr>
<tr>
<td>6</td>
<td>Hanger Cap</td>
<td>Derailleur Hanger Bolt</td>
<td>1</td>
<td>13 Nm / 110 in-lbs</td>
</tr>
<tr>
<td>7</td>
<td>Pivot Bolt</td>
<td>Expander Bolt</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>8</td>
<td>Bottom Bracket Shaft</td>
<td>Removable threaded 1.5 inch</td>
<td>1</td>
<td>18 Nm / 160 in-lbs</td>
</tr>
<tr>
<td>9</td>
<td>Lock Ring</td>
<td>Bottom Bracket Lock Ring</td>
<td>1</td>
<td>18 Nm / 160 in-lbs</td>
</tr>
<tr>
<td>10</td>
<td>Crank Tube</td>
<td>48 mm ID BB Threaded Bearings</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>11</td>
<td>Crank Tube</td>
<td>35 mm ID Lower Link</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>12</td>
<td>Lower Link</td>
<td>Forged Lower Link</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>13</td>
<td>Bearing Spacer</td>
<td>Lower Link, BB Bearings</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>14</td>
<td>Pivot Bolt</td>
<td>Top Link Expander Bolt</td>
<td>1</td>
<td>7 Nm / 60 in-lbs</td>
</tr>
<tr>
<td>15</td>
<td>Bearing Spacer</td>
<td>Top Link, Upper Pivot</td>
<td>2</td>
<td>N/A</td>
</tr>
<tr>
<td>16</td>
<td>Shoulder Bolt</td>
<td>Top Link, Lower Pivot</td>
<td>2</td>
<td>20 Nm / 175 in-lbs</td>
</tr>
<tr>
<td>17</td>
<td>Crank Tube</td>
<td>48 mm ID, Top Link, Upper Pivot</td>
<td>1</td>
<td>18 Nm / 160 in-lbs</td>
</tr>
<tr>
<td>18</td>
<td>Top Link</td>
<td>Carbon Top Link</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>19</td>
<td>Pivot Bolt</td>
<td>Lower Link, Rear Pivot</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>20</td>
<td>Rear Triangle</td>
<td>BCS Rear Triangle</td>
<td>1</td>
<td>N/A</td>
</tr>
<tr>
<td>21</td>
<td>Seat Clamp</td>
<td>Integrated Seat Clamp</td>
<td>1</td>
<td>N/A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>ITEM</th>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
<th>TORQUE SPEC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>BB Shell</td>
<td>Removable, Threaded, 83mm</td>
<td>1</td>
<td>16 Nm / 140 in-lbs</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Lock Ring</td>
<td>Bottom Bracket Lock Ring</td>
<td>1</td>
<td>16 Nm / 140 in-lbs</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Crush Tube</td>
<td>15 mm ID Lower Link, Rear Pivot</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Screw Bolt</td>
<td>Top Link, Lower Pivot, Fine Thread</td>
<td>2</td>
<td>20 Nm / 175 in-lbs</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Crank Tube</td>
<td>15mm ID, Top Link, Upper Pivot</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Top Link</td>
<td>Carbon Top Link</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Pivot Bolt</td>
<td>Lower Link, Rear Pivot</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Rear Triangle</td>
<td>BCS Rear Triangle</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Seat Clamp</td>
<td>Integrated Seat Clamp</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>BB Shell</td>
<td>Removable, Threaded, 83mm</td>
<td>1</td>
<td>16 Nm / 140 in-lbs</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Lock Ring</td>
<td>Bottom Bracket Lock Ring</td>
<td>1</td>
<td>16 Nm / 140 in-lbs</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Crush Tube</td>
<td>15 mm ID Lower Link, Rear Pivot</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Screw Bolt</td>
<td>Top Link, Lower Pivot, Fine Thread</td>
<td>2</td>
<td>20 Nm / 175 in-lbs</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Bearing Spacer</td>
<td>Lower Link, BB Bearings</td>
<td>2</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Pivot Bolt</td>
<td>Top Link Expander Bolt</td>
<td>1</td>
<td>7 Nm / 60 in-lbs</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>Bearing Spacer</td>
<td>Top Link, Upper Pivot</td>
<td>2</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>Shoulder Bolt</td>
<td>Top Link, Lower Pivot</td>
<td>2</td>
<td>20 Nm / 175 in-lbs</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>Crank Tube</td>
<td>48 mm ID, Top Link, Upper Pivot</td>
<td>1</td>
<td>18 Nm / 160 in-lbs</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>Top Link</td>
<td>Carbon Top Link</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>Pivot Bolt</td>
<td>Lower Link, Rear Pivot</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>Rear Triangle</td>
<td>BCS Rear Triangle</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>Seat Clamp</td>
<td>Integrated Seat Clamp</td>
<td>1</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
Service and maintenance on an Intense bicycle requires special tools, abilities and knowledge of working on bicycles. It is always recommended to use an authorized Intense dealer for service and maintenance. Always wear eye protection. It is critical to use the proper tools, loctite, grease and torque specs during assembly. Failure to follow these instructions may result in serious bodily injury or death.

