
LEVEL B

INTRO TO ROBOTICS

BY ERIC FEICKERT

Working with Sensors &
Intermediate Programming

42 ELECTRONICS

Intro to Robotics Level B

Working with Sensors &

Intermediate Programming

By Eric Feickert

V21057

SAMPLE

© 2021 42 Electronics LLC

All rights reserved. No part of this work may be reproduced or used in any form by any

means—graphic, electronic, or mechanical, including photocopying, recording, taping,

or information storage, transfer, or retrieval systems—without written permission from

the publisher.

The purchaser of this publication may photocopy or print pages for use by members

within their own individual household. Electronic or printed versions of this file, whether

in whole or in part, may not be transferred to any other individual under any

circumstances without written permission from the publisher. Use of the file, copying, or

distribution of any kind for group, co-op, classroom, or school use is strictly prohibited

without specific purchase of the appropriate user licenses available from 42 Electronics.

Contact 42 Electronics (support@42electronics.com) for information regarding group

and school licensing.

The publisher and authors have made every attempt to state precautions and ensure all

activities described in this book are safe when conducted as instructed, but assume no

responsibility for any damage to property or person caused or sustained while

performing the activities in this or any 42 Electronics course. Users under the age of 18

should be supervised by a parent or teacher and that adult should take necessary

precautions to keep themselves, their children, and their students safe.

www.42electronics.com

SAMPLE

mailto:support@42electronics.com

Level B TABLE OF CONTENTS

Lesson B-1: File and Folder Management .. 7

Lesson B-2: Functions .. 40

Lesson B-3: Program Layout Options and Advanced String Concepts 62

Lesson B-4: Import Methods and Pulse Width Modulation 87

Lesson B-5: Switches and Correcting for Switch Bounce 115

Lesson B-6: Logical Operators ... 142

Lesson B-7: Working with a 3x4 Matrix Style Keypad 172

Lesson B-8: GitHub and Python 2 vs. Python 3 .. 200

Lesson B-9: Analog Signal Processing with the Raspberry Pi 229

Lesson B-10: Potentiometers, Phototransistors, and List Commands 260

Lesson B-11: RFID Systems ... 295

Lesson B-12: Using Input Files and Multithreaded Operations 325

Lesson B-13: Level Shifting and Infrared Sensors .. 357

Lesson B-14: Ultrasonic Range Sensing and NumPy 391

Lesson B-15: I2C and Temperature Sensing .. 421

Lesson B-16: OLED I2C Display ... 459

Lesson B-17: Capacitors and Capacitive Touch Sensors 499

Lesson B-18: Range Sensing Game ... 532

SAMPLE

LESSON B-5
SWITCHES & CORRECTING FOR SWITCH BOUNCE

► Switches (Lesson A-5)

► Boolean Logic, If/Else Statements (Lesson A-14)

► GPIO Pin States, GPIO Pin Cleanup (Lesson A-16)

❑ Slide Switch x1

❑ Pushbutton Switch x1

❑ Long Male-to-Male Jumper Wires x3

❑ Short Male-to-Male Jumper Wires x2

❑ Raspberry Pi connected to Monitor,

Keyboard, and Mouse

❑ Circuit from Lesson B-4

Lesson Overview

► Switch Bounce

► Using Delays

► Pull-Up / Pull-Down Options

► Slide & Toggle Switches

Materials Needed

Concepts to Review

Lesson B-5 – Switches and Correcting for Switch Bounce Page 115

SAMPLE

LESSON B-5
SWITCHES & CORRECTING FOR SWITCH BOUNCE

In this lesson, you will learn to work with different types of switches including both slide

and pushbutton switches to accomplish various tasks. You will also learn to write code

to overcome an electrical shortcoming of switches known as switch bounce.

Pull-Up / Pull-Down Options

In Level A, you learned how to use resistors in a specific configuration to keep inputs

reading high or low, when the pushbutton switch was not pressed. This was opposed

to inputs being left floating, where an input is not connected to anything until a switch is

pressed, which can lead to inputs being read unreliably by your program.

While it's good to understand the basics behind using resistors for pull-up and pull-

down, the Raspberry Pi can help you simplify circuit design by doing the pull-up and

pull-down work for you. The Raspberry Pi contains internal resistors that can be

accessed when setting up a GPIO pin as an input. This will simplify your switch wiring

to a single jumper wire from the GPIO pin to the switch, and another wire from the

switch to 3.3V or ground, depending on whether you want a high or low to trigger the

input.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 116

SAMPLE

In Python, pulling an input up or down can be done when the pin is assigned as an in-

put, by supplying a third parameter called pull_up_down:

This command will initialize GPIO12 as an input, and configure that input to be internal-

ly pulled up. This input will be an active low, which means this input will remain high

until it is made active by connecting it to ground or low, hence the name "active low".

GPIO12 will now only need to be connected to ground to trigger the input, which can be

done very simply using a switch and two wires.

The opposite of active low is active high, which means the input will remain grounded

or low until it is made active by connecting to 3.3V. This can be accomplished by using

GPIO.PUD_DOWN after the pull_up_down parameter:

This command will initialize GPIO20 as an input and configure that input to be internally

pulled down. GPIO20 will now only need to be connected to 3.3V to trigger the input,

which can be done with a switch and two wires.

GPIO.setup(12, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(20, GPIO.IN, pull_up_down=GPIO.PUD_DOWN)

Lesson B-5 – Switches and Correcting for Switch Bounce Page 117

SAMPLE

Slide or Toggle Switch

Until now, you have only worked with pushbutton

switches that make connection when they are pressed,

but lose that connection when they are released. There

may come a time when you want a switch to stay

connected without being pressed. This type of switch is

called a toggle switch.

A toggle switch "toggles" one or more inputs between

one or more outputs. One very common type of toggle

switch is a two-position slide switch.

In a two-position

slide switch the

center pole can

connect to one of

the throws at a time,

based on the

position of the

slider.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 118

SAMPLE

These switches can be used as power on/off switches for electronic devices by

connecting power through the center pole as well as one of the throws:

A slide switch can also be used as a selector between two different inputs. In the

diagram below, a slide switch is connected to two GPIO pins, with the center terminal

attached to ground.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 119

SAMPLE

In one position, GPIO5 is grounded and a GPIO6 will be internally pulled up by the

Raspberry Pi. In the other position, GPIO6 will be grounded and GPIO5 will be

internally pulled up by the Raspberry Pi.

Programming for a slide switch is identical to the programming you've already done for

pushbutton switches. Your program could use these switch inputs to light up different

LEDs, modify the frequency of a piezo buzzer, or anything else you might want to

control.

Switch Bounce

When switches are opening or closing, metal plates called contacts must come

together or move apart to control the flow of electricity through the switch. These plates

are made of metal, so they will conduct electricity, but this metal-to-metal contact can

result in the two plates bouncing off each other a very tiny amount, until they settle

either fully together, or fully apart. This microscopic movement can result in the switch

being open and closed very quickly, typically less than one millisecond, until the switch

settles into the desired state. This phenomenon is referred to as switch bounce.

All mechanical switches will exhibit some level of switch bounce, but it may not be a

problem in their specific application. For example, the light switch in your room has

switch contact bounce but you don't see the light flash on and off multiple times when

you flip the switch on. This is due to the latency in overhead lighting and most other

electronics.

Switch bounce may become a problem depending on how you plan to use the switch

input. If the program just turns on an LED based on switch input, then bounce won't

really be a problem. Extremely rapid on/off LED activity will be masked by the amount

of time it takes the LED to turn on and off, so the LED will appear to turn on and off

smoothly, even though switch bounce is still occurring.

The problem occurs when you have the ability to check a switch very quickly, like the

Raspberry Pi is able to do, thousands of times per second. Imagine you have program

that is supposed to keep track of how often you drink water each day. Each time you

drink a glass of water you press a pushbutton, and the program keeps track of how

many times the switch went from low to high, adding to that count throughout the day.

Pressing the button quickly, only one time, should result in one being added to the

current count. Due to switch bounce, there may be a few extra low to high transitions

for every time the button is pushed, and these will all be logged to the counter.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 120

SAMPLE

Pressing the button 8 times throughout the day might result in a final count of 32

glasses of water, which is obviously very inaccurate. Removing these extra counts is

called debouncing, which can be done via hardware using additional components, or

via software. In the interest of keeping electronic connections to the Pi as simple as

possible, we will focus on debouncing using software in Python. You may find many

effective methods for software debouncing in programs online. Below, we will detail a

few of the simplest options.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 121

SAMPLE

One method of debouncing involves checking the input a certain amount of time after

the first time an input is triggered. This will allow time for the bouncing to settle and the

input state can be confirmed once it is steady. This delay is usually not very long, as a

delay of around 0.02 seconds should be enough to allow the input to settle into either a

steady high or low state. If GPIO6 was configured as an active low input, that code

would look something like this:

The first if statement will trigger the very first time GPIO6 goes low. The program will

sleep for 0.05 seconds, and then check GPIO6 again. If GPIO6 is still False, then one

will be added to water_count. If this second check of GPIO6 is True then nothing else

will happen, and the value of water_count will not be changed.

There are a couple of problems with this method. If you somehow managed to press

the button for less than .02 seconds, no water would be recorded, as the second level

if statement would not evaluate as False. Also, since this entire loop will be evaluated

every .02 seconds, you can easily end up with multiple water_count increments for a

single button press, which defeats the purpose of the delay.

You could increase the amount of delay to avoid multiple water_count events being

counted when the button is held down. Increasing this delay will however increase the

amount of time between the first and second checks, which could allow you a greater

chance of pressing the button and releasing without being counted. You could tune this

value to find a balance between quick presses not registering and longer presses

registering more than once, but it may still not give you performance you would like.

while True:

 if GPIO.input(6) == False:

 time.sleep(0.02)

 if GPIO.input(6) == False:

 water_count = water_count + 1

Lesson B-5 – Switches and Correcting for Switch Bounce Page 122

SAMPLE

Another method of debouncing includes adding a delay to the loop that runs after an

input is triggered:

The very first time GPIO6 goes low the loop will be triggered. One will be added to

water_count and the program will sleep for .1 seconds before resuming further

checks. This will eliminate the possibility of quick button presses not being counted,

and the delay in this loop can be modified to eliminate single button presses registering

more than one count per press, without affecting the responsiveness of the first button

press.

