
Lesson 18 – Final Project – Alarm Page 621

LESSON 18

FINAL PROJECT – ALARM

OBJECTIVE

In this lesson you will create a project that incorporates the camera, audio amplifier,
speaker, and other components from previous levels, to create an alarm system
capable of capturing images and playing an audio file when triggered.

MATERIALS

• Raspberry Pi connected to a monitor, keyboard, and mouse
• Circuit from Lesson 17, Activity #1 containing the RGB LED, OLED Display, and

the Pushbutton Switch
• 3 x Long Male-to-Male Jumper Wires
• 8 x Short Male-to-Male Jumper Wires
• 1 x Audio Amplifier
• 1 x Speaker
• 2 x 1K-Ohm Resistors
• 1 x Ultrasonic Range Sensor
• USB Audio Adapter

Lesson 18 – Final Project – Alarm Page 622

REVIEW CONCEPTS

If you do not feel comfortable with the following concepts, please review them before
proceeding.

• Global and Local Variables (Lesson B-2)
• Multithreaded Python Operations (Lesson B-12)
• Using the Ultrasonic Range Sensor (Lesson B-14)
• Working with the OLED Display (Lesson B-16)
• Creating GUI Windows using Tkinter (Lesson C-3)
• Controlling the Pi Camera (Lesson C-12)

Lesson 18 – Final Project – Alarm Page 623

LESSON

In this lesson you will build an alarm system that can be used to monitor an area while
you're away. The circuit and program for this system will combine parts and skills from
Levels A, B, and C of this program.

Due to the complexity of the circuit build and program required for this project, the
teaching section of this lesson will be fairly limited. Instead, that section will be used to
give a thorough explanation of the functionality that will be built into the project, how the
components will interact, and how program elements will be used to control these
components

PROJECT OVERVIEW

This system will detect the presence of someone near the Pi, which will trigger pre-
programmed audio and video events. Here are the components in the circuit and how
each will be used:

• Ultrasonic Range Sensor – Used for detecting someone near the system.
• Audio Amplifier and Speaker – Used for playing sounds when an object is

detected.
• Camera – Used for capturing and storing image when someone is detected.

When captured, the image will be displayed in the GUI window.
• OLED Display – Used for displaying armed/disarmed status and detection event

details.
• RGB LED – Used as visual indicator of armed/disarmed status.

This may look like a lot of things to be working with in one project, but the circuits and
software that will be used with these components will be borrowed from previous
lessons. The Ultrasonic sensor, for example, will be using the same software module
that you used for the final project in Level B. The audio portion will use the same wiring
and commands as Lesson C-6. The camera capture and display software will just be a
slightly modified version of the Tkinter program that you created in Lesson C-12. The
OLED display and RGB LED software will also be very similar to programs you've
created to interface with those parts in the past.

Lesson 18 – Final Project – Alarm Page 624

USER INTERFACE OVERVIEW

When the program is first launched, the user will see a Tkinter window containing a
DISARMED image, an Arm button, a Disarm button, and a Quit button. The RGB LED
will be green to reflect that the system is disarmed, and a DISARMED message on the
OLED screen will reflect this as well. At this point the Ultrasonic sensor is not active.

The user clicking on the Arm button will cause the Ultrasonic sensor to begin taking
distance readings. The RGB LED will change to red and the OLED display will show the
message ARMED. The image displayed in the Tkinter window will be switched to one
indicating the system is now armed and that there are no captured images to display.

If the system is armed, the alarm will be triggered any time an object comes within 50
centimeters of the Ultrasonic sensor. Once triggered, these events will occur:

• Display ALARM along with the current timestamp on the OLED display
• Play a pre-recorded sound file through the speaker
• Turn on the camera and capture an image
• Save the image in the /home/pi/Pictures/captures folder
• Display the captured image in the GUI window

After the trigger event is complete, the system will remain armed, and can once again
be triggered by an object being within range of the Ultrasonic sensor.

The value of 50 centimeters for the trigger range was arbitrarily selected as a
reasonable value for triggering the alarm. This distance can easily be adjusted to your
liking once the program is built.

Lesson 18 – Final Project – Alarm Page 625

PROGRAM OPERATIONS

The GUI window of this program will run just like the camera image capture program
you build in Lesson C-12. One big difference between that program and this one is that
functions that were launched did not loop. When you pressed the button, a function
would run that would capture the image, display it in the window, and return control
back to the window.