Tools Needed
- High Grade, waterproof grease (Maxima Waterproof Grease Recommended)
- Blue Loctite® #243 anti-seize
- 3mm Hex wrench
- 5mm Hex wrench
- 6mm hex wrench
- 8mm Hex wrench
- 15mm wrench, Ratchet combination or Flat
- Bb tool, 16 notch X 44 mm OD CUPS, for EXAMPLE: BBT-69, BBT-69.2
- Socket wrench to use with bb tool
- Torque wrench
- Bottom bracket tool

Recommendation
- Apply a thin coat of grease to all pivot axles and rear axle to reduce the chance of corrosion due to moisture and prevent possible creaks.
- After the first few rides the components are broken in and settled into place. Go through and re-torque all pivot axles. After this first adjustment, you will be ready to rip for the long haul.
- Use grease in any alloy to Carbon interface, including BB and headset.

Assembly

Installing Seat Clamp on Front Triangle //

A. Before installing seat clamp (#340342) onto M29 Front Triangle use a 5mm Hex wrench to loosen the Socket Head Cap Screw (#410048). Press the seat clamp onto the seat tube so it is fully seated (IMAGE #1). When 100mm (4 inches) of seat post is fully installed in frame tighten seat clamp bolt to 14 Nm or 125 in/lbs.

Installing Lower Link to Front Triangle //

A. Apply grease to the two lower link BB bearing spacers (#130841) this will help hold the spacers in place during installation (IMAGE #2).

B. With the grease applied press each of these spacers on each side of the link where the large bearing is in the lower link (IMAGE #3).

C. Match link to front triangle and slide forward into position (IMAGE #4). The two BB spacers, lower link, and frame all need to be on center with each other before bottom bracket shell is installed. From the drive side, insert greased bottom bracket shell (#130836) through the drive side of frame (IMAGE #5).

Recommendation
• Apply a thin coat of grease to all pivot axles and rear axle to reduce the chance of corrosion due to moisture and prevent possible creaks.
• After the first few rides the components are broken in and settled into place, go through and re-torque all pivot axles. After this first adjustment, you will be ready to rip for the long haul.
• Use grease in any alloy to Carbon interface, including BB and headset.
CONNECTING THE LOWER LINK TO FRONT TRIANGLE (CON’T) //

- As the greased bottom bracket shell (#130836) is being inserted in the frame position the tab with the laser marking facing up (IMAGE #6).
- The bottom bracket shell should be fully seated and flush on the drive side of the frame (IMAGE #7).

