
LEVEL A

INTRO TO ROBOTICS

BY ERIC FEICKERT

Bui ld ing Ci rcui ts &
Beginning Programming

42 ELECTRONICS

Intro to Robotics Level A

Building Circuits &

Beginning Programming

By Eric Feickert

V21057

SAMPLE

© 2021 42 Electronics LLC

All rights reserved. No part of this work may be reproduced or used in any form by any

means—graphic, electronic, or mechanical, including photocopying, recording, taping,

or information storage, transfer, or retrieval systems—without written permission from

the publisher.

The purchaser of this publication may photocopy or print pages for use by members

within their own individual household. Electronic or printed versions of this file, whether

in whole or in part, may not be transferred to any other individual under any

circumstances without written permission from the publisher. Use of the file, copying, or

distribution of any kind for group, co-op, classroom, or school use is strictly prohibited

without specific purchase of the appropriate user licenses available from 42 Electronics.

Contact 42 Electronics (support@42electronics.com) for information regarding group

and school licensing.

The publisher and authors have made every attempt to state precautions and ensure all

activities described in this book are safe when conducted as instructed, but assume no

responsibility for any damage to property or person caused or sustained while

performing the activities in this or any 42 Electronics course. Users under the age of 18

should be supervised by a parent or teacher and that adult should take necessary

precautions to keep themselves, their children, and their students safe.

www.42electronics.com

SAMPLE

mailto:support@42electronics.com

LEVEL A TABLE OF CONTENTS

Lesson A-1: Batteries and Breadboards ... 7

Lesson A-2: Resistors and LED ... 27

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law 44

Lesson A-4: Jumper Wires ... 58

Lesson A-5: Switches ... 68

Lesson A-6: RGB LED ... 81

Lesson A-7: Troubleshooting ... 94

Lesson A-8: Introduction to Reading Schematics ... 113

Lesson A-9: Setting Up the Raspberry Pi ... 130

Lesson A-10: Introduction to Software: Terminal and Thonny 158

Lesson A-11: Creating Python Programs ... 175

Lesson A-12: Code Organization, User Input, and Merging Strings 193

Lesson A-13: Math Functions, Lists, and Importing Modules 211

Lesson A-14: If/Else Statements .. 235

Lesson A-15: Nested If Statements and String/Integer Conversion 255

Lesson A-16: Controlling Breadboard Circuits with the Raspberry Pi 277

Lesson A-17: Loops ... 302

Lesson A-18: Two Player Reaction Game ... 321

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

LESSON A-3
SERIES VS. PARALLEL CIRCUITS & OHM’S LAW

► Breadboard Power, Rows and Columns (Lesson A-1)

► Connecting Battery to Breadboard (Lesson A-1)

► Building a Circuit with a Resistor and LED (Lesson A-2)

► LED Polarity, Forward Voltage (Vf) (Lesson A-2)

❑ 220-Ohm Resistor x1

❑ LED x1

❑ Breadboard Circuit from Lesson A-2,

Activity #1

Lesson Overview

► Ohm’s Law

► Serial vs. Parallel Circuits

Materials Needed

Concepts to Review

Page 44

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

LESSON A-3
SERIES VS. PARALLEL CIRCUITS & OHM’S LAW

As you saw in the previous lesson, a circuit can be as simple as powering a single

LED. However, in the real world, that’s not a very useful application! You will generally

see multiple components being powered by a single battery. For example, a remote

control contains numerous switches, LEDs, and other components, all powered from a

single battery. This lesson will dive into series vs. parallel circuits and teach you to

power multiple component paths using a single battery.

The circuit you built in the last lesson had a single path that ran from the anode (+) of

the battery, through a resistor, through an LED, and then back to the cathode (-) of the

battery. This is known as a series: one path of components running off the source

battery.

But most projects or real-life applications would run in what’s known as a parallel

circuit. When running in parallel the current runs from the positive terminal of the

battery, splits along multiple paths to power components, and then runs back to the

negative terminal of the battery.

Circuit with components in series Circuit with two LED/resistor
combinations running in parallel
sharing the same power source

Page 45

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

As you saw in Lesson A-2, Activity #2, there are some significant limitations to running

serial circuits. Mainly that you would need a higher voltage battery to run anything

more than a few simple components. Instead, circuits are normally run in parallel which

allows the battery voltage to feed equally to all paths within the circuit. So, looking at

Figure 3-1 (serial), with a 3-volt battery, 3-volts will feed resistor 1 and LED 1. In Figure

3-2 (parallel), a 3-volt battery will provide 3-volts of power to resistor 1 and LED 1 and

3-volts to resistor 2 and LED 2. Therefore, running circuits in parallel essentially makes

the full battery voltage available across multiple paths.

Current flow in parallel components Schematic equivalent

CAUTION!

Using parallel circuits to power multiple branches is convenient, however you must

be careful to control current flowing through each branch using a resistor. Resistor

1 (R1) will only control current flowing through branch 1 including LED 1 (D1),

while Resistor 2 (R2) is used to control current in branch 2. Without Resistor 2,

branch 2 would have no current limit and the LED 2 (D2) could burn out due to

excess current.

Page 46

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

Factors in a Serial vs. Parallel Circuit

When working with circuits, it’s helpful to understand the mathematical relationship

between the battery voltage, current, and the amount of resistance your circuit will

provide. For purposes of this course, you will only need to understand the

mathematical equation known as Ohm’s Law and how you would theoretically calculate

this value. In later levels, you will learn the more complex math behind arriving at an

exact value for any variable in the Ohm’s Law equation which will allow you to design

your own circuits.

First, here is a quick review of the definitions you learned in Lesson A-1:

• VOLTAGE: The difference in charge between two points, measured in volts;

represented by V such as 1.5V or 3V.

• CURRENT: The rate at which charge is flowing, measured in Amperes or more

commonly amps (A) or milliamps (mA) but this value will be represented by I in

formulas. 1A equals 1000mA.

• RESISTANCE: A material’s tendency to resist the flow of the current, measured in

ohms; can be represented by Ω such as 100-ohms or 100Ω.

• Think of voltage as the potential ability to do work, current is how fast the work is

being done, and resistance is anything keeping the work from being done faster.

We recommend you move to the Activities portion of the lesson and complete

Activity #1 prior to reading through the remainder of this lesson.

Page 47

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

Ohm’s Law

The voltage, current, and resistance in a circuit are mathematically related. Ohm’s Law

can be used to determine the voltage, resistance, or current of any component in a

circuit. If you have two out of the three values, you can calculate the third using:

V = I x R or Voltage = Current x Resistance

To use the formula, ensure that you convert all values to the following units:

• V is in volts

• R is in ohms

• I is in amps – Note: This is the most problematic unit as current is often in milliamps

and must be converted before using it for Ohm’s Law, so 10mA would become .010

amps in the formula

What if you need to solve for current or resistance? The formula can be manipulated to

solve for these:

I = V / R or R = V / I

In future levels of this course, this formula will come in handy when selecting a resistor

value to help limit current for an LED.

