

In this activity you will modify the program from the last activity to include PWM control
of the enable lines on the motor drive IC. This will enable independent speed control of
the left and right motors. This program modification will be quick and can be done on
battery power.

Step #1
If not already running from the last activity, power up the robot on battery power and
connect to the onboard VNC server using another device on your network.

Once at the Desktop, open the folder named robot and double-click on the file named
motor_fwd_rev.py to open the file in Thonny.

Save a new copy of this program in Thonny by selecting File, and then Save As from
the upper-left menu. If needed, double-click on the robot folder in the displayed list of
files to save your file in the same location as the original, which is inside the folder
named /home/pi/Desktop/robot. Type motor_pwm.py in for the file name and click
on the OK button in the lower-right of the Thonny window.

You will now be working in a new copy of the file so the original can be used again later,
if needed.

© 2021 42 Development LLC. All Rights Reserved 1

Step #2
The first modification that will be made to this program will be to add variables that
contain PWM values that will be used for the right and left motors. We will use the
variable names r_speed and l_speed to store values of 99 for both motors as a starting
point. Add these variables and their values to the list of variables at the beginning of the
program:

motors = [13,19,26,12,23,24]
r_enable = 12
r_for = 24
r_rev = 23
r_speed = 99
l_enable = 13
l_for = 19
l_rev = 26
l_speed = 99

© 2021 42 Development LLC. All Rights Reserved 2

Step #3
The next modification will be to configure the PWM signals that will be used to drive the
l_enable and r_enable pins. We will use the names l_pwm and r_pwm for the left and
right PWM signals and we use 1000Hz for the frequency. Add the highlighted code
below to the program just before the drive_motor function:

GPIO.setmode(GPIO.BCM)
GPIO.setup(motors, GPIO.OUT)
GPIO.output(motors, GPIO.LOW)

l_pwm = GPIO.PWM(l_enable, 1000)
l_pwm.start(l_speed)
r_pwm = GPIO.PWM(r_enable, 1000)
r_pwm.start(r_speed)

def drive_motor(pin1, pin2, state):
 GPIO.output(pin1, state)
 GPIO.output(pin2, state)

This will configure and start the PWM signals on the left and right enable pins using the
l_speed and r_speed duty cycle values that were specified in earlier in the program.

Step #4
The goal of this test is to see how straight the robot is driving, which may be a little
difficult if the robot only drives for one second. Change the time.sleep value in the
drive_motor function from 1 to 2 so you will be able to get a better view of how straight
the robot is driving:

def drive_motor(pin1, pin2, state):
 GPIO.output(pin1, state)
 GPIO.output(pin2, state)
 time.sleep(2)

© 2021 42 Development LLC. All Rights Reserved 3

Step #5
The program is now ready to drive the motors using PWM speed control values of 99 for
both the left and right motors. In a perfect world, these equal values would cause the
robot to drive perfectly straight, but as you learned in this lesson, many factors are
working against these being the best values.

Ensure the area around the robot is clear of any obstacles and safe for driving. Keep in
mind that the robot will be driving twice as far as the first test since we doubled the
time.sleep value in the drive_motor function.

Run the program and monitor the robot’s accuracy when driving forward and then in
reverse. Here are the ways to handle adjustments as needed:

• The robot is driving straight – No adjustment is needed, proceed to the next step.
• The robot is turning slightly to the left – This means the right motor is driving too

quickly. Substitute a slightly lower number for the value of r_speed and run the
test again. Keep adjusting this value until the robot is driving straight.

• The robot is turning slightly to the right – This means the left motor is driving too
quickly. Substitute a slightly lower number for the value of l_speed and run the
test again. Keep adjusting this value until the robot is driving straight.

© 2021 42 Development LLC. All Rights Reserved 4

Step #6
Now that the robot is driving straight using your PWM values, make note of these values
as they will be useful for future programs that you will create that use PWM speed
control of the left and right motors on your robot.

Since the PWM speed control test and calibration is now complete, power off the
Raspberry Pi. Once the SD card activity LED has stopped flashing, disconnect the
battery pack from the Voltage Regulator Module to fully remove power from the robot.

© 2021 42 Development LLC. All Rights Reserved 5