The only problem left with this code is that button presses longer than .1 seconds will

continue to register additional water_count events. This can be fixed by adding a

while loop to hold the program as long as GPIO6 remains low:

while True:

 if GPIO.input(6) == False:

 water_count = water_count + 1

 time.sleep(.1)

while True:

 if GPIO.input(6) == False:

 water_count = water_count + 1

 time.sleep(.1)

 while GPIO.input(6) == False:

 pass

 time.sleep(0.02)

Lesson B-5 – Switches and Correcting for Switch Bounce Page 123

SAMPLE

The pass command in the new while loop tells that loop to do nothing when triggered,

which is exactly what we want. As long as GPIO6 remains low the program will remain

stuck in this while loop, doing nothing, and not adding to the water_count value. As

soon as GPIO6 is no longer False, the rest of the initial if statement will run. The final

time.sleep(0.02) was added to debounce the opening of the switch, as without the

delay, the bouncing during release of the switch might cause water_count to be

increased unintentionally.

Using a Delay to Save System Resources

Due to its tiny size, your Raspberry Pi has a limited amount of processing power that

can be devoted to tasks. This processing power is how much work can be done by the

CPU, which stands for Central Processing Unit. CPU utilization is a value that indicates

how hard the CPU is working. A utilization value of 100% indicates that the CPU

cannot handle any more work, and system performance will be highly degraded. A low

CPU utilization value like 2% means that 98% of the CPU is still available and ready to

do processing work.

The current utilization of the CPU is displayed in the top-right corner of the menu bar:

In this image, the CPU utilization is at 25%, meaning 25% of the available processing

power is being used, with 75% still free.

If CPU utilization is too high, no processing power is left over for routine operating

system tasks. By running a loop in your program with no delay, you can easily

consume more system resources than you really need, causing instability in the

Raspbian Operating System.

If you have a loop checking an input in a program, adding a small delay like 0.1

seconds will free up valuable resources, allowing the OS to complete all the tasks it

needs in the background. Your program will likely run no different, however you will see

a big difference in the CPU utilization number, as well as how much heat is being

generated by your Raspberry Pi.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 124

SAMPLE

In this activity you will add switches to the circuit you built in Lesson B-4

Step #1
Make sure your Raspberry Pi is powered off. Using the circuit from Lesson B-4 as a

starting point, add a slide switch connected between these points:

Slide switch in J44 through J46

Long jumper wire from F44 to A7

Short jumper wire from F45 to N2-41

Long jumper wire from F46 to A8

Lesson B-5 – Switches and Correcting for Switch Bounce Page 125

SAMPLE

Step #2
Next, you will add a pushbutton switch that will be used as a stop button for your

program. Add a pushbutton switch connected between GPIO13 and ground.

Pushbutton switch in D49, D51, G49, and G51

Long jumper wire from A49 to A17

Short jumper wire from A51 to N2-54

The breadboard circuit is now ready for you to create a program that will use the

switches to control some program functions.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 126

SAMPLE

In this activity, you will create a program that will count each time the pushbutton

connected to GPIO13 is pressed and print the current count to the console.

Step #1
The first step will be to create an empty program that you can use to make a program

that counts button presses. Create a new program in Thonny and save it to your

Desktop as button_counter.

Step #2
Since this program will interact with GPIO pins and have a delay, you must import the

RPi.GPIO and time modules. Import these modules at the top of your program:

import RPi.GPIO as GPIO, time

Lesson B-5 – Switches and Correcting for Switch Bounce Page 127

SAMPLE

Step #3
Next, the GPIO pin mode will need to be set to BCM. GPIO13 will also need to be

configured as an active-low input since it's connected to ground. Since this switch does

not have any pull-up resistors attached, this will need to be configured within the

program. Add the following two highlighted lines just below your import code:

import RPi.GPIO as GPIO, time

GPIO.setmode(GPIO.BCM)

GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_UP)

Step #4
A variable will need to be used to hold the amount of button presses that have occurred,

and this value should be zero when the program starts. Create a variable called

button_count and set it equal to zero:

import RPi.GPIO as GPIO, time

GPIO.setmode(GPIO.BCM)

GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_UP)

button_count = 0

Lesson B-5 – Switches and Correcting for Switch Bounce Page 128

SAMPLE

Step #5
Since this program is interacting with GPIO pins, use a try/except loop so the

except: condition can catch keyboard interrupts and run a GPIO.cleanup() before the

program exits. Add the following code to the bottom of your program:

button_count = 0

try:

except KeyboardInterrupt:

 GPIO.cleanup()

Your program can now exit smoothly, and without any errors, when the stop button is

pressed in Thonny.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 129

SAMPLE

Step #6
Now it's time to build the main loop that will watch GPIO13 for a low or False state. If

GPIO13 is low, the button has been pressed, and the value of button_count will be

incremented by 1. You will also use this loop to print the current value of

button_count. Add the highlighted block of code to the end or your program:

button_count = 0

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

except KeyboardInterrupt:

 GPIO.cleanup()

Make sure that the print statement is indented inside the if statement. If not, the value

of button_count will be printed every time the main loop runs, which is very, very

often.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 130

SAMPLE

Step #7
Since this program will be checking GPIO13 very often, it will consume more resources

than it really needs. Adding a delay of 0.05 seconds to the main loop will slow down the

button checks a small amount, while drastically reducing the CPU load:

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 time.sleep(0.05)

except KeyboardInterrupt:

Make sure the indentation on this delay is aligned with the if: block above so that it

runs even if the if: block does not get triggered by GPIO13.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 131

SAMPLE

Step #8
Run the program and press the button a few times. Do you notice anything about the

count? It's not very accurate, at all! You didn't add any code to slow down the checking

of GPIO13 which is happening about 1000 times per second. Every time that GPIO13 is

checked, and found to be low (button is pressed), button_count is incremented by 1

and the value is printed to the console. You will need to tune up this loop with a delay to

make it run more accurately, which you will do in the next activity.

Below is a copy of the whole program for your reference:

import RPi.GPIO as GPIO, time

GPIO.setmode(GPIO.BCM)

GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_UP)

button_count = 0

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 time.sleep(0.05)

except KeyboardInterrupt:

 GPIO.cleanup()

Lesson B-5 – Switches and Correcting for Switch Bounce Page 132

SAMPLE

In this activity, you will modify the program from the last activity to make it count button

presses more accurately.

Step #1
You will be adding a delay to the main program to slow down how often the state of

GPIO13 is checked. Use a delay value of 2 seconds and see how the program

responds. Add a time.sleep(2) just below the print statement:

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 time.sleep(2)

 time.sleep(0.05)

except KeyboardInterrupt:

 GPIO.cleanup()

Lesson B-5 – Switches and Correcting for Switch Bounce Page 133

SAMPLE

Step #2
Run the program and press the button a few times. Pressing the button results in

button_count being incremented by 1, the new value of button_count being printed

to the console, and then a two second delay. This delay works well to slow down the

loop and make counts more accurate, but the program feels a little unresponsive during

those large two second delays when new presses are ignored.

Reduce the value of the delay from 2 down to 0.2:

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 time.sleep(0.2)

 time.sleep(0.05)

except KeyboardInterrupt:

 GPIO.cleanup()

Step #3
Run the program again with the new delay value and press the button a few times. You

will find that a value of 0.2 for the delay is just right for keeping the program responsive

after a button press, as well as eliminating a single press being counted multiple times.

The word "tuning" was used in title of this section because a loop might need slight

timing changes based on how it's causing your program to behave. No delay caused

multiple counts, while 2 full seconds made the program feel unresponsive. For this

specific program, a delay of 0.2 was a good balance between those two to ensure the

most accurate counting performance from the program.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 134

SAMPLE

In this activity, you will modify the program from the last activity to flash the LED each

time the value of button_count is incremented. Input from the slide switch will be used

to enable or disable the LED indicator.

Step #1
The GPIO pins for the slide switch and LED will need to be configured so they can be

used in this program. GPIO22 will need to be configured as an active-low input (software

pull-up required), and GPIO26 will need to be an output. Using your program from the

last activity as a starting point, make these additions just below the existing GPIO.setup

line:

GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(22, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(26, GPIO.OUT)

button_count = 0

Lesson B-5 – Switches and Correcting for Switch Bounce Page 135

SAMPLE

Step #2
The main loop will already be running and checking the pushbutton switch on GPIO13.

We only want the LED to come on when an increment event happens, so we can nest

the LED code inside of the existing if block. After the value is button_count is printed,

add an if condition that will check to see if GPIO22 is low or False, and if so, turn on

the LED at GPIO26:

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 if GPIO.input(22) == False:

 GPIO.output(26, GPIO.HIGH)

 time.sleep(0.2)

The time delay from the last lesson can now perform the additional task of keeping the

LED on for 0.2 seconds, which is a good quick flash for an indicator light.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 136

SAMPLE

Step #3
The only thing missing is a way to turn the LED off. We can fix this by adding a

GPIO.output line to the end of the main loop that will turn off the LED:

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 if GPIO.input(22) == False:

 GPIO.output(26, GPIO.HIGH)

 time.sleep(0.2)

 GPIO.output(26, GPIO.LOW)

The LED will be turned off every time the main loop runs. If the slide switch is applying

ground to GPIO22 when the main loop runs, then the LED will be turned on, delayed for

0.2 seconds, and then turned off at the end of the main loop.

If the slide switch is not applying a ground to GPIO22 when the main loop runs, the LED

will not turn on, the program will still delay 0.2 seconds, and then the LED will be told to

turn off, even though it's already off. Sending a GPIO.LOW command to a GPIO pin that's

already low will not harm anything. This just ensures that the LED gets turned off at the

end of the main loop, regardless of whether it happens to be on or off.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 137

SAMPLE

Step #4
Run the program. Press the pushbutton to accumulate some counts, and then move the

slide switch to the opposite position, and verify the LED reacts as expected. With the

slide switch selector closest to the pushbutton switch, counts will be indicated by the

LED flash, With the slide switch in the opposite position, the LED will stay off, but counts

will continue to accumulate and be printed when the pushbutton is pressed.

A copy of the entire program is available on the next page for reference.

Leave the circuit assembled for use in Lesson B-6.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 138

SAMPLE

import RPi.GPIO as GPIO, time

GPIO.setmode(GPIO.BCM)

GPIO.setup(13, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(22, GPIO.IN, pull_up_down=GPIO.PUD_UP)

GPIO.setup(26, GPIO.OUT)

button_count = 0

try:

 while True:

 if GPIO.input(13) == False:

 button_count = button_count + 1

 print(button_count)

 if GPIO.input(22) == False:

 GPIO.output(26, GPIO.HIGH)

 time.sleep(0.2)

 GPIO.output(26, GPIO.LOW)

 time.sleep(0.05)

except KeyboardInterrupt:

 GPIO.cleanup()

Lesson B-5 – Switches and Correcting for Switch Bounce Page 139

SAMPLE

1. Can pull-ups and pull-downs be added within your program, or does every input

switch require connections to physically pull-up or pull-down resistors?