CONNECTING TOP LINK TO FRONT TRIANGLE //

- By hand thread the BB Shell End Cap (#130837) and hold on the non drive side of the frame with the laser engraved part number and torque value facing out (IMAGE #8).
- Apply grease to the two bearing caps (#130765) this will help hold the spacers on the top link during installation (IMAGE #10).
- With grease applied, press each of these bearing caps on top link (IMAGE #11).
- Match top link to front triangle and slide upward into position (IMAGE #12).
- From the non drive side, prepare to insert greased top link collet bolt (#130842) through the non drive side of frame (IMAGE #13).
- Using an 8mm Hex Wrench, thread the top link collet bolt into the front triangle (IMAGE #14), and tighten top link collet bolt to 7 Nm or 60 in/lbs. (IMAGE #15).
- Grease BB Shell End Cap (#130837) and hold on the non drive side of the frame with the laser engraved part number and torque value facing out (IMAGE #16).
- Use a 5mm Hex wrench, insert M6 x 22mm bolt (#410009) into greased adjuster cone (#130807) and hold next to non drive side of frame (IMAGE #17).
- Next using a 5mm Hex wrench, insert M6 x 22mm bolt (#410009) into greased adjuster cone (#130807) and hold next to non drive side of frame (IMAGE #18).
- Then insert both adjuster cone and bolt into head of top link collet bolt (#130842), tighten the M6 x 22mm bolt (#410009) to 14 Nm or 125 in/lbs. (IMAGE #19).
- By hand thread the BB Shell End Cap onto the Bottom Bracket Shell A 15mm x 44mm BB Tool Wrench is used to tighten the End Cap on the BB Shell (IMAGE #19), tighten BB Shell End Cap to 15 Nm or 125 in/lbs. (IMAGE #20).
- Using an 8mm Hex Wrench, thread the top link collet bolt into the front triangle (IMAGE #15), and tighten top link collet bolt to 7 Nm or 60 in/lbs. (IMAGE #15).
CONNECTING REAR TRIANGLE TO TOP LINK //

A. Apply grease to the two spacers for RT/Top Link (#130843). This will help hold the spacers on the inside of top link during installation (IMAGE #23).

B. With the top link pulled back and with the grease applied press each of these two bearing caps on each side of the top link (IMAGE #24).

C. Match rear triangle to top link and slide rear triangle into the back of the top link (IMAGE #25).

D. Next using a 5mm Hex wrench, insert shoulder bolt (#130844) into top link bearing at non drive side of rear triangle and start threading into rear triangle (IMAGE #26). Repeat this install step on drive side of top link/rear triangle connection.

E. Then fully thread shoulder bolt into top link/rear triangle connection, tighten the shoulder bolt to 20 Nm or 175 in/lbs (IMAGE #27). Repeat this step on both sides.

CONNECTING REAR TRIANGLE TO LOWER LINK //

A. Apply grease to the backside of the two bearing caps (#130778) this will help hold the spacers on the lower link during installation (IMAGE #16).

B. With the grease applied press each of these two bearing caps on each side of the lower link (IMAGE #17).

C. Match rear triangle to lower link and slide rear triangle forward onto the back of the lower link. Prepare to insert greased collet pivot bolt (#130791) through the non drive side of rear triangle (IMAGE #18).

D. Using an 8mm Hex wrench, thread the collet pivot bolt into the non drive side of rear triangle (IMAGE #19) tighten this collet pivot bolt to 7 Nm or 60 in/lbs.

E. Next using a 5mm Hex wrench, insert M6 x 22mm bolt (#410009) into greased adjuster cone (#130807) and hold next to non drive side of rear triangle (IMAGE #20).

F. Install push rivet by hand in the collet pivot bolt on the drive side of the frame (IMAGE #21).

G. Then insert both adjuster cone and bolt into head of collet pivot bolt (#130791), tighten the M6 x 22mm bolt to 14 Nm or 125 in/lbs.

H. Install push rivet (#140038) by hand in the collet pivot bolt on the drive side of the frame (IMAGE #22).

I. With the top link pulled back and with the grease applied press each of these two spacers on the inside bearing races of the top link (IMAGE #23).

J. Match rear triangle to top link and slide rear triangle into the back of the top link (IMAGE #25).

K. Next using a 5mm Hex wrench, insert shoulder bolt (#130844) into top link bearing at non drive side of rear triangle and start threading into rear triangle (IMAGE #26). Repeat this install step of shoulder bolt on drive side of top link/ rear triangle connection.

L. Then fully thread shoulder bolt into top link/rear triangle connection, tighten the shoulder bolt to 28 Nm or 255 in/lbs (IMAGE #27). Repeat this step on both sides.
A Grease portion of derailleur hanger (#130790) where it interfaces with the rear triangle and install hanger onto rear triangle (IMAGE #28).

