

Pan-Tilt HAT User Manual

OVERVIEW

This is a 2-DOF pan-tilt kit designed for Raspberry Pi. With onboard PCA9685 PWM

chip and TSL2581 ambient light sensor, it allows the Pi to control camera movement

and sense light intensity through I2C interface.

SPECIFICATION

Operating voltage:	3.3V/5V
PWM driver:	PCA9685
Working voltage:	3.3V
Interface:	I2C
Dimension:	56.6X65(mm)

CONTENT

Overview	.1
Specification	.1
Hardware	.3
Controller	.3
Communication protocol	.3
I2C Write data	.3
I2C read data	.4
I2C adress	.4
How to use	.5
Download examples	.5
Examples	.6
Download examples to Raspberry Pi	.6
Install libraries	.6
Assembly	.8
Servo and Light sensor1	0
Camera1	0
Web_Control1	2
Expected result1	6
FAQ1	7

HARDWARE

CONTROLLER

The PWN driver is PCA9685, an I2C-bus controlled 26-channel LED controller, 12-bit resolution PWM output. Pan-Tilt HAT integrate TSL2581 on board. TSL2581 is a light sensor, can be used to detect light and work with camera. TSL2581 use I2C interface as well.

COMMUNICATION PROTOCOL

I2C-bus has one data line(SDA) and one clock line(SCL). When communicating, three kinds of signals are product: Start signal, Stop signal and Answer signal.

Start signal: SCL is High, SDA changes from High to Low, start to transmit data
Stop signal: SCL is High, SDA changes from Low to High, stop transmitting
Answer signal: The receiver will answer a Low plus to sender after receiving 8-Bit data as ACK.

When working, Raspberry Pi (hereafter named as Master) will first send a Start signal, then send a byte to TSL2581 (hereafter named as Slaver), whose first 7bits are address of Slaver and 1 bit write bit. Slave response with Answer signal every time it receives any data. Master send command register address to Slaver, then data of command register. Stop signals is sent to slave to stop communicating.

I2C READ DATA

When working, Master will first send a Start signal, then send a byte to Slaver, whose first 7bits are address of Slaver and 1 bit write bit. Slave response with Answer signal every time it receives any data. Master send command register address to Slave. After that, Mater will send a Start signal again, and then send a byte (7bits address and 1bit read bit) to Slaver. Slaver response and send data of the register to Master, master answer as well. Stop signals will be sent to stop communicating.

I2C ADRESS

I2C address of PCA9685:

I2C address of TSL2581:

Address SEL Terminal Level	Slave Address	SMB Alert Address
GND	0101001	0001100
Float	0111001	0001100
VDD	1001001	0001100

TSL2581 Datasheet Page 13

Note: The default I2C address pins are set as A5=A4=A3=A2=A1=0, address is 0x40.

I2C address pins are set as Float and its I2C address is 0x39 by default. If you use the

module with other development board, please add R/W bit to Low bit

HOW TO USE

This part shows you how to use the module based on demo codes provided on wiki

DOWNLOAD EXAMPLES

Search with key word "Pan-Tilt HAT" on Waveshare Wiki, open the wiki page and

download examples:

Re	sources			
• L	Jser Manual			
• L	Jemo code			
• S	chematic			

Uncompressing the 7z, you can get files as below:

Light Sensor	2019/1/8 10:57	文件夹
Servo Driver	2019/1/8 10:57	文件夹
test	2019/1/8 10:57	文件夹
web_Python	2019/1/8 10:40	文件夹

Servo Driver: Examples which test servos (BCM2835, WiringPi and Python)

Light Sensor: Ambient light sensing examples (BCM2835, WiringPi and Python)

test: test codes, used before assembling

web_Python: Remote control example

EXAMPLES

DOWNLOAD EXAMPLES TO RASPBERRY PI

You can download the demo code from wiki, uncompressing and copy to Raspberry

Pi, or directly clone it from github:

Open terminal of Raspberry Pi and download it:

git clone https://github.com/waveshare/Pan-Tilt-HAT

Change it execute permission and enter the folder:

sudo chmod 777 -R Pan-Tilt_HAT

cd Pan-Tilt HAT

INSTALL LIBRARIES

To run the examples, you need to install related libraries first (wiringPi, bcm2835 and

python), otherwise, examples cannot work properly.