Note:

The following section is optional and skipping it will not keep you from completing

the rest of this course. While calculating Ohm’s Law is a useful exercise, this

concept will be revisited in greater depth in future levels. What’s important at this

point is understanding that voltage, current, and resistance are mathematically

related and calculating these values will be important once you move on to

designing your own circuits.

Page 48

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

Ohm’s Law Calculation Example

Let’s say you have an LED with a Vf of 2.8V, with a current limit of 10mA, and a supply

voltage of 3-volts. The formula you would use is resistance equals the supply voltage

minus the LED’s forward voltage divided by the desired current in amps.

Start by subtracting the LED Vf of 2.8 from the supply voltage of 3, and dividing that by

10mA or .010. This leaves you with .2 divided by .01 which equals 20 or 20-ohms. This

means that with a supply voltage of 3-volts and an LED with a Vf of 2.8V, you would

need a 20-ohm resistor to limit the current through the LED to 10mA.

10mA is well below the limit of 20mA, however LEDs need very little current to turn on

so it’s best to go as low as possible. Later in this course, you will power the breadboard

using the Raspberry Pi. Since the Raspberry Pi is a small computer, it can only output

a limited amount of current, so keeping the LED current to a minimum is a good idea.

Use Ohm’s Law to determine how much current the LED is allowed when we use a 220

-ohm resistor and a 3-volt supply.

Page 49

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

Using this formula, a 220-ohm limits the LED current

to .0009 amps or .9mA. Comparatively, a 20-ohm

resistor would limit the LED current to .010 amps or

10mA.

This means that if your voltage source was only able to

supply 10mA of current, you could power a single LED

with a 20-ohm resistor or you could power 11 LEDs

using 220-ohm resistors.

There is not much LED brightness difference between

the two, so limiting the current as much as possible is

the better option, especially when powering LEDs using

the Raspberry Pi.

As you can see from this photo, the 20-ohm resistor powering the LED at 10mA is only

marginally brighter than the 220-ohm resistor powering the LED at .9mA. Unless your

application requires an extremely bright LED that needs a lot of current, you can

normally get away with powering LEDs using very little current.

Don’t worry if you don’t quite understand the math. You will not need this equation for

the remainder of this course and you will revisit this concept in future levels. The goal is

for you to understand that voltage, current, and resistance are mathematically related,

and that the equation can be used when designing circuits.

Note:

If you wish to dive deeper into Ohm’s Law and the math involved, visit this

webpage: www.42electronics.com/level-a-resources

Page 50

SAMPLE

http://www.42electronics.com/level-a-resources

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

As in the previous lesson, below you will find the schematic for this project, for your

review in future lessons. In this activity, you will add a second LED and resistor

combination in parallel with the first.

Physical circuit Schematic Diagram

Page 51

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

Step #1
If it’s not still built on your breadboard, construct the circuit from Lesson A-2, Activity #1

and then you may proceed with the activity for this lesson.

Using the circuit from in Lesson A-2, Activity #1 as a starting point, you will first add a

second LED. Insert the anode of the LED into A15 and the cathode of a second LED

into N1-15.

Page 52

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

Step #2
Because the second LED you just added is functioning in parallel with the first, you will

need to add a second resistor to control the flow of current. Connect a second 220-ohm

resistor between P1-11 and E15.

Step #3
Take a moment to track with your eye how the current flows in this circuit and ensure

you understand the path from battery positive, through the components, and back to

battery negative:

• Positive of the battery to P1-3 powers the positive power rail

• Current splits into two separate paths:

o P1-5 through the first resistor to E7, across row 7 to A7, into the first LED,

and out to N1-7

o P1-11 through the second resistor to E15, across row 15 to A15, into the

second LED, and out to N1-15

• Paths merge at the negative power rail and flow through N1-3 to negative of the

battery

Page 53

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

Step #4
If desired, you may continue to add the other resistors and LEDs in this kit to the circuit,

in parallel, following the same pattern. The number of resistors and LEDs included in

this kit are safe additions to this circuit. However, if you are working with additional

components beyond what is included in this kit, keep in mind that current is not an

infinite resource and you will eventually exceed the maximum current output rating of

your power source. This is particularly true when you work with the Raspberry Pi in later

lessons.

Step #5
Disassemble the circuit and return the components to the kit in preparation for the next

lesson.

Page 54

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

1. Here are some images of series and parallel circuits. Label each circuit as series or

parallel.

2. Why would you use parallel circuits instead of keeping all components in series?

3. What is the formula for Ohms Law?

4. In this circuit, Resistor 1 is connected between the

battery positive and LED 1. Will Resistor 1 in this

configuration limit the current flowing through LED 2?

Answers Can be Found on the Next Page

Page 55

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

Answers

1. Here are some images of series and parallel circuits. Label each circuit as

series or parallel.

ANSWER: A: Parallel, B: Series, C: Series, D: Parallel

2. Why would you use parallel circuits instead of keeping all components in

series?

ANSWER: A parallel circuit allows the voltage from the battery to be used equally

across all paths in the circuit. So, a 3V battery will provide 3V to path 1, 3V to path 2,

etc. This allows you to run multiple components on a single low-powered battery.

Running multiple components on a series circuit will generally require a higher

voltage battery to account for the Vf (forward voltage) required by certain

components.

3. What is the formula for Ohms Law?

ANSWER: V = I x R or Voltage = Current x Resistance

Page 56

SAMPLE

Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law

4. In this circuit, Resistor 1 is connected between the

battery positive and LED 1. Will Resistor 1 in this

configuration limit the current flowing through LED

2?

ANSWER: No, Resistor 1 will only limit the current

flowing along the path between battery positive, LED 1, and battery negative. The

path containing LED 2 will require its own resistor (Resistor 2) to limit the current

flowing through LED 2.

Page 57

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

LESSON A-15
NESTED IF STATEMENTS &

STRING/INTEGER CONVERSION

► Program Flow, Strings, Variables, Print Commands, Order (Lesson A-11)

► Code Organization, User Input (Lesson A-12)

► Math Functions (Lesson A-13)

► Boolean Logic, If/Else Statements (Lesson A-14)

❑ Assembled Raspberry Pi setup from Lesson A-9 including Raspberry Pi, monitor,

keyboard, and mouse

Lesson Overview

► Strings vs. Integers

► Converting a Value to an Integer

► Nested If Statements

► Indentation in Formatting

Materials Needed

Concepts to Review

Page 255

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

LESSON A-15
NESTED IF STATEMENTS &

STRING/INTEGER CONVERSION

In this lesson you’ll continue to learn how to work with if statements by adding

increasingly complex criteria. You will then move on to learn how to specify strings

versus integers in Python.

