
Lesson 11 – Motor PWM and Calibration Page 1

LESSON 11

MOTOR PWM AND CALIBRATION

OBJECTIVE

In this lesson, you will learn how to use Pulse Width Modulation (PWM) signals from

GPIO pins to control the speed of the drive motors on your robot. You will also learn

how to adjust these PWM values to help your robot drive most accurately.

MATERIALS

• Assembled Robot from Lesson D-10

• Wireless home network for connecting multiple devices

• Windows PC or Chromebook to establish a remote connection with the

Raspberry Pi

REVIEW CONCEPTS

If you do not feel comfortable with the following concepts, please review them before

proceeding.

• Pulse Width Modulation (Lesson B-4)

• Networking and Remote Access (Lesson C-1)

• Driving Motors (Lesson D-10)

Lesson 11 – Motor PWM and Calibration Page 2

LESSON

In the previous lesson, you connected the drive motors on your robot to the L293DNE

motor drive IC and tested both motors in both directions. This test was conducted with

the motors running at full speed, but there are often times when you might want the

motors to run at lower speeds:

• The robot is near an object.

• The robot is trying to follow a line using its sensors.

• The robot is turning too quickly to be easily controlled remotely.

The input lines of the motor drive IC are digital, meaning they will only recognize high or

low signals. This means that the only options for driving those inputs are high or low,

which will result in the connected motor either being off or driving at full speed. Since

the speed of the motor can’t be controlled by the motor input lines, the only way to

control the speed is to use the enable lines of the motor drive IC.

PWM CONTROL OF DC MOTORS

You may remember from previous lessons that a PWM signal allows you to rapidly turn

a signal on and off. We previously used a PWM output to control the brightness of an

LED. With standard high and low signals, the LED will either be on or off. Brightness

values in between can be attained by rapidly turning the LED on and off. If this high/low

switching is done fast enough, the LED will appear to be on, but dim. This brightness

value can be adjusted by manipulating the duty cycle of the signal which can be

adjusted to any value between 0%, or never high, to 100%, or always high.

• A higher duty cycle means the signal is high more often, and the LED will be

brighter.

• A lower duty cycle means the signal is high less often, and the LED will not be as

bright.

These principles for controlling the brightness of an LED can be directly applied to

speed control of a motor. By using a PWM signal to control the enable line of the motor

drive IC, you can control how often that enable line will be high, which will control how

often the enable line will allow the motors to drive.

Lesson 11 – Motor PWM and Calibration Page 3

MOTOR DRIVE IC PINOUT

Here is the pinout of the L293DNE motor drive IC as it will be used in our robot:

GPIO12 will be controlling the enable line for the right motor, and GPIO13 will be

controlling the enable line for the left motor. Sending out PWM signals from these GPIO

pins on the Pi will allow the speed of each motor to be controlled independently.

Pushing an enable line high will only cause a motor to move if one of the motor drive

inputs to that channel is also high. Let’s say for example, the right motor drive lines on

GPIO23 and GPIO24 are both low. You can drive GPIO12 high permanently, or

intermittently using PWM, but the right motor will still never move. The motor drive IC

will pass the signals from GPIO23 and GPIO24 to the motors, but since both are low,

the motor will not move. A high would also be required on either GPIO23 or GPIO24 in

order to make that motor move:

GPIO12 (Enable) GPIO23 GPIO24 Motor

Low High Low No movement – Enable line is low

Low Low High No movement – Enable line is low

High High Low Fast movement

High Low High Fast movement

PWM High Low Speed controlled movement

PWM Low High Speed controlled movement

Lesson 11 – Motor PWM and Calibration Page 4

LOW SPEED MOTOR CHARACTERISTICS

PWM control of the enable lines on the motor drive IC is a great way to control the

speed of motors, and high speeds are no problem. As the value of the PWM signal

approaches 100% duty cycle, the motor will just run faster and faster, until it’s running

full speed.