2. Why is switch contact bounce a problem for programs that are counting switch

presses?

3. Does an active-low input need to be connected to 3.3V or ground to trigger that

input?

Answers Can be Found on the Next Page

Lesson B-5 – Switches and Correcting for Switch Bounce Page 140

SAMPLE

Answers

1. Can pulling inputs up and down be done within your program, or does every

switch require connections to physically pull-up or pull-down resistors?

ANSWER: Pulling inputs up and down can be done within your program, when you

configure the GPIO pin as an input.

2. Why is switch contact bounce a problem for programs that are counting

switch presses?

ANSWER: If your application for counting switch contact is very accurate like a

computer and can register multiple switch contacts per second, so a single button

press could result in several switch counts, rather than only one being counted.

3. Does an active-low input need to be connected to 3.3V or ground to trigger

that input?

ANSWER: An active-low input means that the input must be low to activate the

input. That input will need a ground applied to overcome the pull-up and activate the

input in software.

Lesson B-5 – Switches and Correcting for Switch Bounce Page 141

SAMPLE

LESSON B-11
RFID SYSTEMS

► Administrative File Management (Lesson B-1)

► Using Github to Clone Libraries (Lesson B-8)

❑ RFID Reader x1

❑ RFID Tag x1

❑ RFID Card x1

❑ Raspberry Pi connected to Monitor,

Keyboard, and Mouse

❑ Assembled Circuit from Lesson B-10

Lesson Overview

► MFRC522 Tag Reader

► Removing Trailing Spaces in Python

► Shebang or #!

► How RFID Works

► RFID for Access Control

► Security Concerns with RFID

Materials Needed

Concepts to Review

Lesson B-11 – RFID Systems Page 295

SAMPLE

LESSON B-11
RFID SYSTEMS

In this lesson, you will learn about RFID systems, their components, and some of their

applications. You will connect an RFID reader that will write and read RFID cards, as

well as create a program that will read an RFID card and perform an action based on

the value that's read from the card.

RFID Technology

RFID stands for radio-frequency identification. This system was originally designed for

powering a device using radio waves. The RFID receiver was powered by a transmitter

sending radio waves at a very specific frequency. The receiver did not contain its own

power source, instead it contained special circuitry to convert the incoming radio waves

into power that could be used to power up additional circuits in the receiver.

Around 1970, new ideas and patents started to emerge from this existing RFID

technology. Proposed use cases involved automated toll collection systems, banking,

security, and medical applications, as well as many others.

RFID technology can now be seen everywhere. Automated toll collection is installed on

many of highways. Most pets have RFID implants that allow for identification of the

animal without any external markings like a collar or tags. Many businesses rely on

RFID cards to manage employee access control, instead of handing out physical keys

to the building.

Lesson B-11 – RFID Systems Page 296

SAMPLE

How RFID Works

Modern RFID systems operate using readers and tags. The reader contains a radio

transmitter and receiver, commonly referred to as a transceiver, as well as other

circuitry to decode signals received from scanned tags. The reader is always

broadcasting radio signals and waiting to hear back from a tag.

Tags, or cards, contain an antenna, circuitry to convert radio waves to DC power, a

radio transceiver, as well as a tiny amount of storage that can be used to hold data

specific to that card. When the card receives a radio signal in a specific frequency, the

antenna will harvest energy from that signal, and power up the storage chip and the

transceiver.

The card's transceiver will then send the contents of its tag back to the reader, which

can happen over different distances based of the type of tag. Passive tags do not

contain a power source and their distance is generally limited to anywhere between a

few millimeters to a couple of inches, based on the design of the tag.

Active tags contain a battery that can be used to boost the tag's transmission distance.

Some of these tags can be read from hundreds of meters away, but the tags are much

larger than passive tags due to containing a battery, larger antenna, and more radio

amplification circuitry.

Since passive tags don't contain a power source or much circuitry, they can be much

smaller. Some versions are flat stickers that can be stuck to products in a store, and

some are almost as small as a grain of rice and can be implanted under an animal’s

skin.

RFID can be used in many applications, but the underlying technology is the same.

The reader sends out radio waves, and the tag responds with values stored within the

tag.

Lesson B-11 – RFID Systems Page 297

SAMPLE

RFID for Access Control

When used for building access control, a central computer or controller is used to

monitor one or more card readers. This controller will also have the ability to unlock

doors electronically. This means that the controller is the heart of the access control

system.

The controller is where access control permissions are managed. It stores all tag or

keycard information, along with what areas or doors that keycard is permitted to

access.

The software inside the controller operates much like some of the if/else programs you

have created throughout this course. When a keycard is scanned, it's unique value is

used to check a list of permissions stored inside the controller. For example:

User A is issued card number 123. Card 123 is allowed to access door 1 and door 2.

User B is issued card number 456. Card 456 is only allowed to access door 2.

If card 123 is scanned at door 1 or 2 then access will be granted. If card 456 is

scanned at door 2 then access will be granted, but when scanned at door 1, access will

be denied. This is nice because access to areas can be granted or revoked just be

changing the permissions in the main controller, instead of handing out individual metal

keys, or changing locks.

Security Concerns with RFID

While more convenient, RFID does have some inherent security risks associated with

the technology. With a metal key in your pocket there is little to no risk of anyone

duplicating a key while it's in your pocket. The same cannot be said for RFID cards.

Although encryption is used to secure data storage and communication on some

higher end cards, most cards are not very secure. These less secure cards will

respond to any reader that requests its data, given that reader is operating in the right

frequency range. The tags in your kit operate in the 13.56MHz range, so they will start

transmitting their stored data anytime they receive a 13.56MHz signal.

This is where the problem occurs. Your card doesn't know the difference between the

RFID reader in your kit and any other 13.56MHz reader it sees. Imagine that you wired

your front door to be conveniently controlled by an RFID lock that only opened for a tag

Lesson B-11 – RFID Systems Page 298

SAMPLE

that sent out the string Open Sesame. Everything is working great and you no longer

have to carry keys, using only the tag to unlock your front door.

Since your tag will respond to any 13.56MHz reader, it's possible that your tag might

get scanned by someone hoping to duplicate your tag in order to access your house.

Someone close enough to your tag in line at a coffee shop could send a 13.56MHz

signal your way, and your tag would respond to them with Open Sesame. They can

now duplicate or clone your card and unlock your front door with their copy of your

card.

Your tag won't know that it was scanned and the reader on your front door won't know

the difference, since it's only looking for the string Open Sesame to unlock the door.

This attack is fairly uncommon, but it is made possible by the convenience of RFID.

There are RFID shielding devices available that make this type of attack impossible,

but this security does come at the cost of convenience.

These RFID shielding devices completely enclose your card in a material that radio

waves cannot penetrate. This shielding can be built directly into wallets, purses, or

smaller pouches and can hold a single card or tag. While inside this shielding, your

card cannot be read by an attacker, but it also cannot be read by your front door reader

either. You would need to remove your card from this shielded pouch in order for the

radio waves emitted by the reader to interact with the card, and for the card to send its

data back to the reader.

As with everything, there are trade-offs between security, convenience, and cost. The

benefits of deploying an RFID system would need to be weighed against the possible

cloning and misuse of a card. More secure RFID systems can lessen the risk, if not

eliminate, the possibility of these attacks, but this will require a higher-level system with

encryption that will come at a higher financial cost.

Lesson B-11 – RFID Systems Page 299

SAMPLE

MFRC522 Tag Reader

The RFID reader included in your kit runs on the MFRC522 chipset which can read and

write 13.56MHz tags. The Raspberry Pi requires installation of a special library to

communicate with the MFRC522, but once installed, communication with the device is

very simple over the SPI bus.

These libraries do not support software SPI, so hardware SPI will be used to

communicate with the reader. Using hardware SPI means that specific GPIO pins will

be used for this communication, and that a setting in the Raspberry Pi will need to be

changed in order to enable hardware SPI. In the activities for this lesson, you will install

this library and change the SPI setting once the reader is wired up.

Here is a pinout of the MFRC522 board, as well as signal descriptions:

CE0 – Chip Enable

SCLK – Serial Clock

MOSI – Master Out, Slave In

MISO – Master In, Slave Out

IRQ – Interrupt, not used in Raspberry Pi with hardware SPI

Ground – Connect to Ground

Reset – Will trigger a reset of the MFRC522

3.3V – Connect to 3.3V supply

Lesson B-11 – RFID Systems Page 300

SAMPLE

There are many RFID cards on the market, but not all are compatible with this reader.

If you plan to purchase additional cards for other projects, ensure they belong to one of

the families listed below:

MIFARE1 S50

MIFARE1 S70

MIFARE Ultralight

MIFARE Pro

MIFARE DESFire

Cards may also list compatibility with ISO14443A, which means they will also work with

this reader. If you plan to use a card not listed above, please do your research to

ensure it will be compatible with the MFRC522 reader before purchasing.

RFID Tags

Tags can come in many shapes and sizes and can store different amounts of

information. The tags in your kit will hold 1KB (one kilobyte) of information. This is not a

ton of room, but it is enough to store enough information to identify the card with a

reader. Your program can then respond however you would like to the presence of the

card.

The tags and library you will be using in this lesson support the reading of two values:

The card's UID value, or Unique ID, is a

unique 12 to 13-digit value that is assigned at

the time the card is manufactured. This value

can be read but cannot be modified.

The card's text value is a 48-character field

that can store any data you like. This could be

anything from a single letter, number, or

character, up to a complex string of all these

combined. This value can be read and written

by the MFRC522 reader.

Lesson B-11 – RFID Systems Page 301

SAMPLE

Reading Text From the Tag

One thing to note about the text value is that it is 48 characters long, and shorter

strings written to the card will be formatted to use all 48 of these characters. If you

intend to write the value card to your tag, only four of the character slots will be used,

leaving 44 unused.

These unused values cannot be left empty, so spaces will be used to fill up the rest of

the characters available. This means that when trying to write a short value like

'card', the actual value written to the card will be:

'card '

This wont normally be an issue unless you want your program to act on this value

when read back from the card.

This wouldn't normally be a problem unless you want to make an action happen in your

program based on this text value:

'card' does not equal 'card '

If 'card ' is read from the text

field of the tag, and your program is looking for the string 'card', then the strings will

not match, and the program will not operate as expected.

Leading spaces refer to spaces that occur before the information in your string:

' card'
Trailing spaces refer to spaces that occur after the information in your string:

'card '

Python has a built-in function to get rid of these extra spaces, and you will learn more

about it in the next section.