BCM2835 libraries:

http://www.airspayce.com/mikem/bcm2835/

Download the library from bcm2835 libraries and install:

wget http://www.airspayce.com/mikem/bcm2835/bcm2835-1.58.tar.gz

sudo tar zxvf bcm2835-1.xx.tar.gz

cd bcm2835-1.xx

sudo ./configure

make

sudo make check

sudo make install

Note: The xx is the version number you download, for example, if the version you

download is bcm2835-1.52. then the command you should execute is sudo tar zxvf

bcm2835-1.52.tar.gz

wiringPi libraries:

sudo apt-get install git

sudo git clone git://git.drogon.net/wiringPi

cd wiringPi

sudo ./build

Python libraries:

sudo apt-get install python-pip

sudo pip install RPi.GPIO

sudo pip install spidev

sudo apt-get install python-imaging

sudo apt-get install python-smbus

Enable I2C interface:

sudo raspi-config

	Basherry	Pi Software Configuration Tool (raspi-config)
	Haspberry	(i solenare configuración lose (laspi config)
-	1 Change User Password 2 Network Options 3 Boot Options 4 Localisation Options 5 Interfacing Options 6 Overclock 7 Advanced Options 8 Update 9 About raspi-config	Change password for the current user Configure network settings Configure options for start-up Set up language and regional settings to match your location Configure connections to peripherals Configure overclocking for your Pi Configure advanced settings Update this tool to the latest version Information about this configuration tool
	<se<sup>1</se<sup>	lect> <finish></finish>

Ra	spherry Pi Software Configuration Tool (raspi-config)
1	speers, is contract contract (toppe contract,
Pl Camera	Enable/Disable connection to the Baspberry Pi Camera
P2 SSH	Enable/Disable remote command line access to your Pi using SSH
P3 VNC	Enable/Disable graphical remote access to your Pilusing RealVNC
10 110	Endbley bisuble graphical randle access to your ri asing heating
P4 SPI	Enable/Disable automatic loading of SPI kernel module
	Enable/Disable automatic leading of T2C kernel module
F5 120	Enable/Disable automatic toading of ize kernet module
P6 Serial	Enable/Disable shell and kernel messages on the serial connection
DZ 1 Mino	Fashle (Disshle and wine interface
P/ 1-Wire	Enable/Disable one-wire interface
P8 Remote GPT() Enable/Disable remote access to GPIO pins
10 1000000110	

ASSEMBLY

Note: Before you assemble servos to Pan-Tilt HAT, please test the servo with test

codes to avoid of servo stuck when rotate

1. Connect servos to Pan-Tilt HAT

You should connect the Pan servo (close to HAT board) to S1, and connect Tilt

servo (close to camera) to S0. Please adjust the angle of the servo when assembling by using the test codes, avoiding of damaging.

2. test code

Light Sensor	2019/1/8 10:57	文件夹
Servo Driver	2019/1/8 10:57	文件夹
test	2019/1/8 10:57	文件夹
web_Python	2019/1/8 10:40	文件夹

3. Run the test code

sudo make		
sudo ./main		

4. After running, both servos will rotate to 0-degree place (The starting place). Then

power off and assemble the servo as assemble guide. (Do not rotate the servo

when assembling)

Assemble guide: https://www.waveshare.com/img/devkit/accBoard/Pan-Tilt-

HAT/Pan-Tilt-HAT-assemble.jpg

A: Tilt servo

B: Pan servo

The starting status of servos are as image above, and the direction of arrow are the

rotate direction of servo.

SERVO AND LIGHT SENSOR

To run the Servo Driver and Light Sensor examples. Please enter the folder and using

following commands to execute programs:

BCM2835 examples:

cd bcm2835

sudo ./main

wiringPi examples:

cd wiringpi

sudo ./main

Python examples:

sudo python main.py

Note: If it prompt that files is not exist when running bcm2835 or wiringpi codes,

please first execute command make and try again.

CAMERA

To use camera, you need to fist do settings

- 1. Connect Camera to Raspberry Pi
- 2. Enable Camera

sudo raspi-config

n-Tilt HAT User Manual			
Raspb	erry Pi Software Configuratio	on Tool (raspi-config)	
1 Change User Passw 2 Network Options 3 Boot Options 4 Localisation Opti 5 Interfacing Optic	ord Change password for the o Configure network setting Configure options for sta ons Set up language and regions of Configure connections to	current user gs art-up <u>peripherals</u>	cation
7 Advanced Options 8 Update 9 About raspi-confi	Configure advanced setti Configure advanced setti Update this tool to the l g Information about this co	of your F1 Igs Latest version onfiguration tool	
	<select></select>	<finish></finish>	
P1 Camera Enable P2 SSH Enable P3 VNC Enable P4 SPI Enable P5 I2C Enable P6 Serial Enable P7 1-Wire Enable P8 Remote GPIO Enable	/Disable connection to the /Disable remote command lin /Disable graphical remote a /Disable automatic loading /Disable automatic loading /Disable shell and kernel m /Disable one-wire interface /Disable remote access to (Raspberry Pi Camera Te access to your Pi using G access to your Pi using Real of SPI kernel module of I2C kernel module nessages on the serial conne a GPIO pins	GH VNC ction
<se1< td=""><td>ect></td><td><back></back></td><td></td></se1<>	ect>	<back></back>	
Would you	like the camera int	erface to be enabled	!?