B Using a 6mm Hex wrench to hold hanger bolt (#130798) on the drive side of the rear triangle prepare to thread hanger bolt into derailleur hanger (IMAGE #29).

C Fully install and tighten hanger bolt (#130798) to 11 Nm or 100 in/lbs (IMAGE #30).

INSTALLING REAR AXLE //

A Hold rear fender (#140047) rear back of rear triangle and prepare to line up the slots in the fender to the riv-nuts in the rear triangle (IMAGE #31).

B From the drive side, insert 5mm hex key through derailleur cap to reach the 5mm hex interface on the inside of the rear axle, turn 5mm hex wrench counter clockwise to tighten. Torque to 11 Nm or 100 in/lbs (IMAGE #32).

C Thread the lower button head screw (#410010) near the lower slot on rear fender (IMAGE #32). Using the 3mm Hex wrench, hold the second button head screw (#410010) into the lower slot and into the top riv-nut.

D Fully install and tighten the lower button head screw (IMAGE #33). Thread the lower button head screw into the lower slot and lower riv-nut.

E Install and tighten the button head screws (#410010) to 6 Nm or 54 in/lbs (IMAGE #33).

INSTALLING REAR FENDER //

A Hold rear fender (#140047) near back of rear triangle and prepare to line up the slots in the fender to the riv-nuts in the rear triangle (IMAGE #31).

B Center the rear fender slots on the riv-nuts in the rear triangle and hold in place, using a 3mm Hex wrench, thread the button head screw (#410010) into the top slot and into the top riv-nut.

C Using the 3mm Hex wrench, hold the second button head screw (#410010) near the lower slot on rear fender (IMAGE #32).

D Thread the lower button head screw into the lower slot and lower riv-nut. Fully install and tighten the button head screws (IMAGE #33). Using the 3mm Hex wrench, hold the second button head screw (#410010) into the lower slot and into the top riv-nut.

E Center the rear fender slots on the riv-nuts in the rear triangle and hold in place, using a 3mm Hex wrench, thread the button head screw (#410010) into the top slot and into the top riv-nut.

F Fully install and tighten the button head screws (#410010) to 6 Nm or 54 in/lbs (IMAGE #33).

INSTALLING REAR SHOCK //

A On the drive side of the frame, with the top link and rear triangle pulled back away from the front triangle, the shock mount on the lower link will be accessible. Apply grease to the rear shock nut (#410064) and hold near the lower link (IMAGE #37).

B Place the greased rear shock nut on the top bearing of the lower link (IMAGE #38). From the drive side, insert 5mm hex key through derailleur cap to reach the 5mm hex interface on the inside of the rear axle, turn 5mm hex wrench counter clockwise to tighten. Torque to 11 Nm or 100 in/lbs when rear wheel is installed.

C Next using a 5mm Hex wrench, insert M6 x 22mm bolt (#410009) into grease adjuster cone (#130807) and hold near to head of rear axle at the non drive side of rear triangle (IMAGE #36). Then insert both adjuster cone and bolt into rear axle (#130796), tighten the M6 x 22mm bolt (#410009) to 14 Nm or 125 in/lbs when rear wheel is installed.

D On the drive side of the frame, with the top link and rear triangle pulled back away from the front triangle, the shock mount on the lower link will be accessible. Apply grease to the rear shock nut (#410064) and hold near the lower link (IMAGE #37).

E Place the greased rear shock nut on the top bearing of the lower link (IMAGE #38). From the drive side, insert 5mm hex key through derailleur cap to reach the 5mm hex interface on the inside of the rear axle, turn 5mm hex wrench counter clockwise to tighten. Torque to 11 Nm or 100 in/lbs when rear wheel is installed.
Torque

Achieving proper torque is vital to ensuring the safe performance and function of the SNIPER frame. Failure to do so could result in sub-optimal performance of your frame as well as premature wear and tear of individual parts.