That works great when the function you called doesn't loop but imagine what happens
when you call a function that checks the range of the Ultrasonic sensor, over and over.
The program will call that function, start checking the range, and never stop. This
means that the GUI window is now unresponsive as the program is now only looping
through the range checking function.

This can be solved by launching the function as a new thread like you did with the
status LED of the RFID reader program in Lesson B-12. The LED flashing thread was
launched and ran in parallel with the main program, so the LED flash timing did not
delay the rest of the program. The same concept will be used in this program with the
Ultrasonic sensor. The Ultrasonic sensor range checking function will be launched as a
new thread whenever the system is armed. A while condition in this function will check
the current status of a variable named armed each time the function loops. If the system
is disarmed, the value of armed will no longer satisfy the while condition in the thread,
and the range checking thread will end.

Lesson 18 – Final Project – Alarm Page 626

REQUIRED FILES AND MODULES

This program will rely on some additional files to accomplish all of the tasks above:

The Adafruit_Python_SSD1306 module for driving the OLED display. This was
installed onto your Pi in Lesson B-16.

The ultrasonic.py file from Lesson B-18 will be used as an imported module to obtain
ranges from the Ultrasonic range sensor.

The ARMED and DISARMED placeholder images for the GUI window will be
downloaded from the 42 Electronics Level C GitHub repository during the Activities
section of this lesson.

A sound file that will be played when an alarm event is triggered. You will record a file to
use for this purpose during the Activities section of this lesson.

A new folder will be created at /home/pi/Pictures/captures that will store the
captured images. Another new folder named /home/pi/alarm will be created that will
hold the ARMED and DISARMED images for the GUI window, the sound file, the
ultrasonic.py module file, and the main program. These folders will be created later in
the Activities section.

Lesson 18 – Final Project – Alarm Page 627

ACTIVITIES

In the following activities you will make changes to the circuit from Lesson 17, Activity
#1 to add components required for a simple alarm system. You will also create folders
and download image files from the 42 Electronics GitHub repository, as well as create
the main alarm program.

ACTIVITY #1 – CIRCUIT MODIFICATIONS

In this activity you will modify the breadboard circuit from Lesson 17, Activity #1 by
removing the pushbutton switch, and adding both the audio amplifier with speaker, and
the Ultrasonic sensor.

Lesson 18 – Final Project – Alarm Page 628

STEP #1

First, ensure the Raspberry Pi is safely powered off. Once the Pi is off, remove the
following from the circuit:

• Pushbutton switch
• 10K-Ohm resistor
• Three jumper wires attached to the switch

Once these modifications are made, your breadboard will still contain the RGB LED, the
OLED display, and associated their associated components:

Lesson 18 – Final Project – Alarm Page 629

STEP #2

The Ultrasonic sensor and the audio amplifier will both need access to 5V power and
ground, so let's make those available on the P2 and N2 power rails. Insert two short
jumper wires between the breadboard locations below:

5V – Short Male-to-Male Jumper Wire – between J1 and P2-3

GND - Short Male-to-Male Jumper Wire – between J3 and N2-3

Lesson 18 – Final Project – Alarm Page 630

STEP #3

Next, you will install the power wiring for the audio amplifier which requires a single 5V
connection and two ground connections: Insert three short jumper wires into the
following locations:

5V - Short Male-to-Male Jumper Wire – between P2-33 and E46

GND - Short Male-to-Male Jumper Wire – between N2-33 and E45

GND - Short Male-to-Male Jumper Wire – between N2-34 and E48

Lesson 18 – Final Project – Alarm Page 631

STEP #4

The audio amplifier needs one more connection and that's an audio input source from
the Pi. Just like in Lesson 6, you will be using GPIO18 for sending audio to the amplifier.
Use one long jumper wire to connect the following points:

Audio signal - Long Male-to-Male Jumper Wire – between J6 and E49

Lesson 18 – Final Project – Alarm Page 632

STEP #5

The final step for the audio components will be to add the audio amplifier and speaker.
Add the amplifier to the breadboard in the locations shown below:

Audio Amplifier – between pins C45 through C49, with Ground in C45 and A+ in C49

If the speaker is no longer attached to the amplifier, use the small, flat screwdriver to
reconnect the speaker to the terminal block of the amplifier. For more information on
this procedure you can reference Lesson 6 where the speaker and amplifier were first
connected.

