
Lesson 5 – Switches and Correcting for Switch Bounce Page 114

LESSON 5

SWITCHES AND CORRECTING

FOR SWITCH BOUNCE

OBJECTIVE

In this lesson, you will learn to work with different types of switches and learn to use

programs to overcome the electrical shortcomings of some switches.

MATERIALS

• Raspberry Pi connected to a monitor, keyboard, and mouse

• Circuit from Lesson B-4

• 1 x Slide Switch

• 1 x Pushbutton Switch

• 3 x Long Jumper Wires

• 2 x Short Jumper Wires

REVIEW CONCEPTS

If you do not feel comfortable with the following concepts, please review them before

proceeding.

• Working with switches (Lesson A-5)

• Boolean Logic, If/Else Statements (Lesson A-14)

• GPIO Pin States, GPIO Pin Cleanup (Lesson A-16)

Lesson 5 – Switches and Correcting for Switch Bounce Page 115

LESSON

In this lesson, you will learn to work with different types of switches including both slide

and pushbutton switches to accomplish various tasks. You will also learn to write code

to overcome an electrical shortcoming of switches known as switch bounce.

PULL-UP / PULL-DOWN OPTIONS

In Level A, you learned how to use resistors in a specific configuration to keep inputs

reading high or low, when the pushbutton switch was not pressed. This was opposed to

inputs being left floating, where an input is not connected to anything until a switch is

pressed, which can lead to inputs being read unreliably by your program.

While it's good to understand the basics behind using resistors for pull-up and pull-

down, the Raspberry Pi can help you simplify circuit design by doing the pull-up and

pull-down work for you. The Raspberry Pi contains internal resistors that can be

accessed when setting up a GPIO pin as an input. This will simplify your switch wiring to

a single jumper wire from the GPIO pin to the switch, and another wire from the switch

to 3.3V or ground, depending on whether you want a high or low to trigger the input.

Lesson 5 – Switches and Correcting for Switch Bounce Page 116

In Python, pulling an input up or down can be done when the pin is assigned as an

input, by supplying a third parameter called pull_up_down:

GPIO.setup(12, GPIO.IN, pull_up_down=GPIO.PUD_UP)

This command will initialize GPIO12 as an input, and configure that input to be internally

pulled up. This input will be an active low, which means this input will remain high until it

is made active by connecting it to ground or low, hence the name "active low". GPIO12

will now only need to be connected to ground to trigger the input, which can be done

very simply using a switch and two wires.

The opposite of active low is active high, which means the input will remain grounded or

low until it is made active by connecting to 3.3V. This can be accomplished by using

GPIO.PUD_DOWN after the pull_up_down parameter:

GPIO.setup(20, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

This command will initialize GPIO20 as an input and configure that input to be internally

pulled down. GPIO20 will now only need to be connected to 3.3V to trigger the input,

which can be done with a switch and two wires.

Lesson 5 – Switches and Correcting for Switch Bounce Page 117

SLIDE OR TOGGLE SWITCH

Until now, you have only worked with pushbutton switches that make connection when

they are pressed, but lose that connection when they are released. There may come a

time when you want a switch to stay connected without being pressed. This type of

switch is called a toggle switch.

A toggle switch "toggles" one or more inputs between

one or more outputs. One very common type of toggle

switch is a two-position slide switch:

In a two-position

slide switch the

center pole can

connect to one of the

throws at a time,

based on the position

of the slider:

Lesson 5 – Switches and Correcting for Switch Bounce Page 118

These switches can be used as power on/off switches for electronic devices by

connecting power through the center pole as well as one of the throws:

A slide switch can also be used as a selector between two different inputs. In the

diagram below, a slide switch is connected to two GPIO pins, with the center terminal

attached to ground.

Lesson 5 – Switches and Correcting for Switch Bounce Page 119

In one position, GPIO5 is grounded and a GPIO6 will be internally pulled up by the

Raspberry Pi. In the other position, GPIO6 will be grounded and GPIO5 will be internally

pulled up by the Raspberry Pi.

Programming for a slide switch is identical to the programming you've already done for

pushbutton switches. Your program could use these switch inputs to light up different

LEDs, modify the frequency of a piezo buzzer, or anything else you might want to

control.