Caution must be exercised when reducing the PWM duty cycle value to levels that

cause the motor to move too slowly, or not at all. Low speed operation is not exactly the

same as high speed. A PWM duty cycle value of 99% will run the motor at almost full

speed, or 100%. This is not the case for low speeds. At 0% duty cycle, the motor will be

off. At 1% duty cycle, the motor will be turning on 1% of the time, which will not be

enough to get the motor to move. Trying to drive the motor with a PWM duty cycle value

that’s too low will cause a condition called a stall.

A motor stall occurs when there is not enough current running through the motor

windings to create movement. This stall condition can cause unwanted heat in the

motor, motor drive IC, or associated wiring if allowed to continue too long. A stall can

often be identified by a high-pitch whine coming from a motor when it should be moving.

This is an indicator that the PWM duty cycle that you’re sending the motor is too low.

The minimum PWM duty cycle value that can be used to drive a motor will be based on

many variables:

• Construction of the motor – Variables from one motor to another can affect the

lowest speed that a motor can run at without stalling.

• Gear ratio of the gearbox, if one is present – A gearbox will generally lessen the

load on the motor, allowing the motor to turn at higher speeds, while the

wheel/tire turns more slowly.

• Size of the wheel/tire combination attached to the motor – Larger diameter

wheel/tire combinations will be more difficult for the motor to rotate. A larger the

wheel/tire combination will cause the motor to stall more easily.

• Voltage being supplied to the motor drive IC – It’s easier to stall a motor when

the motor drive IC is being run by a lower voltage supply. A motor drive IC

running on 5-volts will cause motors to stall easier than one running at 9-volts or

more.

• Resistance of the driving surface – A smooth driving surface like hardwood or

concrete will allow for lower PWM values before stalling. Surfaces like carpet will

cause more resistance for the robot to drive over and will require a higher PWM

value to avoid stalling.

Lesson 11 – Motor PWM and Calibration Page 5

• Weight of the robot – A light robot will be easier for the motors to propel, so lower

PWM values can be used. As the robot increases in weight, driving the motors

will require more force, so a higher PWM value will be required.

With so many factors involved, the only way to figure out the minimum PWM duty cycle

that can be used on your robot before stalling the motors is experimentation. Every

robot and driving surface will be a little different.

LEFT AND RIGHT MOTOR VARIABILITY

In a perfect world, when commanded to drive straight, your robot would drive in a

perfectly straight line. As we found in the last section, many variables will come into play

when determining exactly how fast a motor will move. This is especially problematic

when the enable lines of the motor drive IC are not controlled using PWM.

Without PWM control, each motor will run as fast as possible when commanded. This

could result in one motor running at 195 revolutions-per-minute (RPM), and the other

motor running at 205 RPM. This may not sound like much, but that means that wheel

will rotate 10 more times than the other over the course of a minute. Breaking that down

even further, one of the wheels will make one extra revolution every 6 seconds. Even

over short distances, this will result in a slow turn when the robot is supposed to be

driving straight.

PWM control of the left and right enable lines on the motor drive IC will allow you to

“calibrate” the left and right motor speeds independently. If you command both motors

to drive forward at a PWM value of 95% and the robot is turning slightly left, that means

the right motor is driving a little faster than the left when using 95% PWM values.

Slightly decreasing the PWM value of the right motor will slow down that motor and

should cause the robot to drive more accurately in a straight line. Reducing the right

motor PWM value too much could cause the robot to start turning to the right. Finding

the right value might take a couple of attempts, but the driving accuracy that’s gained

will be well worth the effort.

Lesson 11 – Motor PWM and Calibration Page 6

ACTIVITIES

In the following activities you will use the program created in Lesson 10 to verify the

motors are driving in the correct directions when commanded. You will then modify this

program to add PWM speed control to both motors and find the best left and right PWM

values for driving the robot in a straight line.

ACTIVITY #1 – MOTOR DIRECTION TEST

In the last lesson you confirmed that both motors would turn in both directions with the

robot held above your work surface. This is a good test, but there could still be problems

that exist with your motor wiring that could be causing reversed commands to the drive

motors. In this activity, you will modify the program from Lesson 10 to drive both motors

in forward and then reverse to confirm the motors propel the robot in the expected

direction when using the GPIO pin numbers below:

High on GPIO Pin Motor Movement

GPIO23 Right Motor Reverse

GPIO24 Right Motor Forward

GPIO19 Left Motor Forward

GPIO26 Left Motor Reverse

NOTE – The enable lines required for these motor movements have been

omitted from this chart for clarity.