Lesson B-11 – RFID Systems Page 302

SAMPLE

Removing Trailing Spaces in Python

As you found in the last section, sometimes it is necessary to remove leading and

trailing spaces, also known as whitespace, from a string. Fortunately, Python makes

this easy with the strip() command:

In this example, the string long_var will be stripped of all leading and trailing spaces,

and saved as short_var.

The strip() command will only strip leading and trailing spaces from the string, and

not the one between the words. After stripping and being saved as short_var, the print

command will print 42 Electronics to the console, instead of the longer version with

extra spaces.

There are also some other variations of the strip() command:

lstrip() Removes only leading whitespace from a string

rstrip() Removes only trailing whitespace from a string

You may have noticed that the rstrip() command could also be used to eliminate

trailing whitespace from the text value read from a card. This is true, but strip() will

ensure that any extra spaces, whether before or after the value in the string, are

removed.

short_var = long_var.strip()

long_var = ' 42 Electronics '

short_var = long_var.strip()

print(short_var)

Lesson B-11 – RFID Systems Page 303

SAMPLE

Determining Program Type: Shebang or #!

You haven’t seen them in programs yet, but a shebang line can be used at the

beginning of a program to help some systems identify what type of program is below.

The line will be the very first line of a program, and it will start with the characters #!

which are referred to as a shebang. The line of code might look something like this:

#!/usr/bin/env python

or

#!/usr/bin/env python3

In Unix-like operating systems, this line can be used to determine the path to locate the

program that should be used to execute the program, and which program should be

used to run the program. Both examples above specify the path for finding Python as /

usr/bin/env, but they specify different versions of Python. The first example specifies

Python, but not which version. Without modifications to your system, Raspbian will use

Python 2 for a file containing this type of shebang. The second example specifies that

the program must run in Python 3.

These lines of code are only used when the Python version is not specified when

running the program on the command-line. Starting the program using sudo python

program.py or sudo python3 program.py will override this line, and it will only be

treated as any other comment in the program. This is the same behavior we see in

Thonny. The environment setting in Thonny will determine which version of Python is

used to run a file, not the shebang line.

This won't normally be an issue for you since programs so far have been run in either

Thonny using Python 3, or in the command-line using Python 2. This information can

be helpful if you're trying to build a project you found online, and odd errors seem to be

popping up.

A shebang including of something like #!/usr/bin/env python3 or #!/usr/bin/env

python2.6 means that program was intended to specifically run in that version of

Python. Attempting to run a program intended for Python 2.6 using Thonny, where the

default is Python 3, will likely result in program errors.

Lesson B-11 – RFID Systems Page 304

SAMPLE

Reading and Writing Tags

In order to read and write tags, you will install a couple of libraries in Activity #1 that will

enable your Pi to communicate with the MFRC522. One of the libraries is SPI-Py which

is takes care of the communication framework needed for the SPI bus. The second

library is MFRC522-python which is used to greatly simplify sending data to and from

the MFRC522.

Once these libraries are installed, and the SimpleMFRC522 module is imported into

your program, working with the reader becomes very easy:

This line of code will allow you to refer to the reader as reader in your program,

instead of the much longer name above.

This command will read the id number and text value stored on the tag and set them

equal to id and text. These variables can then be printed or used in other ways

throughout your program.

The command above can be used to modify the text value stored on the tag. In this

example, card will be written to the tags text value. The id number field is fixed so

there is no command available for changing that value.

That is the extent of the commands that we need to interact with the reader. Using

these two commands you can change the text value of a tag, read the id and text value

of a tag, and then have your program take any actions you would like, based on the tag

data that is presented.

reader = SimpleMFRC522.SimpleMFRC522()

id, text = reader.read()

reader.write('card')

Lesson B-11 – RFID Systems Page 305

SAMPLE

In this activity you will connect the RFID reader and install software that will allow you to

read and write tags. The circuit from Lesson B-10, Activity #2 will be used as the

starting point for this lesson.

Step #1
Shut down the Pi and disconnect power before proceeding.

To make room for the new components, the phototransistor, potentiometer, and any

associated components will need to be removed from the breadboard.

Using the circuit from Lesson B-10, Activity #2 as a starting point, remove the

phototransistor, potentiometer, resistor, and any associated jumper wires. The circuit

should now look like this:

Lesson B-11 – RFID Systems Page 306

SAMPLE

Step #2
The MCP3008 will also need to be removed from the breadboard. Exercise a lot of

caution when removing the IC from the breadboard. If the IC comes out of the board

unevenly it can cause the pins to bend, and they may break when straightened.

Gently inserting a small, flat screwdriver under alternating sides of the IC is the safest

way to remove the IC.

Remove the IC and associated jumper wires from the breadboard. If you're at all unsure

on the best way to do this, watch the short video on the Level B Resource Page before

attempting to remove the IC. The breadboard should now look like this:

Lesson B-11 – RFID Systems Page 307

SAMPLE

https://42electronics.com/pages/level-b-resources

Step #3
Now that you have room on the breadboard, it's time to install and connect the reader.

Install the 8-pin connector of the reader into H49 through H56. The reader should be

oriented such that the main body of the reader is above covering columns A through H.

Lesson B-11 – RFID Systems Page 308

SAMPLE

Step #4
The reader is now ready to be connected to the wedge. Make the following connections

between the reader and the wedge:

3.3V – J49 to P1-41 MISO – J53 to C11

Reset – J50 to J11 MOSI – J54 to C10

Ground – J51 to N2-51 SCLK – J55 to C12

No connection – J52 SDA – J56 to J12

Double-check all connections with this photo before proceeding to the next step.

Lesson B-11 – RFID Systems Page 309

SAMPLE

Step #5
Now that the reader is connected it's time to power on the Pi and enable hardware SPI.

Power on your Raspberry Pi.

Once it's up and running click on the raspberry in the top-left corner, select Preferences,

and then select Raspberry Pi configuration from the bottom of the list.

Lesson B-11 – RFID Systems Page 310

SAMPLE

Once inside the configuration utility, select the Interfaces tab, and select the Enabled

radio button next to SPI. This will turn on hardware SPI in the Raspberry Pi.

Reboot your Raspberry Pi to allow the SPI setting change to take effect.

Lesson B-11 – RFID Systems Page 311

SAMPLE

Step #6
Before installing the required libraries, make sure your Pi is fully updated so the libraries

will have access to the latest versions of the Raspberry pi software packages.

Open a Terminal window by clicking the terminal button in the top menu bar. Once

open, use the command sudo apt-get update to ensure your Pi knows the latest

version numbers of all packages. Once that completes, run sudo apt-get upgrade to

upgrade any required packages to the latest version. Answer y to any questions about

free disk space that will be consumed by the upgrades.

Lesson B-11 – RFID Systems Page 312

SAMPLE

Step #7
Now that your Pi is fully updated, it's time to clone the required libraries from GitHub.

In your existing Terminal window, type the following commands, pressing enter after

each command:

First, ensure you are still located in the /home/pi directory:

cd ~

Next, clone SPI-Py from the 42 Electronics GitHub repository:

git clone https://github.com/42electronics/SPI-Py.git

Now change directories into SPI-Py:

cd SPI-Py

The last step is to execute the setup.py install script for python3:

sudo python3 setup.py install

SPI-Py will now be installed for use in the Python 3 environment, which you can run

from within Thonny. If you encounter any errors during this process, start over from the

beginning of this step.

Lesson B-11 – RFID Systems Page 313

SAMPLE

Step #8
The last library to clone will be MFRC522-python. This library does not require the

install step, just cloning from GitHub.

In your existing Terminal window, type the following commands, pressing enter after

each command:

First, move yourself back to the /home/pi directory:

cd ~

Next, clone MFRC522-python from the 42 Electronics GitHub repository:

git clone https://github.com/42electronics/MFRC522-python.git

If you encounter any errors during this process, start over from the beginning of this

step.

Lesson B-11 – RFID Systems Page 314

SAMPLE

In this activity you will connect the read information from and write information to the

tags included in your kit.

Step #1
You now have a local copy of the MFRC522-

python repository.

Open File Manager by clicking on the folder icon

in the top menu bar. File manager will open in the

/home/pi directory. Double-click on the MFRC522-

python directory to view its contents.

Some example programs called read.py and

write.py have been included to allow you to

quickly begin reading and writing tags.

Double click the file named read.py and it will

open in Thonny:

Run read.py by clicking the run button in Thonny. Place the card near the reader and

its id number and text value will be displayed in the console output.

The text field will be represented

by 48 squares because this field

is completely empty from the

factory.

Scan the blue tag to ensure it

scans properly, and that it

displays a different id value than

the card.

Lesson B-11 – RFID Systems Page 315

SAMPLE

Step #2
The cards can be read but you need to fix the empty text value fields by writing new

data to the tags.

Navigate back to the File Manager and double-click on write.py. Write.py will open as a

new tab in Thonny.

Make sure there are no tags near the reader when you run write.py. The program will

write any tag within range and you want to make sure the tags get programmed

correctly, so you can write a program in Activity #3 that will recognize these values.

You will now write the text value of card to the white card.

With no tags near the reader, run write.py in

Thonny. In the Shell window of Thonny, enter

card as the value to be written to the tag, and

press enter. Place the white card near the

reader when prompted, the tag will be written,

and Tag written will be printed to the Shell for

confirmation.

If any errors occur, or the program does not run as expected, stop write.py in Thonny

and run it again. Do not proceed to the next step until the white card has successfully

been written with the text value card.

Step #3
Now that the card has been written you can work on the blue tag. Make sure to hold the

metal keyrings on the tag to keep them from coming into contact with any metal

connections on the circuit board of the reader.

Using the same process in the last step, write a text value of tag to the blue tag.

Lesson B-11 – RFID Systems Page 316

SAMPLE

Step #4
Confirm the tags were properly written by reading the

values back.

Switch tabs in Thonny back to read.py and run that

program. Scan the white card to ensure it reports its ID

number and the text string card when scanned.

Run the program again and scan the blue tag to

ensure it reports its ID number and the text string tag

when scanned.

You now know that the text values loaded correctly and now you can create a program

that can make decisions based on those values.

Note:

The RFID reader's proper operation relies on good connections to power, ground,

and data lines on the Raspberry Pi. Poor or intermittent connections can cause the

reader not to operate properly. If your reader stops reading or writing for no reason,

carefully remove and reinstall each of the jumper wire connections in J49 through

J56. If the problem with your reader is due to a bad jumper wire connection, this

should fix the problem.

The reader will read a tag very quickly, but if you try to swipe a tag by the reader

extremely fast it is possible to pull the tag away from the reader before it's finished

reading. This will result in a card read error that might look something like this:

If this happens, just scan the tag again, more slowly, and everything should work as

expected.