Nested If Statements

Formatting: Importance of Indentation

When formatting nested if statements, indentation is very important. This tells Python

when statements are dependent upon each other.

For example, this program simulates a code that might open a lock. The lock can only

open with the code 345.

if x == 3:

 print('First digit accepted')

 if y == 4:

 print('Second digit accepted')

 if z == 5:

 print('Third digit Accepted')

 print('Lock open')

In Lesson A-14, you learned to structure simple if statements in Python. But what

happens if you need to have multiple criteria? For example, if you only wanted to print

a receipt if the sale value was $1 and the item was red? For this, you would need to

use nested if statements.

A nested if statement, describes an if statement that's inside of, and dependent on,

another if statement. This can be used to add extra layers of decisions that you might

want to make happen in your program.

Page 256

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

What will happen when the digits 3, 4, 5 are entered?

The code digits are initially programmed in using the variables x, y, and z. The first if

condition x == 3 will be evaluated, and if True, First digit accepted will be printed, and

the next condition will be evaluated. If y == 4 evaluates as True then Second digit

accepted will be printed, and the third condition z == 5 will be evaluated. If this

evaluates as True, then Third Digit accepted and Lock open will both be printed.

The only way Lock Open can ever be printed is if all three conditions preceding it

evaluate as True. If any of the digits do not equal the expected digit, then the rest of

the code will be skipped, and the lock will not open.

But what happens if the statements aren’t properly indented? Python no longer sees

them as dependent upon one another and you can’t obtain the conditional buildup

seen in the last example.

For example, consider the following code:

if x == 3:

 print('First digit accepted')

if y == 4:

 print('Second digit accepted')

if z == 5:

 print('Third digit Accepted')

 print('Lock open')

What happens if the user enters 555?

Since the first digit is wrong, the first condition will evaluate as False, so no message

would be printed. Due to the improper indentation, the second condition will also be

evaluated, even though the first digit was incorrect. Without indentation, Python doesn’t

realize it’s not supposed to proceed to the next line of code! In this case, the second

digit is also incorrect, so no message will be printed.

Page 257

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

The problem really shows up when the third condition is tested. This digit is correct, so

the condition will evaluate as True, and both Third digit accepted and Lock open will

be printed. The lock was allowed to open, even though two of the three digits were

incorrect. Without indentation, Python treated all three conditions as independent of

one another.

If your intent is to have multiple if statements trigger an action, then make sure your

indentation is allowing the conditions to be evaluated as expected. Also, test to make

sure your program is operating as designed, and that incorrect entries don’t generate

unexpected behavior.

ALWAYS USE FOUR SPACES TO INDENT CODE. It may be tempting to use the tab

key out of convenience, but tabs can be interpreted differently by different programs.

Spaces are treated the same way in every program, so they are the safest way to learn

to indent your code. If you need more levels of indentation just add four more spaces

for each level:

first_line # this line has no spaces

 second_line # this line has 4 spaces

 third_line # this line has 8 spaces

 fourth_line # this line has 4 spaces

 fifth_line # this line has 8 spaces

Page 258

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

Strings vs. Integers

As you learned in the previous lesson, strings are one or more characters made up of

letters, numbers, or symbols. You can ask Python if string '6' equals string '6' and it will

evaluate as True. This happens because those two characters are the same, much like

Python would say that the strings 'a' and 'a' are equal. You can also add string 'a' to

string 'a' and you will get an output string of 'aa'. This worked great in previous lessons

to add “My name is “ and “name” together to get a full sentence.

The problem occurs when you try to do mathematical calculations with strings of

numbers. Consider the following program:

What number do you think will be printed to the console as c? Here's a hint: it's not 6.

42 will be printed because the character '4' added to the character '2' is '42'. Python

doesn't understand that these characters represent numeric values. For that you will

need to use integers.

a = '4'

b = '2'

c = a + b

print(c)

Page 259

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

Converting a Value to an Integer

Integers are only allowed to be numbers, so trying to store the value 'apple' as an

integer will result in an error. Here are some examples:

The last one is a bit of a problem. How do you use an input of 6 for a mathematical

equation when Python is storing it as a string? Fortunately, Python has a great way to

convert back and forth between strings and integers. The command for converting a

numeric string to an integer is:

int()

Just insert a variable value between the parentheses, and Python will convert the value

to an integer, so you can use that value for math purposes. Remember, this will only

work on numeric values. Attempting to convert the string value 'apple' into an integer

will result in a Python error.

Statement Action
Use for Numeric
Functions?

x = '6'
This will store the value 6 as
a string in a variable called x

No

x = 6

This will store the value 6 as
an integer in a variable
called x

Yes

x = input('Type a number: ')

Typing 6 at this prompt will
cause the program to store
the value of 6 as a string in a
variable called x

No

Page 260

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

Here is an example of converting a string to an integer:

This integer command will be very useful in Activity #3, where you will convert the

numeric user input from a string into an integer, so you can compare it to other

numbers later in the program.

x = '42'

y = int(x)

This will initially store the value of 42 as a string in variable x

This will take the current value of x, convert it to an integer, and store
that new value in the variable y

Converting a Value to a String

But what if you have the opposite problem? You have an integer you need to convert to

a string so you can combine it with another string? Python cannot merge integers and

strings to be displayed together so you must convert any integers to strings.

The command to convert a value to a string is:

str()

It can be used just like the int() command above. Here is an example of converting

an integer to a string:

x = 42

y = str(x)

This will initially store the value of 42 as an integer in variable x

This will take the current value of x, convert it to a string, and store that
new value in the variable y

Page 261

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

This can be helpful when trying to print integers and strings together. As noted above,

Python cannot concatenate (merge) strings and integers together in the same print

command.

This conversion can also happen within a single line. In Lesson A-13 you used this

statement to bring in user input as an integer:

Normally the input command will bring in any value entered as a string, even numeric

values. The problem with this is that you can't perform math operations on a string,

even when the string is something like '6'. That '6' might as well be 'apple' or 'tree'.

Python has no idea how to subtract 2 from 'apple' or from '6'.

var = int(input('Enter a number: '))

Bad Code Good Code

x = 42

print('Your number is ' + x)

This print statement is trying to combine
the string 'Your number is ' and the inte-
ger value of x. This will result in an error.

x = 42

y = str(x)

print('Your number is ' + y)

Since x is being converted into a string
value called y, this print statement can
combine 'Your number is ' and the string
value of y, with no errors. 'Your number is
42' will be printed to the shell.