Lesson 18 – Final Project – Alarm Page 633

STEP #6

The last component that will be added to the circuit is the Ultrasonic sensor. In this step
you will add input power, ground, and the trigger connection for the Ultrasonic sensor.
Make the following connections below on your breadboard:

5V - Short Male-to-Male Jumper Wire – between P2-61 and H53

GND - Short Male-to-Male Jumper Wire – between N2-39 and H50

GPIO20 - Long Male-to-Male Jumper Wire – between J19 and H52

Lesson 18 – Final Project – Alarm Page 634

STEP #7

The Echo output of the Ultrasonic sensor is not safe to connect directly to a GPIO pin,
so you will run the output through a voltage divider made up of two 1K-Ohm resistors
that will cut the output voltage in half. Add two jumper wires and two 1K-Ohm resistors
to the locations specified below:

GPIO21 - Long Male-to-Male Jumper Wire – between J20 and H55

GND - Short Male-to-Male Jumper Wire – between N2-61 and F59

1K-Ohm Resistor - between G55 and G59

1K-Ohm Resistor - between F51 and F55

Lesson 18 – Final Project – Alarm Page 635

STEP #8

The last circuit modification will be to add the Ultrasonic sensor. Insert the Ultrasonic
sensor into the breadboard holes below:

Ultrasonic Sensor – between J50 and J53, with the emitter/receiver portion of the
sensor pointing away from the breadboard.

Lesson 18 – Final Project – Alarm Page 636

STEP #9

Double-check all the wiring with the image in the last step to ensure there are no
connection or placement errors in your circuit. If everything looks correct, plug the USB
audio device and power on the Raspberry Pi. The USB audio device will be used to
record a sound file in the next activity.

Lesson 18 – Final Project – Alarm Page 637

ACTIVITY #2 – FILE AND FOLDER PREPARATION

In this activity you will create two folders and populate them with the files needed for the
final program to function. The folder /home/pi/Pictures/captures will be used to
hold all images that are captured by the alarm program. The folder /home/pi/alarm will
used to hold program files.

STEP #1

The first step will be to create the captures directory inside the /home/pi/Pictures
folder. Open a Terminal window and enter the following command:

cd Pictures

Since you're already located in /home/pi, this command will move you into the
Pictures folder. Use the following command to create the new captures directory:

mkdir captures

The captures directory will be created inside the Pictures folder.

Lesson 18 – Final Project – Alarm Page 638

STEP #2

The next step will be to create a folder named alarm inside the /home/pi directory.
Change your location back to the /home/pi directory with the following command:

cd ~

Now that you're back in the /home/pi directory, create the alarm folder with the
following command:

mkdir alarm

Change into the new alarm folder by using this command:

cd alarm

Lesson 18 – Final Project – Alarm Page 639

STEP #3

Now that the alarm folder has been created, and you're in that location in the CLI, it's
time to start getting the files you need into that folder.

First, download the two image files named armed.png and disarmed.png from the 42
Electronics Level C GitHub repository.

Please note that the next two commands won't fit on a single line, but each one should
be entered as one continuous command in Terminal:

Download armed.png with the following command:

curl https://raw.githubusercontent.com/42electronics/level_c/master/lesson_18/armed.png >
armed.png

Download disarmed.png with the following command:

curl https://raw.githubusercontent.com/42electronics/level_c/master/lesson_18/disarmed.png >
disarmed.png

Run the ls -l command to make sure the file sizes are 6201 for armed.png and 4233
for disarmed.png:

If the file sizes are below 20, there was most likely a typo in your curl command and the
file was created but is empty. If this is the case, rerun the command for the incorrect file,
ensuring that the command matches those above exactly, and the good file will
overwrite the bad version. Use ls -l again to confirm your file sizes match those above
before proceeding.

Lesson 18 – Final Project – Alarm Page 640

STEP #4

In addition to the image files you just downloaded, you will also need the ultrasonic.py
that you used for the final project in Level B. This file may still be on your Desktop, but
since that was many lessons ago, there is a copy hosted in the same GitHub folder. Use
the command below in your existing Terminal window to download the file:

curl https://raw.githubusercontent.com/42electronics/level_c/master/lesson_18/ultrasonic.py >
ultrasonic.py

Confirm your command downloaded the file properly by running another ls -l
command to confirm the downloaded file size is 2035:

If the file size does not match, run the command again, double-checking for any typing
errors. Once you've confirmed the file size is 2035, proceed to the next step.