Additional Reference

In addition to this chart, all torque values are laser etched onto corresponding hardware for your reference.
SET UP

SEATPOST

1. Remove fork and shock air caps and be sure you have a shock pump and a small ruler or measuring device handy.
2. Go ahead and hop on the bike. Be sure to place all your weight on the seat with the dropper in the up position and both hands on the grips.
3. Give the bike 5-6 moderate bounces and sit back down on the saddle.
4. Now have your friend slide both the rear shock and the front fork o-rings down against the seal lip of the damper body (IMAGE #1).
5. Step off the bike nice and easy. Be sure to not compress the suspension after the o-rings have been set.

Pro Tip
Here’s where having a friend helps. Have them straddle the front wheel and pull the handle bars in an upward direction as to not allow the suspension to compress as you get off (image #4).

6. Using your measuring device, measure the gap between the suspension seal lip and the o-ring. Using the chart on the following page will tell you if you need more air pressure or less air pressure (IMAGES #2, #3).
7. Adjust air pressure with your shock pump accordingly (IMAGE #5).
8. Re-visit steps 2-6 until your desired sag measurement have been reached.
9. Install valve caps.
10. Go ride your bike!

TOOLS NEEDED
- Shock pump
- Small ruler or measuring device
- Intense Carbon Paste
- Torque Wrench

PREFACE //
We are almost ready to rip. Just a few more checkpoints and adjustments to ensure the performance and ride characteristics of the M29 is optimised for you.

TOOLS NEEDED
- Shock pump
- Small ruler or measuring device
- Intense Carbon Paste
- Torque Wrench

SEATPOST
Before insertion, liberally coat the seat post with carbon paste and gently slide into the seat tube. With a minimum seat post insertion of 4”, tighten seat post clamp to 14 Nm / 125 in-lbs. (Over tightening the seat post clamp will inhibit the movement of the seat post and potentially damage seat post and/or seat tube.

PRE FA C E //

18 // M29 USER MANUAL

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.

INTERSE CARBON PREP
www.intensecycles.com

While suspension is compressed on fork or rear shock, slide o-ring down against the seal lip of damper body.

Release compression. Measure gap from o-ring to seal lip.
SHOCK SETUP
ROCK SHOX SDLX COIL

SET UP AND TUNE
PROPER SET UP AND TUNING CAN VARY FROM SHOCK TO SHOCK. PLEASE CONSULT THE ROCKSHOX MANUAL INCLUDED WITH YOUR BIKE FOR COMPLETE INFORMATION ABOUT SET UP, TUNING AND GENERAL MAINTENANCE OR VISIT WWW.SRAM.COM/ROCKSHOX/PRODUCTS.

THE SETTINGS IN THE FOLLOWING CHART ARE SUGGESTIONS TO QUICKLY SET BASELINE SAG. BE SURE THE END OF YOUR SAG SET UP RESULTS IN 35% OF REAR SUSPENSION SAG.

<table>
<thead>
<tr>
<th>RIDE WEIGHT (LBS)</th>
<th>SPRING WEIGHT (LBS)</th>
<th>REBOUND (CLICKS OUT)</th>
</tr>
</thead>
<tbody>
<tr>
<td>160 LBS / 73 KGS</td>
<td>450</td>
<td>6</td>
</tr>
<tr>
<td>170 LBS / 77 KGS</td>
<td>500</td>
<td>6</td>
</tr>
<tr>
<td>180 LBS / 82 KGS</td>
<td>500</td>
<td>6</td>
</tr>
<tr>
<td>190 LBS / 86 KGS</td>
<td>500</td>
<td>5</td>
</tr>
<tr>
<td>200 LBS / 91 KGS</td>
<td>550</td>
<td>5</td>
</tr>
<tr>
<td>210 LBS / 95 KGS</td>
<td>550</td>
<td>5</td>
</tr>
<tr>
<td>220 LBS / 100 KGS</td>
<td>550</td>
<td>5</td>
</tr>
<tr>
<td>230 LBS / 104 KGS</td>
<td>550</td>
<td>5</td>
</tr>
</tbody>
</table>

The settings in the following chart are suggestions to quickly set baseline sag. Be sure the end of your sag set up results in 35% of rear suspension sag.
MAINTENANCE

CARBON CARE

GENERAL SERVICE AND CARE //

You have purchased a high performance bicycle which requires a certain level of service and maintenance to sustain the level of performance your frame was designed around. Proper care will also ensure the bike is safe to ride at all levels. It is important to read and understand the carbon care information as well as follow the maintenance schedule and inspect your bicycle before each ride. These will not only help to limit or avoid costly repairs but will also help to avoid injury due to service neglect and component failure.