Page 262

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

The input string must be converted to an integer using the int() command. There are

a couple of ways to accomplish the same thing:

Option #1:

The input from the user is initially saved to the variable var. Then the int(var) will take

the integer value var and overwrite the string value of var with the integer value.

Or you can do this by wrapping the int() around the entire input command as seen

below.

Option #2:

In this example, from Lesson 13, the user is asked for input, that input is converted to

an integer, and that integer value is saved to the variable called var. This way is

slightly more complicated looking, but it results in one less line of code.

var = input('Enter a number: ')

var = int(var)

var = int(input('Enter a number: '))

Page 263

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

In this activity you will write a program that will ask the user for their current age, add

five years, and print a message letting them know what their age will be in five years.

Step #1
Ask the user how old they are and store it in a variable called age:

age = input('How old are you: ')

Step #2
The users age is now stored as a string in a variable called age, however Python can't

add five to a string. The string value must be converted to an integer, so Python can

add to the value. Store that new integer value as a variable called age_int:

age_int = int(age)

Page 264

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

Step #3
Now Python can add five years to the current value of age_int:

age_int = age_int + 5

This will take the current value of age_int, add 5 to it, and save it as the updated value

of age_int.

Step #4
You want to have a nice message that combines the string Your age in five years will

be and the age_int value. Since the age_int value is currently an integer it cannot be

combined with the other string. You must convert the age_int value from an integer

back to a string. Save this new string as age_str:

age_str = str(age_int)

Step #5
You now have two strings that can be combined into a single print command.

Combine the string Your age in five years will be and the age_str value into a

print command:

print('Your age in five years will be ' + age_str)

Page 265

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

Step #6
Verify the fully assembled program is free of errors:

age = input('How old are you: ')

age_int = int(age)

age_int = age_int + 5

age_str = str(age_int)

print('Your age in five years will be ' + age_str)

Step #7
Run the program a few times using different age values and make sure that you get the

expected output each time. Save the program if desired (optional).

Page 266

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

In this activity you will write a program that will ask a user for the year they were born

and if their birthday has occurred yet this year. The program will then calculate the

user's age at the end of this year and will subtract a year if their birthday has not yet

occurred. The program will then display their current age in a single print statement.

Step #1
Ask the user for the year they were born in and store it as a variable called year:

year = input('What year were you born: ')

Step #2
Ask the user if their birthday has happened yet this year and store it as a variable called

bday:

bday = input('Has your birthday happened this year? (y/n): ')

Step #3
Now, convert the year from a string to an integer using the int() command and store it

as a variable called year_int:

year_int = int(year)

Page 267

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

Step #4
The year_int is now storing the integer value of the year the user was born. You can

use this value for math purposes. Subtract that year from the current year and store the

result as a variable called age:

age = 2018 – year_int

Step #5
The age value is currently the user's age at the end of this year. If their birthday has not

yet occurred, then they will be a year younger than the age value. Use an if condition to

see if the value of bday is equal to 'n', and if so, subtract 1 from the value of age.

Remember to end the if statement with a colon and to indent the code to be executed

by the if statement:

if bday == 'n':

 age = age - 1

If the user answered 'n' then 1 year will be subtracted from the value of age. You don't

need an else statement because if the user answered 'y' then age does not need to be

modified.

Step #6
The age value is currently an integer, so it cannot be easily printed with a string.

Convert age to its string equivalent using the str() command, and use a variable

called age_str to store the string value:

age_str = str(age)

Page 268

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

Step #7
Build a print statement that will bring everything together:

print('Your current age is ' + age_str)

Step #8
Verify the fully assembled program is free of errors:

year = input('What year were you born: ')

bday = input('Has your birthday happened this year (y/n): ')

year_int = int(year)

age = 2018 - year_int

if bday == 'n':

 age = age - 1

age_str = str(age)

print('Your current age is ' + age_str)

Step #9
Run your program a few times to make sure the age it's outputting is correct, and that

changing whether or not your birthday happened this year gives you the correct age.

Save the program if desired (optional).

Page 269

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

You will now write a program that will ask you to guess a number (hint: the number is 6).

If you guess too low, too high, or just right, the program will let you know.

Step #1
Ask the user to input a number between 1 and 10 and assign it to a variable called

guess:

guess = input('Pick a number between 1 and 10: ')

Step #2
Now that you have the user input stored as a string named guess, convert it to an

integer, so you can compare it to other numeric values, to determine if the guess is too

low, too high, or the correct number:

guess_int = int(guess)

This will take the string value of guess, convert it to an integer value, and store it back in

a variable called guess_int.

Page 270

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

Step #3
Compare the numeric value of guess_int to some different criteria. Use the first if

condition to check if the guess is too low:

if guess_int < 6:

 print('Too low, better luck next time!')

This will check to see if the number is less than 6. If so, it will print the message in the

print statement.

Step #4
Use an elif condition to check if the guess was greater than 6:

elif guess_int > 6:

 print('Too high, better luck next time!')

Step #5
Add the elif condition that will trigger if the user correctly guesses the number 6:

elif guess_int == 6:

 print('Great guess, you are correct!')

Page 271

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

Step #6
Add the final else condition that will display a message if the user's guess does not

trigger any of the previous statements:

else:

 print('Invalid input, please try again')

Step #7
There’s a problem with the code above. Can you spot it?

What if the user guesses 42? 42 is greater than 6 so the “Too high” print statement will

be triggered. The rules only allow for guesses between 1 and 10, so you need to limit

the conditions to be more specific. Fix the less than 6 condition first. You need to allow

for guesses between 1 and 5, so anything greater than 0 or anything less than 6. That

would look like this:

if guess_int > 0 and guess_int < 6:

This will work but you can combine the two conditions to make one shorter statement:

if 0 < guess_int < 6:

This condition will only evaluate as True for guesses between 0 and 5. We can apply

this same logic to the greater than 6 condition to limit it guesses that are greater than 6

but less than or equal to 10:

elif 6 < guess_int < = 10:

Now if a user guesses 42 it will no longer trigger the 'Too high' condition. That guess

will trigger the else statement and print “Invalid input, please try again”.

Page 272

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

Step #8
Verify the fully assembled program is free of errors:

guess = input('Pick a number between 1 and 10: ')

guess_int = int(guess)

if 0 < guess_int < 6:

 print('Too low, better luck next time!')

elif 6 < guess_int <= 10:

 print('Too high, better luck next time!')

elif guess_int == 6:

 print('Great guess, you are correct!')

else:

 print('Invalid input, please try again')

Step #9
Try running the program and make a bunch of different guesses to ensure you get the

expected output from each guess. Save the program if desired (optional).

Page 273

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

1. Can Python print strings and integers together in the same print statement?

2. Is the indentation optional for nested if statements?

3. What modifications would the program from Activity #1 need to give the user their

age in 20 years?