Lesson 5 – Switches and Correcting for Switch Bounce Page 120

SWITCH BOUNCE

When switches are opening or closing, metal plates called contacts must come together

or move apart to control the flow of electricity through the switch. These plates are

made of metal, so they will conduct electricity, but this metal-to-metal contact can result

in the two plates bouncing off each other a very tiny amount, until they settle either fully

together, or fully apart. This microscopic movement can result in the switch being open

and closed very quickly, typically less than one millisecond, until the switch settles into

the desired state. This phenomenon is referred to as switch bounce.

All mechanical switches will exhibit some level of switch bounce, but it may not be a

problem in their specific application. For example, the light switch in your room has

switch contact bounce but you don't see the light flash on and off multiple times when

you flip the switch on. This is due to the latency in overhead lighting and most other

electronics.

Switch bounce may become a problem depending on how you plan to use the switch

input. If the program just turns on an LED based on switch input, then bounce won't

really be a problem. Extremely rapid on/off LED activity will be masked by the amount of

time it takes the LED to turn on and off, so the LED will appear to turn on and off

smoothly, even though switch bounce is still occurring.

The problem occurs when you have the ability to check a switch very quickly, like the

Raspberry Pi is able to do, thousands of times per second. Imagine you have program

that is supposed to keep track of how often you drink water each day. Each time you

drink a glass of water you press a pushbutton, and the program keeps track of how

many times the switch went from low to high, adding to that count throughout the day.

Pressing the button quickly, only one time, should result in one being added to the

current count. Due to switch bounce, there may be a few extra low to high transitions for

every time the button is pushed, and these will all be logged to the counter.

Lesson 5 – Switches and Correcting for Switch Bounce Page 121

Pressing the button 8 times throughout the day might result in a final count of 32

glasses of water, which is obviously very inaccurate. Removing these extra counts is

called debouncing, which can be done via hardware using additional components, or via

software. In the interest of keeping electronic connections to the Pi as simple as

possible, we will focus on debouncing using software in Python. You may find many

effective methods for software debouncing in programs online. Below, we will detail a

few of the simplest options.

Lesson 5 – Switches and Correcting for Switch Bounce Page 122

One method of debouncing involves checking the input a certain amount of time after

the first time an input is triggered. This will allow time for the bouncing to settle and the

input state can be confirmed once it is steady. This delay is usually not very long, as a

delay of around 0.02 seconds should be enough to allow the input to settle into either a

steady high or low state. If GPIO6 was configured as an active low input, that code

would look something like this:

while True:

 if GPIO.input(6) == False:

 time.sleep(0.02)

 if GPIO.input(6) == False:

 water_count = water_count + 1

The first if statement will trigger the very first time GPIO6 goes low. The program will

sleep for 0.05 seconds, and then check GPIO6 again. If GPIO6 is still False, then one

will be added to water_count. If this second check of GPIO6 is True then nothing else

will happen, and the value of water_count will not be changed.

There are a couple of problems with this method. If you somehow managed to press the

button for less than .02 seconds, no water would be recorded, as the second level if

statement would not evaluate as False. Also, since this entire loop will be evaluated

every .02 seconds, you can easily end up with multiple water_count increments for a

single button press, which defeats the purpose of the delay.

You could increase the amount of delay to avoid multiple water_count events being

counted when the button is held down. Increasing this delay will however increase the

amount of time between the first and second checks, which could allow you a greater

chance of pressing the button and releasing without being counted. You could tune this

value to find a balance between quick presses not registering and longer presses

registering more than once, but it may still not give you performance you would like.

Lesson 5 – Switches and Correcting for Switch Bounce Page 123

Another method of debouncing includes adding a delay to the loop that runs after an

input is triggered:

while True:

 if GPIO.input(6) == False:

 water_count = water_count + 1

 time.sleep(.1)

The very first time GPIO6 goes low the loop will be triggered. One will be added to

water_count and the program will sleep for .1 seconds before resuming further checks.

This will eliminate the possibility of quick button presses not being counted, and the

delay in this loop can be modified to eliminate single button presses registering more

than one count per press, without affecting the responsiveness of the first button press.