Lesson B-11 – RFID Systems Page 317

SAMPLE

In this activity you will create a program that reads the text values from scanned tags,

and prints a message letting the user know if access is granted, or not.

Step #1
Use the read.py program as a

starting point, as it already contains

everything needed to read tags.

With read.py open in Thonny, select

File, and then select Save as from

the dropdown menu. Enter a file

name of access_control and click

the Save button:

Note:

Programs that need to read RFID tags must be located inside the MFRC-Python

directory, as they will need direct access to the SimpleMFRC522.py and

MFRC522.py files used to communicate with the reader. Attempting to run

programs that require access to these communication files from anywhere else, will

result in Python errors.

Lesson B-11 – RFID Systems Page 318

SAMPLE

Step #2
You now have a copy of read.py saved as access_control.py that can be modified

without affecting the original file. The program is currently running a try: loop until it

sees a tag, prints the id and text values, and runs a GPIO.cleanup() before exiting.

Only one tag can be read before the program automatically exits. Let's add a while
True: loop inside the try: loop to keep the program reading tags until you exit the

program.

Add a while True: loop just below the try: loop. The addition is highlighted below:

reader = SimpleMFRC522.SimpleMFRC522()

try:
 while True:
 id, text = reader.read()
 print(id)
 print(text)
 time.sleep(.3)

finally:
 GPIO.cleanup()

Run the program and read the card and tag.

You will notice the program is now reading without exiting after each tag, but it's reading

one tag multiple times because this program can loop very quickly, and the tag might be

near the reader during more than one loop.

Another problem with the program is that there is no longer away to exit the program

gracefully. Press the stop button in Thonny or CTRL-C to stop the program. This will

result in errors because the program was busy communicating with the reader when the

program was ended. You will fix the looping and exit problems in the next step:

Lesson B-11 – RFID Systems Page 319

SAMPLE

Step #3
It's time to fix the duplicate read and exit issues that we created in the last step. You will

add a sleep command to slow down the loop and modify the finally: command to

catch keyboard exceptions.

Import the time module at the beginning of the program and add a time.sleep(.3) to

the end of the loop. Also, change finally: to except KeyboardInterrupt: which will

allow manually ending the program to trigger the GPIO.cleanup(). Additions and

changes are highlighted below:

#!/usr/bin/python3

import RPi.GPIO as GPIO
import SimpleMFRC522
import time

reader = SimpleMFRC522.SimpleMFRC522()

try:
 while True:
 id, text = reader.read()
 print(id)
 print(text)
 time.sleep(.3)

except KeyboardInterrupt:
 GPIO.cleanup()

Run the program.

It can now scan tags reliably without duplicating reads and pressing stop in Thonny or

CTRL-C will not generate errors, as GPIO.cleanup() is being triggered before the

program exits.

Lesson B-11 – RFID Systems Page 320

SAMPLE

Step #4
Now that the program is reading cards without exiting, it needs to strip the trailing

whitespace from the text value that's being read from the card. To do this you will run

the strip() command on the value of text that's read from the card.

Replace the two existing print statements with a strip() command that will strip trailing

whitespace from text and save it as the new value of text. Changes highlighted

below:

try:
 while True:
 id, text = reader.read()
 text = text.strip()
 time.sleep(.3)

The id number and text value will be read from the card and the text value will be

stripped down to either 'card' or 'tag' based on the tag that was scanned.

Lesson B-11 – RFID Systems Page 321

SAMPLE

Step #5
You can now add some if statements to check which tag is being read and print whether

the tag is granted or denied access. Go ahead and grant access to the card, but deny

access to the tag, by adding two if statements.

Add two if statements directly under the strip() command that will check the value of

text and print ACCESS GRANTED or ACCESS DENIED based on which tag is read:

try:
 while True:
 id, text = reader.read()
 text = text.strip()
 if text == 'card':
 print('ACCESS GRANTED')
 if text == 'tag':
 print('ACCESS DENIED')

 time.sleep(.3)

Run the program and read both tags. The access messages will be printed each time a

card is scanned to indicate ACCESS GRANTED or ACCESS DENIED.

This code is being kept very simple to illustrate the concept, but the print sections of the

if statements in this program could be replaced with anything you like. By including

GPIO pin setups at the beginning of your program you could light an LED when access

is granted, play a noise through the piezo speaker when access is denied, or any

combination of print statements and GPIO events that you might want.

In Lesson B-12, you will add more advanced program functionality, and circuitry that will

allow for additional notification options.

• Leave this circuit built as it will be used as a starting point in Lesson B-12.

• Save the program to use as a starting point in Lesson B-12.

Lesson B-11 – RFID Systems Page 322

SAMPLE

1. Is hardware SPI turned on by default on the Raspberry Pi, or does it require a menu

change and reboot to become enabled?

2. What is the Python command that removes leading and trailing whitespace from a

string?

3. Do all RFID tags work with all RFID readers?

Answers Can be Found on the Next Page

Lesson B-11 – RFID Systems Page 323

SAMPLE

Answers

1. Is hardware SPI turned on by default on the Raspberry Pi, or does it require a

menu change and reboot to become enabled?

ANSWER: Hardware SPI requires a menu change and a reboot to be enabled.

2. What is the Python command that removes leading and trailing whitespace

from a string?

ANSWER: To remove both leading and trailing spaces, use the strip() command.

3. Do all RFID tags work with all RFID readers?

ANSWER: No, not all readers and tags are compatible. It is important to check for

compatibility between RFID readers and RFID tags.

Lesson B-11 – RFID Systems Page 324

SAMPLE

LESSON B-18
RANGE SENSING GAME

► Slide Switch (Lesson B-5)

► Voltage Dividers (Lesson B-9)

► Level Shifting Integrated Circuit (Lesson B-13)

► Ultrasonic Range Sensor (Lesson B-14)

► Running Modules as Imports vs. Directly (Lesson B-15)

► OLED Display (Lesson B-16)

► Capacitive Touch Sensors, GPIO Pin Level Sensing (Lesson B-17)

❑ 1K-Ohm Resistors x2

❑ Long Male-to-Male Jumper Wires x2

❑ Short Male-to-Male Jumper Wires x5

❑ Raspberry Pi connected to Monitor,

Keyboard, and Mouse

❑ Assembled Circuit from Lesson B-17

❑ Ultrasonic Range Sensor x1

Lesson Overview

► Modifying a File for Import Use

► Level Shifting with Resistors

► Absolute Value in Python

Materials Needed

Concepts to Review

Lesson B-18 – Range Sensing Game Page 532

SAMPLE

LESSON B-18
RANGE SENSING GAME

In this lesson you will learn how to use a voltage divider to do simple signal level

shifting, the absolute value function, and how to modify a file so it can be used as an

import for another program. You will then move on to build the final project.

Level Shifting with Resistors

In Lesson B-9 you learned how voltage dividers can be used to create new voltage

levels. This same principle can also be used for level shifting from a higher voltage to a

lower voltage.

The following voltage divider with two equal value 1K-ohm resistors will cut the

supplied 5V signal in half:

The great thing about this circuit is that the 5V signal does not have to come from a

constant supply. It can also be connected to the output from a 5V device, like the

Ultrasonic Range Sensor, whose 5V output is not safe to connect directly to a GPIO

pin. By using the output of the Ultrasonic Range Sensor to supply the input voltage, the

output will be 2.5V which is safe to connect to a GPIO pin.

Lesson B-18 – Range Sensing Game Page 533

SAMPLE

By watching the voltage divider output pin with the GPIO, you can determine if the 5V

signal is present or not:

• 2.5V present means the Ultrasonic Range Sensor is applying 5V to the input

• 0V present means the Ultrasonic Range Sensor is not applying 5V to the input

You learned in Lesson B-17 that a GPIO pin will register as high for any voltage above

1.4V. So a 2.5V level will easily trigger a high in the GPIO pin:

• GPIO high means the Ultrasonic Range Sensor is applying 5V to the input

• GPIO low means the Ultrasonic Range Sensor is not applying 5V to the input

Using a voltage divider can be a very useful way to quickly reduce the voltage from a

sensor, using only two resistors. When using several 5V sensors, it makes more sense

to use a device like the 74LVC245 (Level Shifting) IC instead, due the amount and

complexity of resistors that would be required to make a voltage divider for each

channel.

Lesson B-18 – Range Sensing Game Page 534

SAMPLE

Absolute Value in Python

An absolute value represents how far a value is away from zero. It essentially removes

the positive or negative sign of a value, so the absolute value of -5 is 5. The same goes

for the positive value. The absolute value of 5 is still just 5. The absolute value function

in Python is:

abs()

The absolute value of will be taken of anything inside the parentheses:

abs(-23) becomes 23

abs(42) becomes 42

The second example doesn't seem to be very useful, but what if you don’t know what

the value in the parentheses will be until your program starts running:

abs(x-y)

If x is greater than y then the abs() function will have no effect on the value that this

function outputs. However, if y is greater than x, the result of x-y will be negative and

abs() will strip off the sign from the negative number.

In the upcoming activity, you will build a game that will be taking the difference of two

numbers, without knowing which will be larger. The abs() function will be used to strip

the sign from the result, leaving only the positive value of the difference between the

two values.

Lesson B-18 – Range Sensing Game Page 535

SAMPLE

Modifying a File for Import Use

When you import a file, that file is completely run from beginning to end. Any imports,

variable assignments, function definitions, or anything else in that program, will run as

if those lines were included in your program.

What if a file that you choose to import includes the following:

On import, the imported file would define the function named thing1(), and then get

stuck in the while True: loop, never returning to your program. This is obviously not

ideal, and this is why back in Lesson B-15, you learned about the __name__ variable

that can be used to determine if a file has been imported, or has been executed

directly:

Any code indented below this if condition will only run when the file was run directly

and will be ignored if the file is being executed as an import to another file. You can

modify the earlier example to allow for both imported and direct execution:

def thing1():
 x = 1

while True:
 print('Hello World')

if __name__=="__main__":

def thing1():
 x = 1

if __name__=="__main__":
 while True:
 print('Hello World')

Lesson B-18 – Range Sensing Game Page 536

SAMPLE

Importing the file will now result in the code inside the if block being completely

ignored, and when the program is executed directly, it will run from top to bottom,

including everything contained in the if block.

In the following activities, the ultrasonic range sensing program that you created in

Lesson B-14 will be modified so its function definitions can be used for import, without

executing the main program it contains.

Lesson B-18 – Range Sensing Game Page 537

SAMPLE

In this activity, you will modify the ultrasonic.py program that you created in Lesson

B-14 so its range sensing functions can be imported without running the main loop

program that it contains.