We will first be powering the robot using AC wall power to modify the program, and then

switching to battery power for mobile testing once the program is complete.

Lesson 11 – Motor PWM and Calibration Page 7

STEP #1

If the Pi is currently up and running, shut the Pi down before proceeding.

Disconnect battery power input from the Pi by disconnecting the micro USB power

connector. Connect the 5V wall power adapter to wall power and then to the micro USB

power connection of the Pi. The Pi will power up and automatically connect to your WiFi

network.

STEP #2

Connect to the VNC server of the Raspberry Pi using a desktop computer or laptop

connected to your WiFi network. Once connected, you should be viewing the Desktop of

the Pi just as if you had a monitor, keyboard, and mouse connected directly to the Pi.

Open the folder named robot on the Desktop and double-click on the file named

motor_test.py to open the file in Thonny.

STEP #3

Save a new copy of this program in Thonny by selecting File, and then Save As from

the upper-left menu. Double-click on the robot folder in the displayed list of files to save

your file in the same location as the original. Type motor_fwd_rev.py in for the file

name and click on the OK button in the lower-right of the Thonny window.

You will now be working in a new copy of the file so the original can be used again later,

if needed.

Lesson 11 – Motor PWM and Calibration Page 8

STEP #4

The first modification will be to allow the function named drive_motor to allow for

multiple arguments. The arguments that we will use will be pin1, pin2, and state:

Pin1 – A pin to control

Pin2 – A pin to control

State – The desired state of high or low

This will save quite a bit of code since we will be controlling multiple motor pins to drive

the motors. Change the word pin after the function name to pin1, pin2, state:

def drive_motor(pin):

will become

def drive_motor(pin1, pin2, state):

STEP #5

The next modification will be to replace the code the function will run when called. The

new function behavior will be to change the high/low state of pin1 and pin2 to the

state specified in the arguments when the function is called. Remove the current

content from the drive_motor function and replace it with the following highlighted lines

of code:

def drive_motor(pin1, pin2, state):
 GPIO.output(pin1, state)
 GPIO.output(pin2, state)
 time.sleep(1)

This will cause pin1 and pin2 to pushed high or pulled low based on the value of the

state argument, and then a 1 second delay will occur before returning to the main

program.

Lesson 11 – Motor PWM and Calibration Page 9

STEP #6

It’s now time to modify the main program motor command to include the additional pin

and state information that was added to the function. Here are the motor commands

that will be used:

1. The r_for and l_for pins will be pushed high to drive the robot forward.

2. The r_for and l_for pins will be pulled low to stop the robot.

3. The r_rev and l_rev pins will be pushed high to drive the robot in reverse.

4. The r_rev and l_rev pins will be pulled low to stop the robot.

Remove the existing drive_motor function calls and replace them with the highlighted

lines of code below:

 time.sleep(1)

drive_motor(r_for, l_for, 1)
drive_motor(r_for, l_for, 0)
drive_motor(r_rev, l_rev, 1)
drive_motor(r_rev, l_rev, 0)

GPIO.cleanup()

Lesson 11 – Motor PWM and Calibration Page 10

The program is now fully modified, and all changes have been highlighted below:

import RPi.GPIO as GPIO
import time

motors = [13,19,26,12,23,24]
r_enable = 12
r_for = 24
r_rev = 23
l_enable = 13
l_for = 19
l_rev = 26

GPIO.setmode(GPIO.BCM)
GPIO.setup(motors, GPIO.OUT)
GPIO.output(motors, GPIO.LOW)

GPIO.output(r_enable, 1)
GPIO.output(l_enable, 1)

def drive_motor(pin1, pin2, state):
 GPIO.output(pin1, state)
 GPIO.output(pin2, state)
 time.sleep(1)

drive_motor(r_for, l_for, 1)
drive_motor(r_for, l_for, 0)
drive_motor(r_rev, l_rev, 1)
drive_motor(r_rev, l_rev, 0)

GPIO.cleanup()

Lesson 11 – Motor PWM and Calibration Page 11

STEP #7

Save the program and shut down the Raspberry Pi. Save your program, exit Thonny,

and shut down the Pi. Once the SD card activity LED is no longer flashing green,

remove micro USB power cable from the Pi.