The only problem left with this code is that button presses longer than .1 seconds will

continue to register additional water_count events. This can be fixed by adding a while

loop to hold the program as long as GPIO6 remains low:

while True:

 if GPIO.input(6) == False:

 water_count = water_count + 1

 time.sleep(.1)

 while GPIO.input(6) == False:

 pass

 time.sleep(0.02)

Lesson 5 – Switches and Correcting for Switch Bounce Page 124

The pass command in the new while loop tells that loop to do nothing when triggered,

which is exactly what we want. As long as GPIO6 remains low the program will remain

stuck in this while loop, doing nothing, and not adding to the water_count value. As

soon as GPIO6 is no longer False, the rest of the initial if statement will run. The final

time.sleep(0.02) was added to debounce the opening of the switch, as without the

delay, the bouncing during release of the switch might cause water_count to be

increased unintentionally.

Lesson 5 – Switches and Correcting for Switch Bounce Page 125

USING A DELAY TO SAVE SYSTEM RESOURCES

Due to its tiny size, your Raspberry Pi has a limited amount of processing power that

can be devoted to tasks. This processing power is how much work can be done by the

CPU, which stands for Central Processing Unit. CPU utilization is a value that indicates

how hard the CPU is working. A utilization value of 100% indicates that the CPU cannot

handle any more work, and system performance will be highly degraded. A low CPU

utilization value like 2% means that 98% of the CPU is still available and ready to do

processing work.

The current utilization of the CPU is displayed in the top-right corner of the menu bar:

In this image, the CPU utilization is at 25%, meaning 25% of the available processing

power is being used, with 75% still free.

If CPU utilization is too high, no processing power is left over for routine operating

system tasks. By running a loop in your program with no delay, you can easily consume

more system resources than you really need, causing instability in the Raspbian

Operating System.

If you have a loop checking an input in a program, adding a small delay like 0.1 seconds

will free up valuable resources, allowing the OS to complete all the tasks it needs in the

background. Your program will likely run no different, however you will see a big

difference in the CPU utilization number, as well as how much heat is being generated

by your Raspberry Pi.

Lesson 5 – Switches and Correcting for Switch Bounce Page 126

ACTIVITIES

In the following activities you will practice the input switch handling techniques from this

lesson. Slide and pushbutton switches will be added to the circuit from Lesson #B-4 to

allow for the programming of additional functionality.

ACTIVITY #1 – ADDING SWITCHES TO THE CIRCUIT

In this activity you will add switches to the circuit you built in Lesson B-4

STEP #1

Make sure your Raspberry Pi is powered off. Using the circuit from Lesson B-4 as a

starting point, add a slide switch connected between these points:

Slide switch in J44 through J46

Long jumper wire from F44 to A7

Short jumper wire from F45 to N2-41

Long jumper wire from F46 to A8

Lesson 5 – Switches and Correcting for Switch Bounce Page 127

STEP #2

Next, you will add a pushbutton switch that will be used as a stop button for your

program. Add a pushbutton switch connected between GPIO13 and ground.

Pushbutton switch in D49, D51, G49, and G51

Long jumper wire from A49 to A17

Short jumper wire from A51 to N2-54

The breadboard circuit is now ready for you to create a program that will use the

switches to control some program functions.

Lesson 5 – Switches and Correcting for Switch Bounce Page 128

ACTIVITY #2 – COUNTING BUTTON PRESSES

In this activity, you will create a program that will count each time the pushbutton

connected to GPIO13 is pressed and print the current count to the console.

STEP #1

The first step will be to create an empty program that you can use to make a program

that counts button presses. Create a new program in Thonny and save it to your

Desktop as button_counter.

STEP #2

Since this program will interact with GPIO pins and have a delay, you must import the

RPi.GPIO and time modules. Import these modules at the top of your program:

import RPi.GPIO as GPIO, time

STEP #3

Next, the GPIO pin mode will need to be set to BCM. GPIO13 will also need to be

configured as an active-low input since it's connected to ground. Since this switch does

not have any pull-up resistors attached, this will need to be configured within the

program. Add the following two highlighted lines just below your import code:

import RPi.GPIO as GPIO, time

GPIO.setmode(GPIO.BCM)

GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Lesson 5 – Switches and Correcting for Switch Bounce Page 129

STEP #4

A variable will need to be used to hold the amount of button presses that have occurred,

and this value should be zero when the program starts. Create a variable called

button_count and set it equal to zero:

import RPi.GPIO as GPIO, time

GPIO.setmode(GPIO.BCM)

GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_UP)

button_count = 0

STEP #5

Since this program is interacting with GPIO pins, use a try/except loop so the

except: condition can catch keyboard interrupts and run a GPIO.cleanup() before the

program exits. Add the following code to the bottom of your program:

button_count = 0

try:

except KeyboardInterrupt:

 GPIO.cleanup()

Your program can now exit smoothly, and without any errors, when the stop button is

pressed in Thonny.