Lesson 18 – Final Project – Alarm Page 641

STEP #5

The last piece you need is the audio file that will be played when a detection event
occurs. While you could use your recorded voice file from Lesson 6, it might be more
interesting to record a file that relates more directly to an alarm event. This sound will be
played whenever the alarm is triggered, so a sound like "Warning" or “Step Away" would
be more applicable, but the choice is up to you.

You will be using the same Terminal commands from Lesson 6 to record a new file.
Record a new file called alarm.wav by using the following command. Remember to use
CTRL-C to stop the recording:

arecord --device=hw:1,0 --format S16_LE --rate 48000 -c1 alarm.wav

Make sure you're happy with the recording by playing back the file with the following
commands. First, configure GPIO18 to output audio:

gpio -g mode 18 ALT5")

Next, play the new recording with this command:

aplay alarm.wav

If you're not happy with the recording, use the arecord command again to record over
the existing alarm.wav file, and use the aplay command to listen to your file. Once
you're happy with the recording, use the following command to return GPIO18 to an
input state:

gpio -g mode 18 in

You now have all the files that will be needed by the program.

Lesson 18 – Final Project – Alarm Page 642

ACTIVITY #3 – CREATING THE ALARM PROGRAM

In this activity you will create the program for the alarm project. This program will be
made using blocks of code from many previous lessons and programs. Since the
functionality of each of these blocks were covered in previous lessons, this lesson won’t
go through every piece of code in each block, Instead, some steps will direct you to the
lesson that contains more information about that block of code, which you can use for
further reference if needed.

STEP #1

The first step will be to create a new program in Thonny. This program must be located
in the /home/pi/alarm folder so it will have access to the files that you've previously
prepared.

Open Thonny and create a new program. Use the File > Save As menu to save the file
as alarm.py in the /home/pi/alarm directory. Make sure to use the navigation bar
beneath the file name to save alarm.py in the proper directory:

Lesson 18 – Final Project – Alarm Page 643

STEP #2

The first block of the program will be the imports. There are quite a few since you are
working with GPIO pins, the OLED display, Tkinter, os commands, the Ultrasonic
sensor, and others.

Add this block to the beginning of your program:

import RPi.GPIO as GPIO
import Adafruit_SSD1306
from tkinter import *
from PIL import Image, ImageDraw, ImageFont
import time, os, ultrasonic, _thread

STEP #3

Next, you will set up some variables to hold values that will be used throughout the
program:

red – This variable will hold the pin number of the red RGB element, or 13.

green – This variable will hold the pin number of the green RGB element, or 19.

sensitivity – This variable will hold the value in centimeters that will trigger an alarm
event. This will initially be 50 but can easily be changed later.

armed – This variable will hold a 0 or 1, 0 indicates a disarmed state and 0 indicates an
armed state.

Set up these variables by adding the highlighted block below to the end of your
program:

import time, os, ultrasonic, _thread

red = 13
green = 19
sensitivity = 50
armed = 0

Lesson 18 – Final Project – Alarm Page 644

STEP #4

Since this program will interact with GPIO pins, the pin numbering mode must be
declared, and red and green pins must be configured as outputs. Add the highlighted
block of code below to the end of your program:

armed = 0

GPIO.setmode(GPIO.BCM)
GPIO.setup(red, GPIO.OUT)
GPIO.setup(green, GPIO.OUT)

STEP #5

It's now time for some the setup code required for the OLED display. This block of code
is pulled directly from Lesson B-16. The only adjustment that's been made to the code is
that the size of the font has been adjusted to 24 because we're displaying less text on
the screen, so the characters can be larger.

Add the highlighted block of code below to the end of your program:

GPIO.setup(green, GPIO.OUT)

disp = Adafruit_SSD1306.SSD1306_128_64(rst=None)
disp.begin()
width = disp.width
height = disp.height
image = Image.new('1', (width, height))
draw = ImageDraw.Draw(image)
font =
ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf',24)

Lesson 18 – Final Project – Alarm Page 645

STEP #6

Since you will be using Tkinter to build a GUI window to display captured images and
the arm/disarm buttons, you will need an alias to use for referring to the window. You
will use root for the Tkinter alias. and you will also use this section to assign a window
title of Alarm System. Add the following highlighted block of code to the end of your
program:

font = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf',24)

root = Tk()
root.title('Alarm System')

For more information on these commands you can refer back to Lessons C-3 and C-12.