4. What modifications would the program from Activity #3 need to allow guesses from 1

to 100 and change the right answer to 42?

Answers Can be Found on the Next Page

Page 274

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

Answers

1. Can Python print strings and integers together in the same print statement?

ANSWER: No, strings and integers cannot be used together in the same print

statement. You can only have all strings or all integers in a print statement. Since

most print statements have letters or words included, it is generally necessary to

convert integers to strings so they can be included in the print statement.

2. Is the indentation optional for nested if statements?

ANSWER: No. Lack of indentation removes the conditional (nested) nature of the

statements. Without indentation, the statements will each evaluate individually

without relying on the conditions of the previous statements.

3. What modifications would the program from activity #1 need to give the user

their age in 20 years?

ANSWER: Yes, you can modify the code as follows (the change to the code is

highlighted for your convenience):

age = input('How old are you: ')

age_int = int(age)

age_int = age_int + 20

age_str = str(age_int)

print('Your age in twenty years will be ' + age_str)

Page 275

SAMPLE

Lesson A-15: Nested If Statements and String/Integer Conversion

4. What modifications would the program from Activity #3 need to allow guesses

from 1 to 100 and change the right answer to 42?

ANSWER: Yes, you can modify the code as follows (the change to the code is

highlighted for your convenience):

guess = input('Pick a number between 1 and 100: ')

guess_int = int(guess)

if 0 < guess_int < 42:

 print('Too low, better luck next time!')

elif 42 < guess_int <= 100:

 print('Too high, better luck next time!')

elif guess_int == 42:

 print('Great guess, you are correct!')

else:

 print('Invalid input, please try again')

Page 276

SAMPLE

Lesson A-18: Two Player Reaction Game

LESSON A-18
TWO PLAYER REACTION GAME

► Building a Circuit with a Resistor and LED (Lesson A-2)

► Jumper Wires (Lesson A-4)

► Using Switches (Lesson A-5)

► Program Flow, Strings, Variables, Print Commands, Order (Lesson A-11)

► Code Organization (Lesson A-12)

❑ 10K-Ohm Resistors x2

❑ Jumper Wires x3

❑ Pushbutton Switches x2

❑ Assembled Raspberry Pi setup from

Lesson A-9 including Raspberry Pi,

monitor, keyboard, and mouse

❑ 1K-Ohm Resistors x2

Lesson Overview

► Using the Time Module

► Trimming a Long Number

► Using While Loops

► Physical Inputs

► Electrical Configurations

► Random Module Command

Materials Needed

Concepts to Review

Page 321

SAMPLE

Lesson A-18: Two Player Reaction Game

LESSON A-18
TWO PLAYER REACTION GAME

In this lesson, you will continue to add to your new coding skills by working with

physical inputs, learning more ways to use the time and random modules, trimming

long numbers, and a new way to use the loop command. You will then use the skills

you’ve gained over the last 17 lessons to create a two-player game.

Inputs

In previous lessons you learned about programs that can take input from a user in the

form of answering questions and save those answers as variables in your program. In

this lesson, you will learn about a physical way programs can interact with users by

using pushbutton switches attached to inputs on the Raspberry Pi.

Physical inputs have three states they can operate in:

• Low – connected to ground

• High – connected to positive voltage supply; in the case of the Raspberry Pi this is

3.3-volts

• Floating – not connected to anything

High and low are the best options for an input, since those states can be very easily

identified by a program. A floating input should not typically be used because, just like

the name, the voltage level on the input can float all over the place, causing the input to

be read as high or low, unpredictably.

Page 322

SAMPLE

Lesson A-18: Two Player Reaction Game

Electrical Differences in Configurations

FLOATING: This condition is created when the input does not have

a pull-up or pull-down resistor to set its initial electrical state. This will

result in the input level “floating” up and down and can cause

unreliable input results so it shouldn’t generally be used. Best

practice is to use pull-up or pull-down resistors on inputs.

PULL DOWN RESISTOR: A large resistance value (like 10K-ohm)

is used to pull the input low (ground). The resistor when used in this

configuration is called a pull-down resistor. The value of this input is

expected to be low unless its pulled high by other components.

PULL UP RESISTOR: A large resistance value (like 1K-ohm) is

used to pull the input high (3.3-volts). The resistor when used in this

configuration is called a pull-up resistor. The value of this input is

expected to be high unless its pulled low by other components.

Page 323

SAMPLE

Lesson A-18: Two Player Reaction Game

Example Circuit

In the circuit for the game (Activity #1), you will use

pull down resistors on two inputs and switches to pull

those inputs high when you push the button. To the

right is the diagram for that circuit.

GPIO 20 and 21 are always connected to ground

using 10K-ohm resistors. Once a button is pressed,

current will flow from the 3.3-volt power source,

through the 1K-ohm resistor, through the switch, and

into the input pin. The 1K-ohm resistor is in place to

limit the amount of current allowed to flow into the

input, protecting your Raspberry Pi.

Please note, when it comes to GPIO inputs, high is True and low is False. So, if you

wanted to check if GPIO 20 is high you would use something like:

Or to check if GPIO 21 is low:

These types of input condition checks will come in handy when you start programming

the game.

if GPIO.input(20) == True:

 print('GPIO 20 is high')

if GPIO.input(21) == False:

 print('GPIO 21 is low')

Page 324

SAMPLE

Lesson A-18: Two Player Reaction Game

Random Module Command

You've already learned how to choose a random value from a list, but what if you don’t

want to use a separate list? You can do this by using the random.randint()

command. The randint portion of this command stands for random integer. You can

load the parentheses after this command with a range of values. For example:

random.randint(2,25) will choose a random number between 2 and 25

random.randint(50,100) will choose a random number between 50 and 100

You can use this in a program by setting a variable equal to this random value:

This will cause random.randint to choose a random integer between 1 and 5, and

save that value in a variable called delay.

delay = random.randint(1,5)

Page 325

SAMPLE

Lesson A-18: Two Player Reaction Game

Other Uses For the Time Module

You've already seen the time module used for making a program sleep for some

preselected amount of time. Another part of this module can tell you the exact number

of seconds that have happened since January 1, 1970. This point in time for computer

systems is called the epoch, which means a notable point in time. Currently, just over

1.5 billion seconds have elapsed since that point in time.