Lesson 5 – Switches and Correcting for Switch Bounce Page 130

STEP #6

Now it's time to build the main loop that will watch GPIO13 for a low or False state. If

GPIO13 is low, the button has been pressed, and the value of button_count will be

incremented by 1. You will also use this loop to print the current value of

button_count. Add the highlighted block of code to the end or your program:

button_count = 0

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

except KeyboardInterrupt:

 GPIO.cleanup()

Make sure that the print statement is indented inside the if statement. If not, the value

of button_count will be printed every time the main loop runs, which is very, very

often.

Lesson 5 – Switches and Correcting for Switch Bounce Page 131

STEP #7

Since this program will be checking GPIO13 very often, it will consume more resources

than it really needs. Adding a delay of 0.05 seconds to the main loop will slow down the

button checks a small amount, while drastically reducing the CPU load:

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 time.sleep(0.05)

except KeyboardInterrupt:

Make sure the indentation on this delay is aligned with the if: block above so that it

runs even if the if: block does not get triggered by GPIO13.

Lesson 5 – Switches and Correcting for Switch Bounce Page 132

STEP #8

Run the program and press the button a few times. Do you notice anything about the

count? It's not very accurate, at all! You didn't add any code to slow down the checking

of GPIO13 which is happening about 1000 times per second. Every time that GPIO13 is

checked, and found to be low (button is pressed), button_count is incremented by 1

and the value is printed to the console. You will need to tune up this loop with a delay to

make it run more accurately, which you will do in the next activity.

Below is a copy of the whole program for your reference:

import RPi.GPIO as GPIO, time

GPIO.setmode(GPIO.BCM)

GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_UP)

button_count = 0

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 time.sleep(0.05)

except KeyboardInterrupt:

 GPIO.cleanup()

Lesson 5 – Switches and Correcting for Switch Bounce Page 133

ACTIVITY #3 – TUNING A LOOP USING A DELAY

In this activity, you will modify the program from the last activity to make it count button

presses more accurately.

STEP #1

You will be adding a delay to the main program to slow down how often the state of

GPIO13 is checked. Use a delay value of 2 seconds and see how the program

responds. Add a time.sleep(2) just below the print statement:

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 time.sleep(2)

 time.sleep(0.05)

except KeyboardInterrupt:

 GPIO.cleanup()

Lesson 5 – Switches and Correcting for Switch Bounce Page 134

STEP #2

Run the program and press the button a few times. Pressing the button results in

button_count being incremented by 1, the new value of button_count being printed

to the console, and then a two second delay. This delay works well to slow down the

loop and make counts more accurate, but the program feels a little unresponsive during

those large two second delays when new presses are ignored.

Reduce the value of the delay from 2 down to 0.2:

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 time.sleep(0.2)

 time.sleep(0.05)

except KeyboardInterrupt:

 GPIO.cleanup()

STEP #3

Run the program again with the new delay value and press the button a few times. You

will find that a value of 0.2 for the delay is just right for keeping the program responsive

after a button press, as well as eliminating a single press being counted multiple times.

The word "tuning" was used in title of this section because a loop might need slight

timing changes based on how it's causing your program to behave. No delay caused

multiple counts, while 2 full seconds made the program feel unresponsive. For this

specific program, a delay of 0.2 was a good balance between those two to ensure the

most accurate counting performance from the program.

Lesson 5 – Switches and Correcting for Switch Bounce Page 135

ACTIVITY #4 – ADDING LED CONFIRMATION USING THE SLIDE SWITCH

In this activity, you will modify the program from the last activity to flash the LED each

time the value of button_count is incremented. Input from the slide switch will be used

to enable or disable the LED indicator.

STEP #1

The GPIO pins for the slide switch and LED will need to be configured so they can be

used in this program. GPIO22 will need to be configured as an active-low input (software

pull-up required), and GPIO26 will need to be an output. Using your program from the

last activity as a starting point, make these additions just below the existing GPIO.setup

line:

GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(22, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(26, GPIO.OUT)

button_count = 0

Lesson 5 – Switches and Correcting for Switch Bounce Page 136

STEP #2

The main loop will already be running and checking the pushbutton switch on GPIO13.