STEP #7

The next block will be a function that contains the commands required to play your pre-
recorded sound file through the amplifier and speaker connected to GPIO18. This code
is very similar to the code used in Lesson C-6, except now it will run inside of a function
named audio_alert() and it will play a file named alarm.wav. Add the highlighted
block of code below to the end of your program:

root.title('Alarm System')

def audio_alert():
 os.system("gpio -g mode 18 ALT5")
 os.system("aplay /home/pi/alarm/alarm.wav")
 os.system("gpio -g mode 18 in")

Lesson 18 – Final Project – Alarm Page 646

STEP #8

The next function will update the red and green elements of the RGB LED. This is the
same function that you've used in many other programs, except that blue has been
removed since it will not be used in this program. Add the highlighted block of code
below to the end of your program:

 os.system("gpio -g mode 18 in")

def led_update(red_value,green_value):
 GPIO.output(red, red_value)
 GPIO.output(green, green_value)

Since blue has been removed from this function, the red and green values are all that
need to be specified when calling the function:

• led_update(1,0) red on and green off
• led_update(0,1) red off and green on
• led_update(0,0) red off and green off

Lesson 18 – Final Project – Alarm Page 647

STEP #9

The function you will add in this step will update the contents of the OLED display. This
version is slightly different than the function you've used in the past, as line1 and
line2 have been added as attributes. This works just like the led_update() function
that allows you to specify whether an LED element is on or off by sending a 0 or 1 for
that position. The same can be done with the lines on the display. By sending two
strings when calling this function, those strings can be displayed on the OLED. The
content in line1 will be displayed at Y position 0 of the screen and line2 will be
displayed at Y position 22.

Add the highlighted block of code below to the end of your program:

 GPIO.output(green, green_value)

def display_update(line1,line2):
 draw.rectangle((0,0,width,height), outline=0, fill=0)
 draw.text((0, 0), line1, font=font, fill=255)
 draw.text((0, 22), line2, font=font, fill=255)
 disp.image(image)
 disp.display()

For more information on displaying information on the OLED display, please refer to
Lesson B-16.

Lesson 18 – Final Project – Alarm Page 648

STEP #10

This next function comes directly from Lesson C-12 where photos were captured and
displayed in a Tkinter window. The only modification to this function is the folder where
captured images will be stored. In this alarm program, the images will now be stored in
the /home/pi/Pictures/captures folder.

Add the highlighted block of code below to the end of your program:

 disp.display()

def update():
 global img
 timestamp = (time.strftime('%Y-%m-%d_%H:%M:%S'))
 img_file = ('/home/pi/Pictures/captures/%s.png' % timestamp)
 os.system('raspistill -o %s -e png -w 640 -h 480 -t 1500' % img_file)
 print('Image saved as %s' % img_file)
 img = PhotoImage(file='%s' % img_file)
 Label(root, image=img).grid(row=0, column=0)

For more information on this image capture function, please refer to Lesson C-12.

Lesson 18 – Final Project – Alarm Page 649

STEP #11

This next function named proximity() will keep monitoring the distance from the
Ultrasonic sensor as long as the value of armed equals 1. Once armed equals 0, looping
will stop, and the function will end.

While armed, if the distance falls below the sensitivity value (50cm), the OLED
screen will be updated with an ALARM message with the current time, the
audio_alert() function will be launched to play the sound, and a function named
update() will be called to capture an image. A time.sleep of 0.1 is added to free up
system resources between distance checks.

Add the highlighted code below to the end of your program:

 Label(root, image=img).grid(row=0, column=0)

def proximity():
 while armed == 1:
 distance = ultrasonic.average()
 if distance < sensitivity:
 timestamp = time.strftime('%H:%M:%S')
 display_update('ALARM at ', timestamp)
 _thread.start_new_thread(audio_alert, ())
 update()
 time.sleep(0.1)

The ultrasonic code was used in Lesson B-14, and the timestamp and new_thread
code were both used in Lesson B-12.

Lesson 18 – Final Project – Alarm Page 650

STEP #12

This function will define what action will occur when the system is armed by clicking a
button in the Tkinter window. Here is a full list of the actions that will occur in this
function:

1. The armed and img variables are pushed to the global scope.
2. The value of armed is updated to 1.
3. The led_update function is called with arguments to turn the LED red.
4. The value of img is updated to the armed.png image so it can be displayed in the

Tkinter window at grid location row 0, column 0.
5. The OLED display is updated with ARMED for line1.
6. The proximity() function is launched as a new thread and will start monitoring

the distances returned from the Ultrasonic sensor.