3. Reboot Raspberry Pi

sudo reboot

4. Test camera

You can test the camera with command: raspistill -o image.jpg

About details about the raspistill command, you can type raspistill -hell on

Terminal

Note that you should connect a display to Raspberry Pi for previewing camera.

5. Video recording

To record video via camera, you can use command: raspivid -o video.h264 -t 1000

For details about camera command, you can visit Raspberry Pi website.

WEB_CONTROL

- 1. Enable Camera by following the last chapter
- 2. Modify the modules file:

sudo nano /etc/modules

add statements bcm2835-v4l2 to end of file (Note that 4l2 is the lowercase "I"

instead of number 1)

reboot Raspberry Pi then you find a video0 is appear in /dev folder

pi@raspberrypi:~	\$ ls /dev/							
autofs	initctl	mqueue	ram5	tty11	tty29	tty46	tty63	vcs6
block	input	net	ram6	tty12	tty3	tty47	tty7	vcs7
btrfs-control	kmsg	network_latency	ram7	tty13	tty30	tty48	tty8	vcsa
bus	log	network_throughput	ram8	tty14	tty31	tty49	tty9	vcsal
cachefiles	loopθ	null	ram9	tty15	tty32	tty5	ttyAMA0	vcsa2
char	loopl	ppp	random	tty16	tty33	tty50	ttyprintk	vcsa3
console	loop2	ptmx	raw	tty17	tty34	tty51	ttySθ	vcsa4
cpu_dma_latency	loop3	pts	rfkill	tty18	tty35	tty52	uhid	vcsa5
cuse	loop4	ram0	serial0	tty19	tty36	tty53	uinput	vcsa6
disk	loop5	raml	serial1	tty2	tty37	tty54	urandom	vcsa7
fb0	loop6	ram10	shm	tty20	tty38	tty55	vchiq	VCSM
fd	loop7	ramll	snd	tty21	tty39	tty56	vcio	vhci
full	loop-control	ram12	stderr	tty22	tty4	tty57	vc-mem	video0
fuse	mapper	ram13	stdin	tty23	tty40	tty58	vcs	watchdog
gpiochipθ	mem	ram14	stdout	tty24	tty41	tty59	vcsl	watchdog0
gpiochipl	memory_bandwidth	ram15	tty	tty25	tty42	tty6	vcs2	zero
gpiochip2	mmcblk0	ram2	ttyθ	tty26	tty43	tty60	vcs3	
gpiomem	mmcblk0p1	ram3	ttyl	tty27	tty44	tty61	vcs4	
hwrng	mmcblk0p2	ram4	tty10	tty28	tty45	tty62	vcs5	
pi@raspberrypi:~	\$							

3. Install libraries

sudo apt-get install libv4l-dev libjpeg8-dev

sudo apt-get install subversion

4. Get information

Enter web Python folder: cd Pan Tile-HAT/web Python

```
pi@raspberrypi:~ $ cd Pan-Tilt-HAT/web_Python/
pi@raspberrypi:~/Pan-Tilt-HAT/web Python $
```

Type pwd to get the current path information:

```
pi@raspberrypi:~/Pan-Tilt-HAT/web_Python $ pwd
/home/pi/Pan-Tilt-HAT/web_Python
pi@raspberrypi:~/Pan-Tilt-HAT/web_Python $
```

Type ifconfig command to get the IP information

```
Pi@raspberrypi: ~/Pan-Tilt-HAT/web Python
                                                                       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
lo: flags=73<UP,LOOPBACK,RUNNING> mtu 65536
       inet 127.0.0.1 netmask 255.0.0.0
       inet6 ::1 prefixlen 128 scopeid 0x10<host>
       loop txqueuelen 1000 (Local Loopback)
       RX packets 0 bytes 0 (0.0 B)
       RX errors 0 dropped 0 overruns 0 frame 0
       TX packets 0 bytes 0 (0.0 B)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
wlan0: flags=<u>4163<UP.BROADCA</u>ST,RUNNING,MULTICAST> mtu 1500
       inet 192.168.1.212 netmask 255.255.255.0 broadcast 192.168.1.255
       inet6 fe80::5507:5edb:bd35:2824 prefixlen 64 scopeid 0x20<link>
       ether b8:27:eb:ab:93:05 txqueuelen 1000 (Ethernet)
       RX packets 6209 bytes 956955 (934.5 KiB)
       RX errors 0 dropped 26 overruns 0 frame 0
       TX packets 119 bytes 21634 (21.1 KiB)
       TX errors 0 dropped 0 overruns 0 carrier 0 collisions 0
```