The amount of time since then isn't really important, but it's what you can do with this

precise time that is very useful. Running the command time.time() will give you the

exact time from 1/1/70 to this moment, down to the 10 millionth of a second:

This command will output something like 1518720190.4135857. A value like this can

be used to very accurately time how long something takes in your program. Let's see

how quickly python can print two separate print statements:

Running this program might print these values:

1518728621.4256926

1518728622.4260027

Subtracting the first value from the second will give you the amount of time that

elapsed between the two print statements. In this case, that value is 0.0003101, which

you can round to 0.0003 seconds. That's three ten thousandths of a second between

the first and second print statements. That should be fast enough for anything you

hope to do with Python running on the Raspberry Pi!

time.time()

import time

print(time.time())

print(time.time())

Page 326

SAMPLE

Lesson A-18: Two Player Reaction Game

If you wanted to time how long something took then you could use some code like this:

This program will import the time module and create a variable called time_start that

will equal the current time. The program will then pause for one second, then create a

variable called time_total that will equal the new current time minus the original start

time. The last line will print the value of time_total.

import time

time_start = time.time()

time.sleep(1)

time_total = time.time() – time_start

print(time_total)

Page 327

SAMPLE

Lesson A-18: Two Player Reaction Game

Trimming a Long Number

When working with large numbers like time.time() can output, it might be useful to

round the digits to something shorter that can more easily be read. Python has a built-

in formatting command for just this purpose:

In this example the numeric value 3 determines how many values will be left after the

decimal. In this case variable_to_round_off will be rounded to the third decimal

place and saved as the variable rounded_number.

Running '%.3f' on 1.4256926 will give you 1.426

Running '%.1f' on 1.4256926 will give you 1.4

Running '%.0f' on 1.4256926 will give you 1

This will make working with those huge time values much easier when you create the

game program.

rounded_number = '%.3f' % variable_to_round_off

Page 328

SAMPLE

Lesson A-18: Two Player Reaction Game

While Loops

A while loop can be used to make your program keep trying to do something, over and

over, until some condition is met. Look at the following code:

The value of loop is initially set to yes. The while loop will keep running until loop no

longer equals yes. Since there is no code to change the value of loop to anything but

yes, the while loop will execute forever.

loop = 'yes'

while loop == 'yes':

 print('Still looping')

WARNING!

Don’t try running the exact code above as it will

result in an endless loop, which means there is no

way to exit the loop. You can stop the program

manually in Thonny, but the program as coded here

will try to run forever.

Page 329

SAMPLE

Lesson A-18: Two Player Reaction Game

This is where something like a GPIO input pin can come in handy. You can tell the loop

to run over and over until a GPIO pin is high:

Every time the loop runs through, Still looping will be printed, and the if statement

will be evaluated. If GPIO 20 is low (False) during the check then nothing will change,

and the loop will continue running, over and over. If GPIO 20 is high (True) during one

of these condition checks, then the value of loop will be changed to 'no' and the while

loop will no longer run, moving on to any code in the program below the while loop.

loop = 'yes'

while loop == 'yes':

 print('Still looping')

 if GPIO.input(20) == True:

 loop = 'no'

Page 330

SAMPLE

Lesson A-18: Two Player Reaction Game

The activities for this final lesson for Level A are designed to combine many of the skills

you have acquired over the last 17 lessons to build a Python program and a circuit to

allow you and a friend to play a two-player game testing your reaction time.

In this activity you will modify the four LED circuit from Lesson A-17, Activity #3, to add

two switches so it can be used in a two-player game.

Page 331

SAMPLE

Lesson A-18: Two Player Reaction Game

Step #1
Power down your Raspberry Pi so you can modify the breadboard components.

Use the four LED circuit from Lesson 17, Activity #3 as a starting point.

Step #2
Connect a jumper wire from C9 to P2-9 to carry 3.3-volts from the Raspberry Pi over to

the P2 bus:

Page 332

SAMPLE

Lesson A-18: Two Player Reaction Game

Step #3
Now the positive rail P2 has 3.3-volts available. You now need to make that available to

the switches using some 1K-ohm resistors. Add two 1K-ohm resistors in the following

locations:

R1 between P2-47 and I47

R2 between P2-59 and I59.

Page 333

SAMPLE

Lesson A-18: Two Player Reaction Game

Step #4
The switches will need a path to ground using the 10K-ohm resistors. Add two 10K-ohm

resistors between the following points:

R3 between N2-49 and J49

R4 between N2-61 and J61

Step #5
Insert the switches. Only two of the four pins on each switch will be used. Connect two

pins on each switch across these locations:

Switch 1 - G47 and G49, Switch 2 – G59 and G61.

Page 334

SAMPLE

Lesson A-18: Two Player Reaction Game

Step #6
Each switch must be wired to an input. Connect switch 1 to GPIO 20 by adding a

jumper wire between H19 and I49:

Step #7
Connect switch 2 to GPIO 21 by adding a jumper wire between I20 and H61:

Page 335

SAMPLE

Lesson A-18: Two Player Reaction Game

Step #8
Double check all connections against the drawing above, and then power up the

Raspberry Pi.

Your circuit is now complete. In the next activity you will write a program that will use the

new switches.

Page 336

SAMPLE

Lesson A-18: Two Player Reaction Game

In this activity you will write a program that will illuminate an LED with a 1 to 5 second

delay, start a timer when the LED turns on, stop the timer when a player presses a

button, and display who pressed first and that player’s winning reaction time.

Step #1
In this program you will be talking to GPIO pins, using the time.sleep() command,

and the random.randint() command. Open Thonny and start the program by loading

the appropriate modules:

import RPi.GPIO as GPIO

import time

import random

Step #2
Setup your board numbering type and GPIO pin assignments.

GPIO.setmode(GPIO.BCM)

Page 337

SAMPLE

Lesson A-18: Two Player Reaction Game

Step #3
Configure the GPIO pin assignments. GPIO 26 will be the output for the LED and GPIO

20 and 21 will be used as switch inputs:

GPIO.setup(26, GPIO.OUT)

GPIO.setup(20, GPIO.IN)

GPIO.setup(21, GPIO.IN)

Step #4
You could turn on the start LED as soon as the program starts, but instead add a

random delay to randomize the number of seconds to delay before the LED turns on.

Assign a random integer from 1 to 5 to the variable called wait. Use time.sleep to

sleep for an amount of seconds equal to the (wait) value:

wait = random.randint(1,5)

time.sleep(wait)

The first statement will create a variable named wait and set it equal to the value of a

random integer between the starting point of 1 and stopping point of 5. Now that a 1, 2,

3, 4, or 5 has been randomly selected for the value of wait, you can call the

time.sleep command and specify a delay in seconds equal to the value of wait.

Page 338

SAMPLE

Lesson A-18: Two Player Reaction Game

Step #5
Now that the random wait has ended, it's time to turn on the start LED and start a timer.

You can turn on the LED by pushing GPIO 26 high. You can start the timer by making a

variable called timestart equal the current value of time.time():

GPIO.output(26,GPIO.HIGH)

timestart = time.time()

Step #6
Now that the start LED is on, and you have stored the current time, make a while loop to

check for a winner. Create a variable called winner and set it equal to ‘No’. This will

allow you to continue running the program until there is a winner:

winner = 'No'

Step #7
Create a while loop that will keep the while loop running until a button is pressed:

while winner == 'No':

The contents of this while statement will continue to execute as long as winner equals

‘No’. If winner equals anything other than ‘No’, the loop will be skipped, and the

remainder of the program will run.