Add the highlighted code below to the end of your program:

 time.sleep(0.1)

def arm():
 global armed
 global img
 armed = 1
 led_update(1,0)
 img = PhotoImage(file='/home/pi/alarm/armed.png')
 Label(root, image=img).grid(row=0, column=0)
 display_update('ARMED','')
 _thread.start_new_thread(proximity, ())

Lesson 18 – Final Project – Alarm Page 651

STEP #13

This next function will define what action will occur when the system is disarmed by
clicking a button in the Tkinter window. Here is a full list of the actions that will occur in
this function:

1. The armed and img variables are pushed to the global scope.
2. The value of armed is updated to 0.
3. The led_update function is called with arguments to turn the LED green.
4. The value of img is updated to the disarmed.png image so it can be displayed in

the Tkinter window at grid location row 0, column 0.
5. The OLED display is updated with DISARMED for line1.

Add the highlighted code below to the end of your program:

 _thread.start_new_thread(proximity, ())

def disarm():
 global armed
 global img
 armed = 0
 led_update(0,1)
 img = PhotoImage(file='/home/pi/alarm/disarmed.png')
 Label(root, image=img).grid(row=0, column=0)
 display_update('DISARMED','')

Lesson 18 – Final Project – Alarm Page 652

STEP #14

This function will define the action that will occur when the Quit button is pressed in the
Tkinter window. This function will raise SystemExit so the except: code at the bottom
of the program can clean everything up before exiting the program (the except: block
will be added later).

Add the highlighted code below to the end of your program:

 display_update('DISARMED','')

def quit():
 raise SystemExit()

Lesson 18 – Final Project – Alarm Page 653

STEP #15

The functions have all been defined and now it's time for the main program block. Here
are the actions that will be happening on the try: block of this program:

1. Run the disarm() function to get the RGB LED, OLED display, and the Tkinter
window image in the proper state.

2. Place the image held by img into the Tkinter window at grid location row 0,
column 0.

3. Place the Arm button into the Tkinter window at grid location row 0, column 1.
4. Place the Disarm button into the Tkinter window at grid location row 0, column 2.
5. Place the Quit button into the Tkinter window at grid location row 0, column 2.
6. Specify that the X close button in the Tkinter window will run the quit() function

when clicked.
7. Start the Tkinter window named root with the mainloop() command.

Add the highlighted code below to the end of your program:

 raise SystemExit()

try:
 disarm()
 Label(root, image=img).grid(row=0, column=0)
 Button(root, text="Arm", command=arm, width=5).grid(row=1, column=0)
 Button(root, text="Disarm", command=disarm, width=5).grid(row=2, column=0)
 Button(root, text="Quit", command=quit, width=5).grid(row=3, column=0)
 root.protocol("WM_DELETE_WINDOW", quit)
 root.mainloop()

Tkinter window operations were covered in Lessons C-3 and C-12. Please refer to
those lessons for questions regarding the commands in the block of code above.

Lesson 18 – Final Project – Alarm Page 654

STEP #16

The last block of the program will specify the actions that will happen when a
KeyboardInterrupt is encountered or a SystemExit is raised. Here is the list of
actions that will take place if one of these exceptions occurs:

1. The led_update function is called with arguments to turn both LED elements off.
2. The window named root is destroyed.
3. The text being shown on the OLED display is cleared.
4. A GPIO.cleanup() will return all GPIO pins back to their default state.

Add the highlighted code below to the end of your program:

 root.mainloop()

except (KeyboardInterrupt, SystemExit):
 led_update(0,0)
 root.destroy()
 disp.clear()
 disp.display()
 GPIO.cleanup()

Lesson B-16 has additional information about the disp.clear() and disp.display()
lines of code used above.

Lesson 18 – Final Project – Alarm Page 655

STEP #17

The program is now complete and ready to run. Run the program in Thonny and the
GUI window will display the DISARMED image along with the Arm, Disarm, and Quit
buttons.

Click the Arm button and the system will display the ARMED image, the LED will turn
red, and the OLED will indicate the system is armed.

Wave your hand within 50 centimeters of the Ultrasonic sensor and the system will be
triggered. The OLED display will show time of the alarm event, your pre-recorded sound
file will play through the speaker, and the camera will capture an image, store the image
in /home/pi/Pictures/alarm, and display the image inside the Tkinter window.