INTENSE CYCLES EMPLOY ADVANCED COMPOSITE TECHNIQUES AND MATERIALS IN OUR FRAMES WHICH REQUIRE A CERTAIN LEVEL OF CARE AND MAINTENANCE TO ENSURE A SAFE AND PLEASANT RIDE EXPERIENCE. AT THE HIGH LEVEL OF PERFORMANCE EACH FRAME IS DESIGNED AROUND, NOT FOLLOWING THESE GUIDELINES WILL DECREASE THE LEVEL OF PERFORMANCE AND POSSIBLY CAUSE INJURY OR DEATH.

- Use a soft cloth with warm soapy water to clean the carbon surfaces. Do not use abrasive cloths or cleaners.
- Be sure all frame surfaces in contact with cables are protected.
- Cable housing rubbing on carbon can wear over time.
- Be sure brakes, levers, handle bar ends and the fork crown do not contact the frame at full rotation.
- Never clamp any part of a carbon frame in a bike stand or car rack.
- Always inspect your frame if you experience any chain suck.
- Always inspect your frame in full after a crash to be sure there is no damage. Look for cracks, dents or loose fibers. If you discover damage in any degree it’s best to have your frame inspected by a qualified Intense Cycles dealer. Any direct impact to the frame can cause serious structural damage.
- Use high grade waterproof grease on seat post, BB and head set bearing contact areas with the carbon.
- Never ream or face a carbon frame.
- Be sure to follow all recommended torque settings.

MAINTENANCE SCHEDULE*

ACTION

<table>
<thead>
<tr>
<th>EVERY 300 MILES OR 1 MONTH</th>
<th>EVERY 600 MILES OR 3 MONTHS</th>
<th>EVERY 1000 MILES OR 6 MONTHS</th>
<th>EVERY 2000 MILES OR 1 YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIRE</td>
<td>Check air pressure, inspect tread and sidewalls for tears and punctures</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CHAIN</td>
<td>Check chain, chainwheel and sprocket</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BRAKES</td>
<td>Squeeze brake and confirm function</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GENERAL</td>
<td>Check complete bike of view and adjust</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HEADSET</td>
<td>Check alignment</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BISI RING</td>
<td>Add grease thru fitting</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FRAME PIVOTS</td>
<td>Check tension</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SPOKES</td>
<td>Inspect for damage, check tension</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BICYCLE FRAME</td>
<td>Check air pressure, inspect tires</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BICYCLE CABLES</td>
<td>Inspect and lube</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STEERER</td>
<td>Check and improve interface with frame</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FRAME PIVOTS</td>
<td>Remove pivot bolts, check bearings for pitting and wear</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HEADSET</td>
<td>Disassemble stem, headset and fork. Check bearings for pitting and wear</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HUBS</td>
<td>Pull wheels off, check hub bearings for pitting and wear</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BICYCLE DISCBrake</td>
<td>Replace brake pads</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CLINCH</td>
<td>Replace brake pads</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CHAIN</td>
<td>Inspect for damage and check for stretching</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HEADSET</td>
<td>Overhaul See MFG Recommendations</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

GENERAL SERVICE AND CARE:

You have purchased a high performance bicycle which requires a certain level of service and maintenance to sustain the level of performance your frame was designed around. Proper care will also ensure the bike is safe to ride at all levels. It is important to read and understand the carbon care information as well as follow the maintenance schedule and inspect your bicycle before each ride. These will not only help to limit or avoid costly repairs but will also help to avoid injury due to service neglect and component failure.

CARBON CARE:

Intense Cycles employs advanced composite techniques and materials in our frames which require a certain level of care and maintenance to ensure a safe and pleasant ride experience. At the high level of performance each frame is designed around, not following these guidelines will decrease the level of performance and possibly cause injury or death.