Connect the micro USB power cable from the on-board 5V converter to the Pi. Next,

connect the 9-volt battery pack to the 5V converter, powering up the robot.

Caution – When running on power from the battery pack, the motors will be powered up

and ready to move. Make sure that your robot is on the floor or in some location

where driving off the edge of a desk or tabletop is not a possibility, as this could

result in damage to the robot that cannot be easily repaired.

Do not continue to run the robot if the red power LED on the Pi is flashing or turning off.

Discontinue use of the robot immediately and charge or replace the batteries. Running

the robot in a low battery pack could result in corruption or data loss on the SD card in

the Pi.

Lesson 11 – Motor PWM and Calibration Page 12

STEP #8

Connect to the VNC server of the Raspberry Pi using a desktop computer or laptop

connected to your WiFi network. Once connected, you should be viewing the Desktop of

the Pi just as if you had a monitor, keyboard, and mouse connected directly to the Pi.

Open the folder named robot on your Desktop and double-click on the program named

motor_fwd_rev.py to open it in a new Thonny window.

Ensure the area around the robot is clear of any obstacles and safe for driving. Run the

program to confirm that the robot drives forward for one second, stops, reverses for one

second, and stops. If the robot deviates from this expected behavior, power the robot

down and check the list of possible wiring causes below:

• Robot drives in reverse and then forward – Both motors have swapped

connections, check connections of both motors from GPIO pin, through motor

drive IC, and onto motor per wiring connections made in Lesson 10.

• Robot drives in circles instead of forward/reverse – One motor is reversed,

determine which motor drives in reverse when program starts. Check wiring for

this motor per Lesson 10 and correct reversed wiring as needed

Do not proceed to the next activity until running this program results in the robot driving

forward and then backward.

Lesson 11 – Motor PWM and Calibration Page 13

ACTIVITY #2 – ADD PWM DRIVE CONTROL TO MOTORS

In this activity you will modify the program from the last activity to include PWM control

of the enable lines on the motor drive IC. This will enable independent speed control of

the left and right motors. This program modification will be quick and can be done on

battery power.

STEP #1

If not already running from the last activity, power up the robot on battery power and

connect to the onboard VNC server using another device on your network.

Once at the Desktop, open the folder named robot and double-click on the file named

motor_fwd_rev.py to open the file in Thonny.

Save a new copy of this program in Thonny by selecting File, and then Save As from

the upper-left menu. If needed, double-click on the robot folder in the displayed list of

files to save your file in the same location as the original, which is inside the folder

named /home/pi/Desktop/robot. Type motor_pwm.py in for the file name and click

on the OK button in the lower-right of the Thonny window.

You will now be working in a new copy of the file so the original can be used again later,

if needed.

Lesson 11 – Motor PWM and Calibration Page 14

STEP #2

The first modification that will be made to this program will be to add variables that

contain PWM values that will be used for the right and left motors. We will use the

variable names r_speed and l_speed to store values of 99 for both motors as a starting

point. Add these variables and their values to the list of variables at the beginning of the

program:

motors = [13,19,26,12,23,24]
r_enable = 12
r_for = 24
r_rev = 23
r_speed = 99
l_enable = 13
l_for = 19
l_rev = 26
l_speed = 99

STEP #3

The next modification will be to configure the PWM signals that will be used to drive the

l_enable and r_enable pins. We will use the names l_pwm and r_pwm for the left and

right PWM signals and we use 1000Hz for the frequency. Add the highlighted code

below to the program just before the drive_motor function:

GPIO.setmode(GPIO.BCM)
GPIO.setup(motors, GPIO.OUT)
GPIO.output(motors, GPIO.LOW)

l_pwm = GPIO.PWM(l_enable, 1000)
l_pwm.start(l_speed)
r_pwm = GPIO.PWM(r_enable, 1000)
r_pwm.start(r_speed)

def drive_motor(pin1, pin2, state):
 GPIO.output(pin1, state)
 GPIO.output(pin2, state)

This will configure and start the PWM signals on the left and right enable pins using the

l_speed and r_speed duty cycle values that were specified in earlier in the program.