We only want the LED to come on when an increment event happens, so we can nest

the LED code inside of the existing if block. After the value is button_count is printed,

add an if condition that will check to see if GPIO22 is low or False, and if so, turn on

the LED at GPIO26:

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 if GPIO.input(22) == False:

 GPIO.output(26, GPIO.HIGH)

 time.sleep(0.2)

The time delay from the last lesson can now perform the additional task of keeping the

LED on for 0.2 seconds, which is a good quick flash for an indicator light.

Lesson 5 – Switches and Correcting for Switch Bounce Page 137

STEP #3

The only thing missing is a way to turn the LED off. We can fix this by adding a

GPIO.output line to the end of the main loop that will turn off the LED:

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 if GPIO.input(22) == False:

 GPIO.output(26, GPIO.HIGH)

 time.sleep(0.2)

 GPIO.output(26, GPIO.LOW)

The LED will be turned off every time the main loop runs. If the slide switch is applying

ground to GPIO22 when the main loop runs, then the LED will be turned on, delayed for

0.2 seconds, and then turned off at the end of the main loop.

If the slide switch is not applying a ground to GPIO22 when the main loop runs, the LED

will not turn on, the program will still delay 0.2 seconds, and then the LED will be told to

turn off, even though it's already off. Sending a GPIO.LOW command to a GPIO pin that's

already low will not harm anything. This just ensures that the LED gets turned off at the

end of the main loop, regardless of whether it happens to be on or off.

Lesson 5 – Switches and Correcting for Switch Bounce Page 138

STEP #4

Run the program. Press the pushbutton to accumulate some counts, and then move the

slide switch to the opposite position, and verify the LED reacts as expected. With the

slide switch selector closest to the pushbutton switch, counts will be indicated by the

LED flash, With the slide switch in the opposite position, the LED will stay off, but counts

will continue to accumulate and be printed when the pushbutton is pressed.

A copy of the entire program is available on the next page for reference.

Leave the circuit assembled for use in Lesson B-6.

Lesson 5 – Switches and Correcting for Switch Bounce Page 139

import RPi.GPIO as GPIO, time

GPIO.setmode(GPIO.BCM)

GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(22, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(26, GPIO.OUT)

button_count = 0

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 if GPIO.input(22) == False:

 GPIO.output(26, GPIO.HIGH)

 time.sleep(0.2)

 GPIO.output(26, GPIO.LOW)

 time.sleep(0.05)

except KeyboardInterrupt:

 GPIO.cleanup()

Lesson 5 – Switches and Correcting for Switch Bounce Page 140

QUESTIONS FOR UNDERSTANDING

1. Can pull-ups and pull-downs be added within your program, or does every input

switch require connections to physically pull-up or pull-down resistors?

2. Why is switch contact bounce a problem for programs that are counting switch

presses?

3. Does an active-low input need to be connected to 3.3V or ground to trigger that

input?

Answers can be found on the next page.

Lesson 5 – Switches and Correcting for Switch Bounce Page 141

ANSWERS TO THE QUESTIONS FOR UNDERSTANDING

1. Can pulling inputs up and down be done within your program, or does every

switch require connections to physically pull-up or pull-down resistors?

ANSWER: Pulling inputs up and down can be done within your program, when

you configure the GPIO pin as an input.

2. Why is switch contact bounce a problem for programs that are counting switch

presses?

ANSWER: If your application for counting switch contact is very accurate like a

computer and can register multiple switch contacts per second, so a single

button press could result in several switch counts, rather than only one being

counted.

3. Does an active-low input need to be connected to 3.3V or ground to trigger that

input?

ANSWER: An active-low input means that the input must be low to activate the

input. That input will need a ground applied to over come the pull-up and

activate the input in software.

Lesson 5 – Switches and Correcting for Switch Bounce Page 142

CONCLUSION

In this lesson you learned to work with both slide and pushbutton switches as well as

how to account for switch bounce.

In the next lesson, you will learn to work with logical operators that will allow you to

create programs with more advanced behavior based on multiple GPIO inputs or

variables.