The system will remain armed after a capture. Placing your hand in front of the
Ultrasonic sensor will result in the OLED alert being updated, the audio file playing
again, and another image being captured, stored, and displayed.

When you're done capturing images, you can use the Disarm button to disarm the
system or use the Quit button to quit the program. You can review any images that were
captured by the alarm system using File Manager to browse the contents of
/home/pi/Pictures/alarm.

Lesson 18 – Final Project – Alarm Page 656

STEP #18 – TROUBLESHOOTING AS NEEDED

If the program does not work as expected, try to narrow the problem down to one area:

If the Ultrasonic sensor is not reacting to objects in front of it, run the ultrasonic.py
program from Lesson B-14 to determine if it's wired properly. If it gets ranges using that
program, then check the contents of the proximity() function as an error in that code
could keep close objects from triggering alarm events.

If a button in the program window is not behaving as expected, check that the button is
calling the right function, and that the function it's calling contains the correct code.

The full contents of this program will be posted below, but if you're still having trouble
getting your program running, you can download a copy of the program from the 42
Electronics Level C GitHub repository by running the following command in the CLI:

curl https://raw.githubusercontent.com/42electronics/level_c/master/lesson_18/alarm.py >
/home/pi/alarm/alarm42.py

The downloaded file will be saved in your /home/pi/alarm directory, but the new file
will be named alarm42.py. This way you can view and run the file without overwriting
your file in case you still might want to investigate what went wrong with your file.

Lesson 18 – Final Project – Alarm Page 657

Here is the full version of the program for you to compare against your program if
needed:

import RPi.GPIO as GPIO
import Adafruit_SSD1306
from tkinter import *
from PIL import Image, ImageDraw, ImageFont
import time, os, ultrasonic, _thread

red = 13
green = 19
sensitivity = 50
armed = 0

GPIO.setmode(GPIO.BCM)
GPIO.setup(red, GPIO.OUT)
GPIO.setup(green, GPIO.OUT)

disp = Adafruit_SSD1306.SSD1306_128_64(rst=None)
disp.begin()
width = disp.width
height = disp.height
image = Image.new('1', (width, height))
draw = ImageDraw.Draw(image)
font = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf',24)

root = Tk()
root.title('Alarm System')

def audio_alert():
 os.system("gpio -g mode 18 ALT5")
 os.system("aplay /home/pi/alarm/alarm.wav")
 os.system("gpio -g mode 18 in")

def led_update(red_value,green_value):
 GPIO.output(red, red_value)
 GPIO.output(green, green_value)

def display_update(line1,line2):
 draw.rectangle((0,0,width,height), outline=0, fill=0)
 draw.text((0, 0), line1, font=font, fill=255)
 draw.text((0, 22), line2, font=font, fill=255)
 disp.image(image)
 disp.display()

def update():
 global img
 timestamp = (time.strftime('%Y-%m-%d_%H:%M:%S'))
 img_file = ('/home/pi/Pictures/captures/%s.png' % timestamp)
 os.system('raspistill -o %s -e png -w 640 -h 480 -t 1500' % img_file)
 print('Image saved as %s' % img_file)
 img = PhotoImage(file='%s' % img_file)
 Label(root, image=img).grid(row=0, column=0)

Lesson 18 – Final Project – Alarm Page 658

def proximity():
 while armed == 1:
 distance = ultrasonic.average()
 if distance < sensitivity:
 timestamp = time.strftime('%H:%M:%S')
 display_update('ALARM at ', timestamp)
 _thread.start_new_thread(audio_alert, ())
 update()
 time.sleep(0.1)

def arm():
 global armed
 global img
 armed = 1
 led_update(1,0)
 img = PhotoImage(file='/home/pi/alarm/armed.png')
 Label(root, image=img).grid(row=0, column=0)
 display_update('ARMED','')
 _thread.start_new_thread(proximity, ())

def disarm():
 global armed
 global img
 armed = 0
 led_update(0,1)
 img = PhotoImage(file='/home/pi/alarm/disarmed.png')
 Label(root, image=img).grid(row=0, column=0)
 display_update('DISARMED','')

def quit():
 raise SystemExit()

try:
 disarm()
 Label(root, image=img).grid(row=0, column=0)
 Button(root, text="Arm", command=arm, width=5).grid(row=1, column=0)
 Button(root, text="Disarm", command=disarm, width=5).grid(row=2, column=0)
 Button(root, text="Quit", command=quit, width=5).grid(row=3, column=0)
 root.protocol("WM_DELETE_WINDOW", quit)
 root.mainloop()

except (KeyboardInterrupt, SystemExit):
 led_update(0,0)
 root.destroy()
 disp.clear()
 disp.display()
 GPIO.cleanup()