Page 339

SAMPLE

Lesson A-18: Two Player Reaction Game

Step #8
Add some if statements to the while loop so you can modify the value of winner based

on which player pushed their button first. Player 1 will be assigned to GPIO 20, which is

connected to the switch closest to the wedge. Player 2 will be assigned to GPIO 21,

which is connected to the switch furthest from the wedge.

while winner == 'No':

 if GPIO.input(20) == True:

 winner = 'Player 1'

 if GPIO.input(21) == True:

 winner = 'Player 2'

Each time the while loop is executed the if statements will be checked for truth. If input

GPIO 20 is high (True) during the check then winner will be set to ‘Player 1’. If input

GPIO 21 is high (True) during the check then winner will be set to ‘Player 2’. If neither

input was high then the value of winner will not be modified, and the while loop will run

again.

Note:

Make sure the indentation is correct on the while loop or it will not loop properly.

Page 340

SAMPLE

Lesson A-18: Two Player Reaction Game

Step #9
Build the code that will run once a winner is determined. First, create a variable called

time_total that will be equal to the current time using the time.time() command

minus the starting time that was stored in timestart:

time_total = time.time() – timestart

This will take the current time in seconds and subtract the previously stored timestart
value in seconds. The result is the number of seconds between turning on the LED and

Player1 or Player2 pressing a button.

Step #10
The value of the number calculated in Step #9 is a very long number like

1.28389596939. You can get this into a more display-friendly format by removing all

digits past thousandths of a second:

time_total = “%.3f” % time_total

This will take the value of time_total, remove everything past 3 decimal places, and

save the result back to the time_total variable. So, 1.28389596939 will become

1.284. Now you have a reaction time that can be displayed nicely in a print statement.

Page 341

SAMPLE

Lesson A-18: Two Player Reaction Game

Step #11
Now that there is a winner and a reaction time, you can build some print statements that

let you know who won and what their reaction time was:

print(winner + ' wins!')

print('Your reaction time was ' + time_total + ' seconds')

The first statement will print the value of winner with “ wins!” added to the end of the

string. A single space has been added before the word “wins” in order to ensure correct

spacing between Player 1 or Player 2 and wins. Without the additional space you will

end up with Player 1wins! or Player 2wins! in your console output. The same behavior

can happen in the second statement, with “was “ and “ seconds”. There are extra

spaces to properly space the words.

Step #12
Now that you’ve printed the winning player and their reaction time, turn off the LED and

clean up all the GPIO pins:

GPIO.output(26, GPIO.LOW)

GPIO.cleanup()

This allows the program to exit gracefully.

Page 342

SAMPLE

Lesson A-18: Two Player Reaction Game

Step #13
Verify the fully assembled program is free of errors:

import RPi.GPIO as GPIO

import time

import random

GPIO.setmode(GPIO.BCM)

GPIO.setup(26, GPIO.OUT)

GPIO.setup(20, GPIO.IN)

GPIO.setup(21, GPIO.IN)

wait = random.randint(1,5)

time.sleep(wait)

GPIO.output(26,GPIO.HIGH)

timestart = time.time()

winner = 'No'

while winner == 'No':

 if GPIO.input(20) == True:

 winner = 'Player 1'

 if GPIO.input(21) == True:

 winner = 'Player 2'

time_total = time.time() - timestart

Page 343

SAMPLE

Lesson A-18: Two Player Reaction Game

time_total = “%.3f” % time_total

print(winner + ' wins!')

print('Your reaction time was ' + time_total + ' seconds')

GPIO.output(26, GPIO.LOW)

GPIO.cleanup()

Step #14
Find a friend or family member who will be most impressed with the skills you have

gained during Level A of this course and play the game with them. Remember to let

them win occasionally!

Save this program for future game playing or to modify in the future as your skills

develop further.

Page 344

SAMPLE

Lesson A-18: Two Player Reaction Game

1. Can you change Player 1 and Player 2 to other names?

2. How would you increase the random timer range from 1-5 seconds to 1-10 seconds?

3. Can you change which of the four LEDs is used to start the game?

Answer Can be Found on the Next Page

Page 345

SAMPLE

Lesson A-18: Two Player Reaction Game

Answers

1. Can you change Player 1 and Player 2 to other names?

ANSWER: Yes, you can modify the code as follows (the changes to the code have

been highlighted for your convenience):

while winner == 'No':

 if GPIO.input(20) == True:

 winner = 'Arthur 1'

 if GPIO.input(21) == True:

 winner = 'Marvin 2'

2. How would you increase the random timer range from 1-5 seconds to 1-10

seconds?

ANSWER: You can modify the code as follows (the changes to the code have been

highlighted for your convenience):

wait = random.randint(1,10)

time.sleep(wait)

Page 346

SAMPLE

Lesson A-18: Two Player Reaction Game

3. Can you change which of the four LEDs is used to start the game?

ANSWER: Yes. These statements throughout the program set up GPIO 26 as an

output, push GPIO 26 high, and then pull GPIO 26 back low:

GPIO.setup(26, GPIO.OUT)

GPIO.output(26, GPIO.HIGH)

GPIO.output(26, GPIO.LOW)

Your circuit also has LEDs attached to GPIO 6, GPIO 13, and GPIO 19. Changing

the pin number in all three of these lines to either 6,13, or 19 will cause it to use that

LED instead.

Page 347

SAMPLE

42 ELECTRONICS

INTRO TO ROBOTICS LEVEL A

Scope and Sequence

Lesson 1

Introduction to Components: Batteries and Breadboards

• What is Electricity?

o Static Electricity vs. Current Electricity

o Voltage, Current, and Resistance

• What is a Circuit?