Step #1
The first step is to open ultrasonic.py from your Desktop in Thonny. Once open,

scroll down to the try: loop. You want to enclose this entire try: loop inside of an if
__name__ condition to ensure that it does not run when the file is used as an import.

Add the following line above the try: block and add another level of indentation to the

try: block as well as everything below, including the except: block:

Lesson B-18 – Range Sensing Game Page 538

SAMPLE

if __name__=="__main__":
 try:
 while True:
 distance = average()
 print('%.1f' % distance)
 if distance < 20:
 GPIO.output(red, GPIO.HIGH)
 GPIO.output(green, GPIO.LOW)
 GPIO.output(blue, GPIO.LOW)
 elif 20 <= distance < 25:
 GPIO.output(red, GPIO.LOW)
 GPIO.output(green, GPIO.HIGH)
 GPIO.output(blue, GPIO.LOW)
 else:
 GPIO.output(red, GPIO.LOW)
 GPIO.output(green, GPIO.LOW)
 GPIO.output(blue, GPIO.HIGH)
 time.sleep(.25)

 except KeyboardInterrupt:
 GPIO.cleanup()

All of the gray boxes above are additional spaces that were added to realign the code

below the new if block.

Step #2
Save your updated file so you can use it as an import later when building the game

program in Activity #3.

Lesson B-18 – Range Sensing Game Page 539

SAMPLE

In this activity, you will add the ultrasonic range sensor to the capacitive touch circuit

you built in Lesson B-17, Activity #3.

Step #1
Shut down the Pi and disconnect power before proceeding.

Once that's done, the first circuit modification will be to get 5V power and ground over to

the P2/N2 power rails so it can be used to power the Ultrasonic Range Sensor. Make

the following two connections using short jumper wires:

Short jumper wire – 5V – between J1 and P2-3

Short jumper wire – GND – between J3 and N2-3

Lesson B-18 – Range Sensing Game Page 540

SAMPLE

Step #2
Next, add a voltage divider made of two 1K-Ohm resistors that will be used to level-shift

the Echo output of the ultrasonic range sensor. Add two resistors and a short jumper

wire between the points below:

1K-Ohm resistor – between G55 and G59

1K-Ohm resistor – between F51 and F55

Short jumper wire –GND - between F59 and N2-61

Lesson B-18 – Range Sensing Game Page 541

SAMPLE

Step #3
The ultrasonic.py file that will be used to capture distance readings will be looking for

echo signals on GPIO21, but the slide switch is currently in that position. Move the slide

switch connection from GPIO21 over to GPIO16:

The voltage divider will take care of bringing the Echo line from the ultrasonic range

sensor down to a safe level, but you will need to make a few more connections before

you can use it for ranges. Make the following four connections between the points listed

below:

Short jumper wire – 5V – between H53 and P2-43

Short jumper wire - GND – between H50 and N2-42

Long jumper wire – Trigger – between H52 and J19

Long jumper wire – Echo – between H55 and J20

Lesson B-18 – Range Sensing Game Page 542

SAMPLE

Step #4
The last step is to add the ultrasonic range sensor. Connect it to the breadboard at J50

through J53 with the sensor pointing away from the OLED display. Ensure the sensor is

properly oriented and connected to the correct locations, or it could be damaged:

Power the Raspberry Pi on so it can be used to create a program to use with your new

circuit.

Lesson B-18 – Range Sensing Game Page 543

SAMPLE

In this activity, you will build a program to create the game outlined below:

The game will ask you to place your hand or another obstacle at a pre-determined

distance from the Ultrasonic Range Sensor. The game will consist of the following

actions:

• The user selects the desired difficulty level using the slide switch. Easy mode

allows for 20cm of error while Hard mode only allows for 10cm. The program

waits 2 seconds before the position of the slide switch determines which difficulty

level will be used for that round.

• The screen displays a random target distance between 20cm and 100cm.

• The user is asked to press capacitive touch pad 1-4 to start the distance capture

process. Each pad represents the number of seconds before the capture occurs,

which can be used to add more difficulty. Less time to get ready before the

capture makes it more difficult.

• The user range is captured and compared to the target distance. The RGB LED

will turn green if the user distance was within 20cm in Easy mode, or 10cm in

Hard mode. Errors above these amounts will result in the RGB LED turning red.

• The program loops back to the beginning.

This program will be the largest you've written yet, but it will borrow large blocks from

programs in previous activities. So, don’t be intimidated! Build the program one block at

a time, just like you would with a shorter program.

Step #1
The first step will be to open Thonny and create a new program called range_game.py.

Save the file to your Desktop so it will have access to the ultrasonic.py file that you

modified in Activity #1.

As you go through the steps below, save your program often to avoid losing an of your

work.

Lesson B-18 – Range Sensing Game Page 544

SAMPLE

Step #2
The first area in the program will be the imports and there are quite a few. You will be

using time, RPi.GPIO, random, ultrasonic, Adafruit_SSD1306, and the PIL imports

you used for the OLED display. Here are the import lines to add:

import time, RPi.GPIO as GPIO, random, ultrasonic, Adafruit_SSD1306
from PIL import Image, ImageDraw, ImageFont

Step #3
Next, you will assign the input and output pins using a lot of variables.

This will help you later if you want to modify this program and move an input or output to

another pin. This list will contain pin assignments for the slide switch, RGB elements,

and Capacitive Touch inputs.

The lists for rgb and cap will allow those groups of pins to be configured as inputs and

outputs as a group, using only one line each:

import time, RPi.GPIO as GPIO, random, ultrasonic, Adafruit_SSD1306
from PIL import Image, ImageDraw, ImageFont

slide = 16
rgb = [13,19,26]
red = 13
green = 19
blue = 26
cap = [22,27,17,4]
cap1 = 22
cap2 = 27
cap3 = 17
cap4 = 4

Lesson B-18 – Range Sensing Game Page 545

SAMPLE

Step #4
The next step will be the GPIO configuration. Here are the configuration steps that need

to be completed:

• Set GPIO pin mode to BCM

• Configure slide as an input with pull-up

• Configure cap as an input (this will take care of all four touchpads)

• Configure rgb as an output (this will take care of all three RGB elements)

• Set the output of rgb to low or 0 (this will ensure the RGB LED is off initially in

case your program has errors and exits improperly)

Here is the code to accomplish these five tasks:

cap2 = 27
cap3 = 17
cap4 = 4

GPIO.setmode(GPIO.BCM)
GPIO.setup(slide, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(rgb, GPIO.OUT)
GPIO.setup(cap, GPIO.IN)
GPIO.output(rgb, GPIO.LOW)

Lesson B-18 – Range Sensing Game Page 546

SAMPLE

Step #5
There is one more configuration step that must be accomplished but it can't be included

with the GPIO configuration. It's the code to configure all the settings required for your

OLED display to operate.

This block of code is pulled directly from the program you created in Lesson B-16,

Activity #2, and each line of code is broken down in the section titled SSD1306 Display

Driver. If you're unsure about anything below, please refer to that section for more

information:

GPIO.setup(cap, GPIO.IN)
GPIO.output(rgb, GPIO.LOW)

disp = Adafruit_SSD1306.SSD1306_128_64(rst=None)
disp.begin()
width = disp.width
height = disp.height
image = Image.new('1', (width, height)) # '1' converts image to 1-bit color
draw = ImageDraw.Draw(image)
font = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf',18)

Lesson B-18 – Range Sensing Game Page 547

SAMPLE

Step #6
There are a couple lines of code that will be used every time the display needs to be

updated. They are disp.image(image) and disp.display().

Instead of using these two lines every time you need to update the display, create a

function named update_display() that can be called every time an update is needed:

draw = ImageDraw.Draw(image)
font = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf',18)

def update_display():
 disp.image(image)
 disp.display()

You are now just over 30 lines into the program. Ensure your program matches the

program on the next page before continuing to the next step.

Lesson B-18 – Range Sensing Game Page 548

SAMPLE

import time, RPi.GPIO as GPIO, random, ultrasonic, Adafruit_SSD1306
from PIL import Image, ImageDraw, ImageFont

slide = 16
rgb = [13,19,26]
red = 13
green = 19
blue = 26
cap = [22,27,17,4]
cap1 = 22
cap2 = 27
cap3 = 17
cap4 = 4

GPIO.setmode(GPIO.BCM)
GPIO.setup(slide, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(rgb, GPIO.OUT)
GPIO.setup(cap, GPIO.IN)

disp = Adafruit_SSD1306.SSD1306_128_64(rst=None)
disp.begin()
width = disp.width
height = disp.height
image = Image.new('1', (width, height))
draw = ImageDraw.Draw(image)
font = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf',18)

def update_display():
 disp.image(image)
 disp.display()

Lesson B-18 – Range Sensing Game Page 549

SAMPLE

Step #7
Now that all the configuration steps have been completed, it's time to start building the

main program loop. Start with a try: loop that contains a while True: loop, and an

except KeyboardInterrupt: that contains the following:

disp.clear() clears the image buffer

disp.display() pushes the image buffer to display to so it's clear before shutdown

GPIO.cleanup() resets all GPIO pins to their default state

The code to add these elements is listed below:

def update_display():
 disp.image(image)
 disp.display()

try:
 while True:

except KeyboardInterrupt:
 disp.clear()
 disp.display()
 GPIO.cleanup()

Any new code in upcoming steps will be inserted in the while True: loop.

Lesson B-18 – Range Sensing Game Page 550

SAMPLE

Step #8
The first step in the main program loop is to display the difficulty level based on input

from the slide switch. You will control the timing of this portion of the program by looping

20 times with a 0.1 delay in each loop, for a total time of 2 seconds allowed for difficulty

selection.

Inside this skill_selection loop, you will nest two if/else conditions:

If the slide switch is low or False, then draw a rectangle to clear the display, draw the

strings "Difficulty?" and "Easy" to two lines of the image buffer, push the image

buffer to the screen, and set a variable named skill equal to 2. This variable will be

used later to determine the size of the error window that will result in a green LED.

If the slide switch is not low, the else: block will execute, just like the block above but

"Hard" will be printed to the second line of the display, and skill will be set equal to 1.

Here is the code to accomplish the program functions outlined above:

try:
 while True:
 for skill_selection in range(0,20):
 if GPIO.input(slide) == False:
 draw.rectangle((0,0,width,height), outline=0, fill = 0)
 draw.text((0, 0), "Difficulty?", font=font, fill=255)
 draw.text((0, 22), "Easy", font=font, fill=255)
 update_display()
 skill = 2
 else:
 draw.rectangle((0,0,width,height), outline=0, fill = 0)
 draw.text((0, 0), "Difficulty?", font=font, fill=255)
 draw.text((0, 22), "Hard", font=font, fill=255)
 update_display()
 skill = 1
 time.sleep(.1)

Make sure your indentation matches the code above. This is crucial for each block of

the program to operate as expected.