Note: I connect the Raspberry Pi to WIFI, so the IP address is wlan0' s, if you

directly connect network jack with cable, the IP address should be eth0' s

5. Modify main.py file: sudo nano main.py

Find os>chdir(''), change it to the path information you get above and add

/mjpg to the end. for example:

Change the host to the IP address of your Raspberry Pi, for example:

🖉 pi@raspberrypi: ~/Pan-Tilt-HAT/web_Python	_		\times
GNU nano 2.7.4 File: main.py			^
<pre>sys.path.append(o_path) os.chdir('/home/pi/Pan-Tilt-HAT/web_Python/mjpg') from mjpg import camera</pre>			
pwm = PCA9685()			
pwm.setPWMFreq(50)			
<pre>pwm.setRotationAngle(0, 0)</pre>			
<pre>pwm.setRotationAngle(1, 0)</pre>			
bost = '192.168.1.212'			
port = 8000			
addr = (host,port)			
class Servers(SRH):			
<pre>def handle(self):</pre>			
global HStep, VStep, VPulse, HPulse			
<pre>print 'got connection from ',self.client address</pre>			
<pre>self.wfile.write('connection %s:%s at %s succeed!' % (h</pre>	lost, port	,ctime	()\$
VPulse = 0			
[Search Wrapped]			
^G Get Help [∧] O Write Out [∧] W Where Is [∧] K Cut Text [∧] J Justify	^C Cur	Pos	
*X Exit *R Read File * Replace *U Uncut Text*T To Linte	r ^ Go	To Lin	e v

save and exit

6. Run the example: sudo python mian.py:

pi@raspberrypi:~/RaspberryPi/web_Python \$ sudo python main.;
server is running
MJPG Streamer Version: svn rev: Unversioned directory
i: Using V4L2 device.: /dev/video0
i: Desired Resolution: 640 x 480
i: Frames Per Second.: 10
i: Format YUV
i: JPEG Quality: 80
Adding control for Pan (relative)
UVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device
Adding control for Tilt (relative)
UVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device
Adding control for Pan Reset
UVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device
Adding control for Tilt Reset
UVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device
Adding control for Pan/tilt Reset
UVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device
Adding control for Focus (absolute)
UVCIOC_CTRL_ADD - Error: Inappropriate ioctl for device
mapping control for Pan (relative)
UVCIOC_CTRL_MAP - Error: Inappropriate loctl for device
mapping control for Tilt (relative)
UVCLOC_CIRL_MAP - Error: Inappropriate loctl for device
mapping control for Pan Reset
UVCIUC_CIRL_MAP - Error: Inappropriate loctl for device
mapping control for filt Reset
UVCIOC_CIRL_MAP - Error: inappropriate loctl for device
mapping control for Pan/Litt Reset
UVCIOC_CIRL_MAP - Error: inappropriate locit for device
Mapping control for Focus (absolute)
monoping control for LED1 Mode
INCTOC CTPL MAR - Error, Inconcripto joct] for device
monoping control for LED1 Frequency
INCTOC CTPL MAP Error, Inconsiste ject] for device
manning control for Disable video processing
INCTOC CTRL MAR - Error, Inannronriate inctl for device
manning control for Raw hits per nivel
INCTOC CTRL MAP - Error: Inannronriate joctl for device
o: www.folder.nath : /www/
o: HTTP TCP nort : 8080
0: Username:password.: disabled
o: commands: enabled

7. Download the AlpahBot.exe software from Waveshare wiki and open it. Type IP

address of your Raspberry Pi to it and Click Video Connect and Cmd Connect to

enable connection

Note: The software only support Windows PC and some of the functions are

unavailable for Pan-Tilt HAT.

8. To cancel the program, you need to disconnect Cmd and Camera first by pressing

Video Connet and Cmd Connet buttons. The Ctrl+C to stop program.

EXPECTED RESULT

Servo Driver:

The servos will rotate the Pan servo and Tilt servo

Light Sensor:

Print device ID (it is not the I2C address) then output light intensity value

FAQ

1. Why the ID printed is 0xf0 or 0x00, and intensity data is 0 after running light

sensor code?

A: Check I2C address first by command: sudo i2cdetect -y 1:

<pre>pi@raspberrypi:~ \$ sudo i2cdetect -y 1</pre>																	
	Θ	1	2	3	4	5	6	7	8	9	a	b	С	d	е	f	
00:																	
10:																	
20:																	
30:										39							
40:	40																
50:																	
60:																	
70:																	

If the I2C addresses are incorrect in your Raspberry Pi, please check if you have

modified I2C address, and check if you have enabled I2C interface. The default I2C

device address of Light sensor is 0x39 and 0x40 is PCA9685' s.

2. Why I cannot run python or bcm2835 after running wiringpi example?

If you can run wiringpi example successfully but no the bcm2835 or python codes.

Please restart Raspberry Pi and test the two examples again.