o Short Circuits

o Open Circuits vs. Complete Circuits

• Circuit Components

o Batteries

▪ Anode vs. Cathode

o Breadboards

▪ Soldered Circuits vs. Breadboard Circuits

▪ Breadboard Connections and Power

• Activity: Powering Breadboard Connections

SAMPLE

Lesson 2

Introduction to Components: Resistors and LED

• Resistors

o How Resistors Work

o Using Resistors to Build Circuits

o Calculating Resistance Value

• Light Emitting Diode

o How LEDs Work

o LED Polarity

o Pairing Resistors and LEDs

• Calculating Forward Voltage

• Activities

o Activity #1: Build a Circuit to Illuminate an LED

o Activity #2: Build a Series Circuit

Lesson 3

Series vs. Parallel Circuits and Ohm’s Law

• Series vs. Parallel Circuits

o Limitations to Series Circuits

o Resistor Use in Parallel Circuits

o Understanding Voltage, Resistance, and Current in Serial vs. Parallel

Circuits

• Ohm’s Law

o Introduction to Ohm’s Law

o Mathematical Formula

o Ohm’s Law Calculation Example

• Activities: Build a Parallel Circuit

 SAMPLE

Lesson 4

Introduction to Components: Jumper Wires

• Jumper Wire

o Uses for Jumper Wire

o Size and Type of Jumper Wire

o Spacing Components to Avoid Short Circuits

• Activity: Build a Circuit Using Jumper Wires

Lesson 5

Introduction to Components: Switches

• Switches

o Common Uses for Switches

o Types of Switches

▪ Maintained vs. Momentary

▪ Normally Open vs. Normally Closed

o Poles and Throws

• Labeling Components

• Activities

o Activity #1: Controlling Two LEDs with One Switch

o Activity #2: Using Two Switches to Independently Control LEDs

SAMPLE

Lesson 6

Introduction to Components: Red-Blue-Green LED (RGB LED)

• RGB LEDs

o Common Anode vs. Common Cathode

o Proper Placement in Breadboard

• Activities

o Activity #1: Illuminate the Red Element of the RGB LED

o Activity #2: Add the Blue Element on a Switch

o Activity #3: Controlling Colors on a Switch

Lesson 7

Troubleshooting Circuits

• Introduction to Troubleshooting

• Troubleshooting Steps:

o Verify There is a Failure

o Check the Simplest or Most Likely Solution First and Retest

o Half-Splitting

o Repair the Problem and Retest

• Practical Applications

o Intermittent Problems

o Equipment Failure

• Activities

o Activity #1: Building and Troubleshooting a Circuit

o Activity #2: Additional Troubleshooting Practice

 SAMPLE

Lesson 8

Introduction to Reading Schematics

• Schematics

o Reading Schematics

o Common Schematic Symbols

▪ Wires

▪ Power

▪ Switches

▪ Resistors

▪ Diodes

▪ Capacitors

▪ Transistors

▪ Integrated Circuits

▪ Header

• Activities

o Activity #1: Building a Series Circuit Using a Schematic

o Activity #2: Building a Parallel Circuit Using a Schematic

o Activity #3: Working with a Schematic

SAMPLE

Lesson 9

Setting Up the Raspberry Pi

• Raspberry Pi Hardware

• Raspberry Pi Software

o Types of Software

▪ Raspian OS

▪ Python

▪ Nano

▪ Thonny

o Types of Interface

▪ GUI

▪ Terminal

• Optional Lesson: Understanding Sudo and Update Commands

o APT-GET Update

o APT-GET DIST-UPGRADE

• Activities

o Activity #1: Installing the Raspberry Pi in a Protective Case

o Activity #2: Connecting Peripherals to the Raspberry Pi

o Activity #3: Safely Powering the Raspberry Pi On and Off

o Activity #4: Connecting the Raspberry Pi to the Internet

o Activity #5: Updating the Raspberry Pi’s Software

Lesson 10

Introduction to Software: Terminal and Thonny

• Nano Overview

• Thonny Overview

• Error Checking Options

• Activities

o Activity #1: Creating a Python Program in Nano

o Activity #2: Creating a Python Program in Thonny

o Activity #3: Exploring Thonny’s Error Checking Features

SAMPLE

Lesson 11

Creating Python Programs

• Program Flow

• Strings

• Variables

o Spaces and Capitalization

o Integers

o Equations

• Print Command

o Printing a String

o Printing a Variable

• Order

• Activities

o Activity #1: Reading and Writing Basic Python Code

o Activity #2: Writing Basic Python Code

Lesson 12

Code Organization, User Input, and Merging Strings

• Keeping Code Organized

o Carriage Returns

o Comments

▪ Formatting Comments

▪ Commenting Out Code

• User Input

• Merging Strings (Concatenation)

• Activities

o Activity #1: Reading and Writing Python Code

o Activity #2: Writing a Simple Program in Python

 SAMPLE

Lesson 13

Math Functions, Lists, and Importing Modules

• Math Functions

• Lists

o Formatting Lists

o Index Values

• Importing and Using Modules

o Time Module

o Random Module

• Activities

o Activity #1: Exponential Math Calculations

o Activity #2: Importing the Random Module

o Activity #3: Random Dice Program

o Activity #4: Importing the Time Module

o Activity #5: Times Up! Game

Lesson 14

Introducing If/Else Statements

• Boolean Logic

o Coding Comparison Operators

o Connecting Multiple Logic Expressions

• Programming for Decisions

o If Statements

o Else Statements

o Using Multiple Statements Inside an If Statement

o Elif Statements

o Formatting Concerns

• Activities

o Activity #1: Using Boolean Logic

o Activity #2: Deciphering Code

o Activity #3: Writing Logical Code

SAMPLE

Lesson 15

Nested If Statements and String/Integer Conversion

• Nested If Statements

o Indentation

• Strings vs. Integers

o Converting a Value to an Integer

o Converting a Value to a String

• Activities

o Activity #1: Add Five Years to Your Age

o Activity #2: Age Calculator

o Activity #3: Guess A Number

Lesson 16

Controlling a Breadboard Circuit with the Raspberry Pi

• General Purpose Input Output (GPIO)

o Pin States: Low vs. High

o Outputs

• GPIO Header

o GPIO Pin Numbering

o GPIO Header Pin Assignments

• Python Commands and Process for Working with GPIO Pins

o Importing Module

o Specifying Pins

o Cleanup Operations

• Activities

o Activity #1: Preparing the Equipment for Connection

o Activity #2: Powering an LED Using the Raspberry Pi

 SAMPLE

Lesson 17

Loops

• Introduction to Loops

o Coding Loops

• Activities

o Activity #1: Build a 4 LED Circuit

o Activity #2: Create a Program to Test Circuit Functionality

o Activity #3: Using Loops to Control LEDs

Lesson 18

Final Project: Two Player Reaction Game

• Inputs

o Electrical Differences in Configurations

• Another Random Module Command

• Other Uses for the Time Module

• Trimming a Long Number

• While Loops

• Activities

o Activity #1: Add Switches to the Circuit

o Activity #2: Coding the Two Player Game

SAMPLE

	Level A Table of Contents
	Lesson A-3: Series vs. Parallel Circuits and Ohm’s Law
	A-3 Lesson
	A-3 Activities
	A-3 Questions

	Lesson A-15: Nested If Statements and String/Integer Conversion
	A-15 Lesson
	A-15 Activities
	A-15 Questions

	Lesson A-18: Two Player Reaction Game
	A-18 Lesson
	A-18 Activities
	A-18 Questions

	Level A Scope and Sequence