Lesson 18 – Final Project – Alarm Page 659

QUESTIONS FOR UNDERSTANDING

1. Could a second sound file be played after the first?

2. What value should be modified to make the alarm trigger at 100 centimeters
instead of 50 centimeters?

3. How could arm and disarm sounds be added to the program?

Answers can be found on the next page.

Lesson 18 – Final Project – Alarm Page 660

ANSWERS TO THE QUESTIONS FOR UNDERSTANDING

1. Could a second sound file be played after the first?

ANSWER: Yes. By adding another os.system command right after the first, you
could make the program play two sound files each time the alarm is triggered:

 os.system("aplay /home/pi/alarm/alarm.wav")
 os.system("aplay /home/pi/alarm/additional.wav
 os.system("gpio -g mode 18 in")

2. What value should be modified to make the alarm trigger at 100 centimeters
instead of 50 centimeters?

ANSWER: The sensitivity value determines the distance, in centimeters
between the Ultrasonic sensor and an object that will trigger an alarm event.
This distance could be changed to 100 centimeters by making the following
change to line 9 of the program:

sensitivity = 50 becomes sensitivity = 100

Lesson 18 – Final Project – Alarm Page 661

3. How could arm and disarm sounds be added to the program?

ANSWER: The simplest way to add arm and disarm sounds to the program
would be to add the three lines needed to play a sound file directly to the arm()
and disarm() functions. Here is an example of playing a sound file named
disarmed.wav to the disarm() function:

def disarm():
 global armed
 global img
 armed = 0
 led_update(0,1)
 img = PhotoImage(file='/home/pi/alarm/disarmed.png')
 Label(root, image=img).grid(row=0, column=0)
 display_update('DISARMED','')
 os.system("gpio -g mode 18 ALT5")
 os.system("aplay /home/pi/alarm/disarmed.wav")
 os.system("gpio -g mode 18 in")

Keep in mind that playing a long sound file using this method could cause delays in the
program as this sound file is not being launched as a separate thread.

Lesson 18 – Final Project – Alarm Page 662

CONCLUSION

In this lesson you learned how to create a fairly complex program capable of using a
sensor to trigger many actions in a program. This program and circuit could also be
modified in many other ways to create completely new user interactions.

Congratulations! You have completed Level C of this course. You have learned a great
number of new skills and you should be proud of yourself!

What’s next?

• Order a copy of Level D of this course to learn to work with motor drive boards,
advanced project planning and troubleshooting skills, and learning to assemble
components and write code for a mobile platform (a significant challenge!)
Please note, the link above will be active once Level D is available (late 2019).

• The skills you have gained and the components you have amassed working with
Levels A-C, have put you in a great position to tackle most Raspberry Pi and
Python projects online. You are likely to find that you have worked with much of
the code and components that will be called for in the projects, and those you
haven’t, you very likely now have the skills to figure out.

Intro to Robotics Course of Study:

Level A: Building Circuits and Beginning Programming

Level B: Working with Sensors and Intermediate Programming

Level C: Audio-Visual and Advanced Programming

Level D: Working with Motors and Taking It Mobile

NEXT STEP

https://42electronics.com/products/level-d-curriculum-kit

	Objective
	Materials
	Review Concepts
	Lesson
	Project Overview
	User Interface Overview
	Program Operations
	Required Files and Modules

	Activities
	Activity #1 – Circuit Modifications
	Step #1
	Step #2
	Step #3
	Step #4
	Step #5
	Step #6
	Step #7
	Step #8
	Step #9

	Activity #2 – File and Folder Preparation
	Step #1
	Step #2
	Step #3
	Step #4
	Step #5

	Activity #3 – Creating the Alarm Program
	Step #1
	Step #2
	Step #3
	Step #4
	Step #5
	Step #6
	Step #7
	Step #8
	Step #9
	Step #10
	Step #11
	Step #12
	Step #13
	Step #14
	Step #15
	Step #16
	Step #17
	Step #18 – Troubleshooting as Needed

	Questions for understanding
	Answers to the questions for understanding
	Conclusion