Lesson B-18 – Range Sensing Game Page 551

SAMPLE

Step #9
Now that the difficulty has been selected, the random target number can be selected

and displayed on the screen to let the player know the target distance for this round.

First, set a variable named target to a random integer between 20 and 100 by using

the randon.randint() function.

Next, show the target distance on the display by using % notation to print 'Target =
%s" %target on the first line of the display. The second and third lines of the display

should read "Press pad" and "to start". An update_display() will be used to

send this new information to the display:

 update_display()
 skill = 1
 time.sleep(.1)

 target = random.randint(20,100)

 draw.rectangle((0,0,width,height), outline=0, fill=0)
 draw.text((0, 0), "Target = %s" %target, font=font, fill=255)
 draw.text((0, 22), "Press pad", font=font, fill=255)
 draw.text((0, 44), "to start", font=font, fill=255)
 update_display()

Be careful again with the indentation on this section of the program. It should be at the

same indentation level as the for: loop. You want it to run after, and not as part of the

for: loop.

Lesson B-18 – Range Sensing Game Page 552

SAMPLE

Step #10
The user has now been informed of the target distance and has been prompted to press

a touchpad to start the capture process. Now hold the program in a while: loop until a

touchpad is pressed and goes high.

This can be done by using a while: loop that requires cap1, cap2, cap3, and cap4 all

to be False to keep the loop running. As soon as any of the GPIO pins connected to

those pads goes high, the loop will exit and continue with the rest of the program. A

time.sleep of 0.05 will be added inside the loop to keep the program from using too

many resources while waiting for input from a touchpad:

 draw.text((0, 44), "to start", font=font, fill=255)
 update_display()

 while GPIO.input(cap1) == GPIO.input(cap2) == GPIO.input(cap3) ==
GPIO.input(cap4) == False:
 time.sleep(0.05)

Even though the while: condition didn't fit on one line in this document, it should be

one continuous line in your code from while all the way to False:. The

time.sleep(0.05) should be indented so it runs each time the while condition is met.

Lesson B-18 – Range Sensing Game Page 553

SAMPLE

Step #11
If the while: loop stops running, that means one of the capacitive touch pads had been

triggered, but you don’t know which one.

Create some if conditions following the while: loop that will check to see if each pad

is high or True, and assign a variable named delay equal to that pad’s number. If cap1

was pressed then delay = 1, and if cap4 was pressed then delay = 4, etc.

 time.sleep(.05)

 if GPIO.input(cap1) == True:
 delay = 1
 if GPIO.input(cap2) == True:
 delay = 2
 if GPIO.input(cap3) == True:
 delay = 3
 if GPIO.input(cap4) == True:
 delay = 4

Since the while: loop exited you know that one of the pads was pressed. This code will

quickly check each pad and assign the value of delay based on which pad was pressed.

Lesson B-18 – Range Sensing Game Page 554

SAMPLE

Step #12
Now that you have the selected delay time stored as a variable, you can display a

message letting the user know the target distance, and a message about when the

range will be captured. There is, however, a small problem with this plan. The string

"Capturing in X seconds" works for selections 2, 3, and 4, but not for 1. Since you

don’t want to display "1 seconds", the second line will have to be customized based on

the value of delay to maintain correct grammar.

The first two lines of the message will be very similar to the Press pad to start block

of code form Step #9. The first line will display the target distance and the second will

display "Capturing range". The third line of the display will need to be customized

using an if/else block.

If delay is 1 then the third line should be "in %i second" %delay to maintain proper

grammar for the single second. If delay is anything else, then the third line should be

"in %i seconds" %delay to properly display multiple seconds.

At the end of this block you will update the display and insert a delay equal to the value

of the delay variable by using time.sleep(delay):

 if GPIO.input(cap4) == True:
 delay = 4

 draw.rectangle((0,0,width,height), outline=0, fill=0)
 draw.text((0, 0), "Target = %s" %target, font=font, fill=255)
 draw.text((0, 22), "Capturing range", font=font, fill=255)
 if delay == 1:
 draw.text((0, 44), "in %i second" %delay, font=font, fill=255)
 else:
 draw.text((0, 44), "in %i seconds" %delay, font=font, fill=255)
 update_display()
 time.sleep(delay)

Lesson B-18 – Range Sensing Game Page 555

SAMPLE

Step #13
The delay is over, and you are now ready to capture the range to the user. You can do

this by accessing the average() function inside your ultrasonic.py file, and setting

the result equal to a variable named distance.

Next, you will create a variable named diff that will hold the absolute value of the

random target variable minus the distance returned from the average() function.

This will be expressed as diff = abs(target-distance).

Now you will calculate the range of values that will get a green LED based on the

difficulty that's been selected. Create a variable named window that equals 10 *
skill. This means:

Easy mode, skill = 2 so window will equal 10 X 2 or 20

Hard mode, skill = 1 so window will equal 10 X 1 or 10

Add these program tasks with the following lines of code:

 update_display()
 time.sleep(delay)

 distance = ultrasonic.average()
 diff = abs(target-distance)
 window = 10 * skill

Lesson B-18 – Range Sensing Game Page 556

SAMPLE

Step #14
It's now time to light the LED using the diff and window variables. If diff is smaller

than or equal to window, the user distance is good, so the LED should turn green. If not,

the user distance that round was larger than the window, so the LED should turn red.

This can be accomplished by using a simple if/else block:

 distance = ultrasonic.average()
 diff = abs(target-distance)
 window = 10 * skill

 if diff <= window:
 GPIO.output(green, GPIO.HIGH)
 else:
 GPIO.output(red, GPIO.HIGH)

Lesson B-18 – Range Sensing Game Page 557

SAMPLE

Step #15
The program is almost done.

Finally, you will display the target and player distances, along with the difference

between the two, add a 5 second delay so there is time to view the results, and turn off

the LED so it's ready for the next round.

The display block is exactly like other blocks above it:

• Blank the image buffer with a black rectangle

• Line 1 will display "Target =" along with the value of target

• Line 2 will display "Player =" along with the value of distance

• Line 3 will display "Diff =" along with the value of diff
• Update the display

You will use time.sleep(5) for the delay and the rgb list to turn off all LED elements:

 else:
 GPIO.output(red, GPIO.HIGH)

 draw.rectangle((0,0,width,height), outline=0, fill=0)
 draw.text((0, 0), "Target = %s" %target, font=font, fill=255)
 draw.text((0, 22), "Player = %.0f" %distance, font=font, fill=255)
 draw.text((0,44), "Diff = %.0f" %diff, font=font, fill=255)
 update_display()
 time.sleep(5)
 GPIO.output(rgb, GPIO.LOW)

Lesson B-18 – Range Sensing Game Page 558

SAMPLE

Step #16
Double check your program and indentation against the code below:

import time, RPi.GPIO as GPIO, random, ultrasonic, Adafruit_SSD1306
from PIL import Image, ImageDraw, ImageFont

slide = 16
rgb = [13,19,26]
red = 13
green = 19
blue = 26
cap = [22,27,17,4]
cap1 = 22
cap2 = 27
cap3 = 17
cap4 = 4

GPIO.setmode(GPIO.BCM)
GPIO.setup(slide, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.setup(rgb, GPIO.OUT)
GPIO.setup(cap, GPIO.IN)

disp = Adafruit_SSD1306.SSD1306_128_64(rst=None)
disp.begin()
width = disp.width
height = disp.height
image = Image.new('1', (width, height)) # '1' converts image to 1-bit color
draw = ImageDraw.Draw(image)
font = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSans.ttf',18)

def update_display():
 disp.image(image)
 disp.display()

try:
 while True:
 for skill_selection in range(0,20):
 if GPIO.input(slide) == False:
 draw.rectangle((0,0,width,height), outline=0, fill = 0)
 draw.text((0, 0), "Difficulty?", font=font, fill=255)
 draw.text((0, 22), "Easy", font=font, fill=255)
 update_display()
 skill = 2
 else:
 draw.rectangle((0,0,width,height), outline=0, fill = 0)
 draw.text((0, 0), "Difficulty?", font=font, fill=255)
 draw.text((0, 22), "Hard", font=font, fill=255)
 update_display()
 skill = 1
 time.sleep(.1)

 target = random.randint(20,100)

 draw.rectangle((0,0,width,height), outline=0, fill=0)

Lesson B-18 – Range Sensing Game Page 559

SAMPLE

 draw.text((0, 0), "Target = %s" %target, font=font, fill=255)
 draw.text((0, 22), "Press pad", font=font, fill=255)
 draw.text((0, 44), "to start", font=font, fill=255)
 update_display()

 while GPIO.input(cap1)==GPIO.input(cap2)==GPIO.input(cap3)==GPIO.input(cap4)==False:
 time.sleep(.05)

 if GPIO.input(cap1) == True:
 delay = 1
 if GPIO.input(cap2) == True:
 delay = 2
 if GPIO.input(cap3) == True:
 delay = 3
 if GPIO.input(cap4) == True:
 delay = 4

 draw.rectangle((0,0,width,height), outline=0, fill=0)
 draw.text((0, 0), "Target = %s" %target, font=font, fill=255)
 draw.text((0, 22), "Capturing range", font=font, fill=255)
 if delay == 1:
 draw.text((0, 44), "in %i second" %delay, font=font, fill=255)
 else:
 draw.text((0, 44), "in %i seconds" %delay, font=font, fill=255)
 update_display()
 time.sleep(delay)

 distance = ultrasonic.average()
 diff = abs(target-distance)
 window = 10 * skill

 if diff <= window:
 GPIO.output(green, GPIO.HIGH)
 else:
 GPIO.output(red, GPIO.HIGH)

 draw.rectangle((0,0,width,height), outline=0, fill=0)
 draw.text((0, 0), "Target = %s" %target, font=font, fill=255)
 draw.text((0, 22), "Player = %.0f" %distance, font=font, fill=255)
 draw.text((0,44), "Diff = %.0f" %diff, font=font, fill=255)
 update_display()
 time.sleep(5)
 GPIO.output(rgb, GPIO.LOW)

except KeyboardInterrupt:
 disp.clear()
 disp.display()
 GPIO.cleanup()

Lesson B-18 – Range Sensing Game Page 560

SAMPLE

Step #17
Now that your program is complete, run the program. Select the difficulty by using the

slide switch and start the capture process by pressing one of the Capacitive Touch

pads.

If your program is not working as expected, identify which area of the program needs to

be checked. Each block of code is performing a very specific function, so identify what

part of the game is not working properly and check out the block of code that is

controlling that behavior.