Lesson 11 – Motor PWM and Calibration Page 15

STEP #4

The goal of this test is to see how straight the robot is driving, which may be a little

difficult if the robot only drives for one second. Change the time.sleep value in the

drive_motor function from 1 to 2 so you will be able to get a better view of how straight

the robot is driving:

def drive_motor(pin1, pin2, state):
 GPIO.output(pin1, state)
 GPIO.output(pin2, state)
 time.sleep(2)

STEP #5

The program is now ready to drive the motors using PWM speed control values of 99 for

both the left and right motors. In a perfect world, these equal values would cause the

robot to drive perfectly straight, but as you learned in this lesson, many factors are

working against these being the best values.

Ensure the area around the robot is clear of any obstacles and safe for driving. Keep in

mind that the robot will be driving twice as far as the first test since we doubled the

time.sleep value in the drive_motor function.

Run the program and monitor the robot’s accuracy when driving forward and then in

reverse. Here are the ways to handle adjustments as needed:

• The robot is driving straight – No adjustment is needed, proceed to the next step.

• The robot is turning slightly to the left – This means the right motor is driving too

quickly. Substitute a slightly lower number for the value of r_speed and run the

test again. Keep adjusting this value until the robot is driving straight.

• The robot is turning slightly to the right – This means the left motor is driving too

quickly. Substitute a slightly lower number for the value of l_speed and run the

test again. Keep adjusting this value until the robot is driving straight.

Lesson 11 – Motor PWM and Calibration Page 16

STEP #6

Now that the robot is driving straight using your PWM values, make note of these values

as they will be useful for future programs that you will create that use PWM speed

control of the left and right motors on your robot.

Since the PWM speed control test and calibration is now complete, power off the

Raspberry Pi. Once the SD card activity LED has stopped flashing, disconnect the

battery pack from the Voltage Regulator Module to fully remove power from the robot.

Lesson 11 – Motor PWM and Calibration Page 17

QUESTIONS FOR UNDERSTANDING

1. Will a robot always have perfectly matched left and right drive motors that will

allow the drive in a straight line, or will PWM speed control of the motor enable

lines be needed to fine-tune driving accuracy?

2. What might cause a drive motor to emit a high-pitch sound and not rotate?

3. If your robot is turning slightly to the right when driving forward, should the left or

right motor speed be lowered?

Answers can be found on the next page.

Lesson 11 – Motor PWM and Calibration Page 18

ANSWERS TO THE QUESTIONS FOR UNDERSTANDING

1. Will a robot always have perfectly matched left and right drive motors that will

allow the drive in a straight line, or will PWM speed control of the motor enable

lines be needed to fine-tune driving accuracy?

ANSWER: PWM motor speed control will almost always be required to calibrate

a robot for straight driving due to the number of factors that can cause drive

inconsistencies between the left and right sides.

2. What might cause a drive motor to emit a high-pitch sound and not rotate?

ANSWER: The high-pitch sound and lack of rotation indicate a stall condition.

This is often caused by a PWM duty cycle that’s too low, and a higher value

should be used to ensure a stall condition is avoided.

3. If your robot is turning slightly to the right when driving forward, should the left or

right motor speed be lowered?

ANSWER: A slight right turn when driving forward indicates that the left motor is

turning faster than the right. The left motor speed should be lowered to allow for

better straight driving performance from the robot.

Lesson 11 – Motor PWM and Calibration Page 19

CONCLUSION

In this lesson, you learned how to use PWM signals to control the enable lines of the

motor drive IC, which can be used to control the speed of DC motors. This will allow you

more flexibility in the way the motors are used to the drive the robot in different

scenarios.

In the next lesson, you will learn how to document projects to ensure the best outcome,

both before the project begins, and after the project has been completed.