- Use a soft cloth with warm soapy water to clean the carbon surfaces. Do not use abrasive cloths or cleaners.
- Be sure all frame surfaces in contact with cables are protected.
- Cable housing rubbing on carbon can wear over time.
- Be sure brakes, levers, handle bar ends and the fork crown do not contact the frame at full rotation.
- Never clamp any part of a carbon frame in a bike stand or car rack.
- Always inspect your frame if you experience any chain suck.
- Always inspect your frame in full after a crash to be sure there is no damage. Look for cracks, dents or loose fibers. If you discover damage in any degree it’s best to have your frame inspected by a qualified Intense Cycles dealer. Any direct impact to the frame can cause serious structural damage.
- Use high grade waterproof grease on seat post, BB and head set bearing contact areas with the carbon.
- Never ream or face a carbon frame.
- Be sure to follow all recommended torque settings.

GENERAL SERVICE AND CARE:

You have purchased a high performance bicycle which requires a certain level of service and maintenance to sustain the level of performance your frame was designed around. Proper care will also ensure the bike is safe to ride at all levels. It is important to read and understand the carbon care information as well as follow the maintenance schedule and inspect your bicycle before each ride. These will not only help to limit or avoid costly repairs but will also help to avoid injury due to service neglect and component failure.

CARBON CARE:

Intense Cycles employs advanced composite techniques and materials in our frames which require a certain level of care and maintenance to ensure a safe and pleasant ride experience. At the high level of performance each frame is designed around, not following these guidelines will decrease the level of performance and possibly cause injury or death.

- Use a soft cloth with warm soapy water to clean the carbon surfaces. Do not use abrasive cloths or cleaners.
- Be sure all frame surfaces in contact with cables are protected.
- Cable housing rubbing on carbon can wear over time.
- Be sure brakes, levers, handle bar ends and the fork crown do not contact the frame at full rotation.
- Never clamp any part of a carbon frame in a bike stand or car rack.
- Always inspect your frame if you experience any chain suck.
- Always inspect your frame in full after a crash to be sure there is no damage. Look for cracks, dents or loose fibers. If you discover damage in any degree it’s best to have your frame inspected by a qualified Intense Cycles dealer. Any direct impact to the frame can cause serious structural damage.
- Use high grade waterproof grease on seat post, BB and head set bearing contact areas with the carbon.
- Never ream or face a carbon frame.
- Be sure to follow all recommended torque settings.

MAINTENANCE SCHEDULE*

ACTION

<table>
<thead>
<tr>
<th>EVERY 300 MILES OR 1 MONTH</th>
<th>EVERY 600 MILES OR 3 MONTHS</th>
<th>EVERY 1000 MILES OR 6 MONTHS</th>
<th>EVERY 2000 MILES OR 1 YEAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIRE</td>
<td>Check air pressure, inspect tread and sidewalls for tears and punctures</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CHAIN</td>
<td>Check chain, chainwheel and sprocket</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BRAKES</td>
<td>Squeeze brake and confirm function</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>GENERAL</td>
<td>Check complete bike of view and adjust</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HEADSET</td>
<td>Check alignment</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BISI RING</td>
<td>Add grease thru fitting</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FRAME PIVOTS</td>
<td>Check tension</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>SPOKES</td>
<td>Inspect for damage, check tension</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BICYCLE FRAME</td>
<td>Check air pressure, inspect tires</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BICYCLE CABLES</td>
<td>Inspect and lube</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>STEERER</td>
<td>Check and improve interface with frame</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>FRAME PIVOTS</td>
<td>Remove pivot bolts, check bearings for pitting and wear</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HEADSET</td>
<td>Disassemble stem, headset and fork. Check bearings for pitting and wear</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HUBS</td>
<td>Pull wheels off, check hub bearings for pitting and wear</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>BICYCLE DISCBrake</td>
<td>Replace brake pads</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CLINCH</td>
<td>Replace brake pads</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>CHAIN</td>
<td>Inspect for damage and check for stretching</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>HEADSET</td>
<td>Overhaul See MFG Recommendations</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

* The above maintenance schedule is only a guideline. Refer to component manufacturer for specific instruction on maintaining their parts.