If you still can't get your program to work, you can download a copy of this program from

the Level B Resource Page.

Lesson B-18 – Range Sensing Game Page 561

SAMPLE

https://42electronics.com/pages/level-b-resources

1. Does signal level-shifting require an IC or can it be done with two resistors?

2. Can every file be used an import without causing any problems in your main

program?

3. What function can be used to take the absolute value of a variable or expression?

Answers Can be Found on the Next Page

Lesson B-18 – Range Sensing Game Page 562

SAMPLE

Answers

1. Does signal level-shifting require an IC or can it be done with two resistors?

ANSWER: Signal level shifting can be done with two resistors but if multiple 5V

devices are being used, using an IC for level shifting is recommended.

2. Can every file be used an import without causing any problems in your main

program?

ANSWER: No. Everything in the imported file will run on import unless it's inside an

if __name__=="__main__": condition. Loops or other types of code in the

imported file could cause problems when imported and must be enclosed in this if:

condition to isolate it during your import.

3. What function can be used to take the absolute value of a variable or

expression?

ANSWER: The abs() function will return the absolute value of a variable or

expression.

Lesson B-18 – Range Sensing Game Page 563

SAMPLE

42 ELECTRONICS

INTRO TO ROBOTICS LEVEL B

Scope and Sequence

Lesson 1

Administrative and File Management

• Understanding the Raspbian File System

• Completing File Tasks in the Graphical User Interface (GUI)

o Creating a Folder

o Creating a File

o Renaming a File or Folder

o Changing Permissions on a File or Folder

o Root User

o Deleting Files or Folders

o Navigating Folders Using File Manager

• Completing File Tasks Using the Command Line

o Working Directory

o Listing Directory Contents

o Creating a File

o Creating a Directory

o Moving to Another Directory

o Copying a File or Folder

o Moving or Renaming a File or Folder

o Deleting a File or Folder

• Other Useful Command Line Tools

o Confirming Raspbian Version

o Taking a Screen Capture

• Activities:

o Activity #1: GUI File and Folder Operations

o Activity #2: Command Line File and Folder Operations

SAMPLE

Lesson 2

Functions

• Understanding Functions

o Keeping Code Organized

o Grouping Related Program Blocks

o Global and Local Variables

o Functions with Arguments

o Using Functions in Programs

• Activities

o Activity #1: Simple Function Program

o Activity #2: Calling a Function with a Loop

o Activity #3: Functions with Passed Arguments

Lesson 3

Program Layout Options and Advanced String Concepts

• Program Layout Options

o While True Loops

o Try, Except, Finally Program Layout

• Advanced String Concepts

o Determining the Length of a String

o Accessing the Value of a Specific String Position

o Accessing Values from Multiple String Positions

o Uppercase and Lowercase

o Replacing Characters in a String

• Activities

o Activity #1: While True Loop

o Activity #2: Error Handling Program

o Activity #3: Practice with Strings

 SAMPLE

Lesson 4

Pulse Width Modulation

• Import Methods

o Standard Module Import

o Importing a Module Using an Alias

o Importing Multiple Modules

o Importing Specific Functions from a Module

• Analog Signals vs Digital Signals

• Pulse Width Modulation (PWM)

o PWM Duty Cycle and Frequency

o Hardware PWM vs Software PWM

o GPIO Commands to Control PWM

• Activities:

o Activity #1: Building an LED and Piezo Circuit

o Activity #2: Controlling an LED with PWM

o Activity #3: Adjusting LED Brightness

Lesson 5

Switches and Correcting for Switch Bounce

• Pull-up and Pull-down Options

• Slide or Toggle Switch

• Switch Bounce

• Using a Delay to Save System Resources

• Activities:

o Activity #1: Adding Switches to the Circuit

o Activity #2: Counting Button Presses

o Activity #3: Tuning a Loop Using a Delay

o Activity #4: Adding LED Confirmation Using the Slide Switch

SAMPLE

Lesson 6

Logical Operators

• Logical Operators in Python

• Using a Pushbutton Switch as a Toggle

• Using a Pushbutton Switch to End a Program

• Activities:

o Activity #1: Using a Pushbutton Switch as a Toggle

o Activity #2: Use And/Or to Control Different Events

o Activity #3: Add Stop Button Functionality

Lesson 7

Working with a 3x4 Matrix Keypad

• Matrix Style Input Panel

o Program Flow for Checking a Matrix

o Storing Values as Strings Versus Integers

o Membrane Type Switches

o Matrix Keypad Warning

• Variables and Scope

• Activities:

o Activity #1: Adding the Switch Matrix

o Activity #2: Creating a Program to Display Keypad Presses

o Activity #3: Adding Exit Functionality to the Keypad Program

 SAMPLE

Lesson 8

Github and Python 2 vs Python 3

• Library Files

o What is Github?

o Cloning a Library from Github

o When to Clone a Remote Library

o Completing the Library Installation

o Viewing Code Inside Files on Github

• Python 2 vs Python 3

o Thonny and Python

• Activities:

o Activity #1: Cloning and Installing a Github Repository

o Activity #2: Exploring the Adafruit MCP3008 Repository

o Activity #3: Viewing Code on Github

Lesson 9

Analog Signal Processing with the Raspberry Pi

• Voltage Dividers

• Analog Input on the Raspberry Pi

• Integrated Circuits (IC)

o IC Datasheets

o IC Pin Numbering

o IC Pinouts

o ESD and IC Handling Precautions

• Digital Communication

o The MCP3008 A/D Converter

• Activities:

o Activity #1: Connecting the MCP3008

o Activity #2: Reading a Value from the MCP3008

o Activity #3: Adding a Voltage Divider

o Activity #4: Updating the Raspberry Pi’s Software

SAMPLE

Lesson 10

Potentiometers, Phototransitors, and Advanced List Commands

• Variable Resistors

• Light Sensors

• Advanced List Commands

o Creating a List Using the Split Command

o Adding Items to a List

o Finding Items in a List

o Determining if an Item is Part of a List

o Finding the Length of a List

o Sorting a List

o Printing all Items in a List Along with Their Index Values

o Removing Items from a List

o Clearing All Items from a List

• Activities

o Activity #1: Adding the Potentiometer and Phototransistor

o Activity #2: Incorporating the LED as an Indicator

o Activity #3: Working with Lists

Lesson 11

RFID Systems

• RFID Technology

o How RFID Works

o RFID for Access Control

o Security Concerns for RFID

o MFRC522 Tag Reader

o RFID Tags

▪ Reading Text from the RFID Tag

• Removing Trailing Spaces in Python

• Determining Program Type: Python Code SHEBANG or #!

• Reading and Writing Tags

• Activities:

o Activity #1: Adding the RFID Reader and Software

o Activity #2: Reading and Writing Tags

o Activity #3: Creating an Access Control Program

SAMPLE

Lesson 12

RFID II

• Using a File for Input

o Input File Types and Formatting

o Opening a File in Your Program

o Reading Values from a File

• Multithreaded Operation

o Important Notes About Multithreaded Operation

• Formatting and Displaying Time and Date

• Breaking Out of a Loop

• Activities:

o Activity #1: Read an External File in Python

o Activity #2: Tag Reader Indicator

o Activity #3: Adding Date and Time Messages

Lesson 13

Level Shifting and Infrared Sensors

• Signal Level Shifting

o Hardware Level Shifting

• Infrared (IR) Obstacle Sensor

o Alignment of Obstacle Sensors

• Infrared Line Sensor

o Alignment of Line Sensors

• Activities

o Activity #1: Level Shifter and the RGB LED

o Activity #2: Adding the IR Obstacle Sensor

o Activity #3: Adding the IR Line Sensor

 SAMPLE

Lesson 14

Ultrasonic Range Sensing and NUMPY

• Ultrasonic Rangefinders

o Ultrasonic Signals

o Finding Range with an Ultrasonic Sensor

o Using Distance Information in Programs

o Error Handling

• NumPy

• Integers and Floats

• Printing with Notation

• Activities:

o Activity #1: Adding the Ultrasonic Range Sensor

o Activity #2: Creating a Program to Read Ranges

o Activity #3: Averaging the Range Values Using NumPy

o Activity #4: Adding the RGB LED as a Distance Indicator

SAMPLE

Lesson 15

I2C and Temperature Sensing

• I2C Communication

o I2C Addressing

o Enabling I2C on the Raspberry Pi

o List of I2C Devices

o Detecting Attached I2C Devices

• The BMP280 Temperature Sensor

o BMP280 Wiring

o BMP280 Commands

o Temperature Conversion

• The WGET Command

• Running Modules as Imports vs Directly

• The SYSTEMEXIT() Command

• Activities:

o Activity #1: Enabling the I2C Interface

o Activity #2: Adding the BMP280 Temperature Sensor

o Activity #3: Creating a Program to Display Temperature

o Activity #4: Adding the RGB LED to Indicate Temperature

SAMPLE

Lesson 16

OLED I2C Display

• OLED Display Hardware

o Resolution and Pixels

o OLED Technology

o I2C Communication

• SSD1306 Display Driver

o Required Modules

o Size Configuration

o Starting the Display

o Variables that Simplify Communication with the Display

o Drawing on the Display

• Unicode Characters

• Activities

o Activity #1: Modify the Circuit

o Activity #2: Create a Program to Display Text

o Activity #3: Modify the Program to Display Sensor Information

Lesson 17

Capacitive Touch Sensor

• Capacitors

o Construction

o Current Limiting

o Charge Time

▪ Calculating Charge Time

o Parallel vs. Series

• Capacitive Touch Sensor

• Male-to-Female Jumper Wires

• GPIO Pin Level Sensing

• Activities:

o Activity #1: Powering a Circuit Using a Capacitor

o Activity #2: Measuring Capacitor Discharge Time

o Activity #3: Using the Capacitive Touch Sensor
SAMPLE

Lesson 18

Range Sensing Game (final project)

• Level Shifting with Resistors

• Absolute Value in Python

• Modifying a File for Import Use

• Activities:

o Activity #1: Modifying Ultrasonic.py

o Activity #2: Adding the Ultrasonic Range Sensor

o Activity #3: Building the Range Game

SAMPLE

	Level B Table of Contents
	Lesson B-5 – Switches and Correcting for Switch Bounce
	B-5 Lesson
	B-5 Activities
	B-5 Questions

	Lesson B-11 – RFID Systems
	B-11 Lesson
	B-11 Activities
	B-11 Questions

	Lesson B-18 – Range Sensing Game
	B-18 Lesson
	B-18 Activities
	B-18 Questions

	Level B Scope and Sequence 2-24-2021

