
TruAbutment CEREC® Guide 2 Kit v2

TruAbutment CEREC® Guide 2 Kit v2

Product Code: TRUGKITCG2

Components

Reamer

diameter size for (S) 4.5 and (M) 5.3 guide hole after the guide is milled out.

*Recommended drilling speed when using the reamer is 600~800 rpm.

Tissue Punch

Drill Extension

Used to increase the length of drill shafts to access areas with limited interdental space.

Point Drill

Used to initially drill a hole and optimize stability and path for the next set of drills.

7mm drilling path: recommended drilling speed when using point drill is 1200 rpm.

Taper Drill

path on immediate placement sites with side cutting tapered drill.

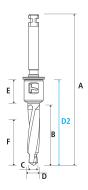
7mm Drilling path: recommended drilling speed when using taper drill is 1200 rpm.

Twist Drill

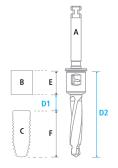
to the proper size and length of the path needed. There are **4 different lengths**: Short(**18mm**), Medium(**20mm**), Long(**22mm**), Extra Long(**25mm**)

Sleeve

will fit the 5.3 (M) size hole on the CG2 Guide making the internal diameter 4.5 (S) size.



Sleeve Fitting Jig


Twist Drill Specifications

- Α Height
- В Maximum Drilling Height Diameter
- C,D
 - Drilling Guide Height Ε
 - F Implant Height
- D1 Tissue Height
- Drill Height

Size / A	7	Short / 33				Medium / 35				Long / 37					Extra Long / 40		
D2		18				20				22					25		
В		11				13				15					18		
C	Ø2.15	Ø2.15	Ø2.75	Ø3.45	Ø3.95	Ø2.15	Ø2.15	Ø2.75	Ø3.45	Ø3.95	Ø2.15	Ø2.15	Ø2.75	Ø3.45	Ø3.95	Ø2.15	Ø2.15
D	Ø2.2	Ø2.8	Ø3.5	Ø4.0	Ø4.45	Ø2.2	Ø2.8	Ø3.5	Ø4.0	Ø4.45	Ø2.2	Ø2.8	Ø3.5	Ø4.0	Ø4.45	Ø2.2	Ø2.8
lmage																	
Code	CG2 TD22S	CG2 TD28S	CG2 TD35S	CG2 TD40S	CG2 TD45S	CG2 TD22M	CG2 TD28M	CG2 TD35M	CG2 TD40M	CG2 TD45M	CG2 TD22L	CG2 TD28L	CG2 TD35L	CG2 TD40L	CG2 TD45L	CG2 TD22E	CG2 TD28E

Twist Drill Selection

- Drill
- **Drilling Template**
- Implant
- D1 Tissue Height
- D2 Drill Length
- Drilling Template Height
- Implant Length

Size	D2	F Implant Length	E Drilling Template Height	D1
	18	7	5	6
Short	18	8	5	5
	18	8.5	5	4.5
	20	10	5	5
Medium	20	11.5	5	3,5
	20	12	5	3
	22	13	5	4
Long	22	14	5	3
	22	15	5	2
Extra Long	25	7 ~ 15	5	13-5

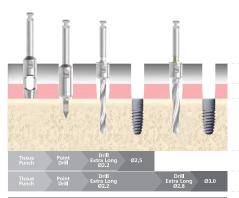
Enter D2 Value (18, 20, 22 or 25) as needed for your final drill from CG2 kit (D2 = Drill length). Your D1 value will always be your D2 minus implant length (F), minus sleeve height (E).

Drill Sequence Examples

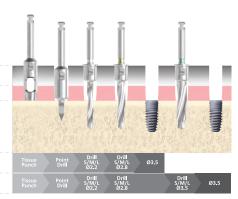
Listed are examples of different drill sequences you can use for different implant diameters. The tip of the drills are designed to have the diameter of the previously used drill for initial stability.

Drilling Template Height
Tissue Height

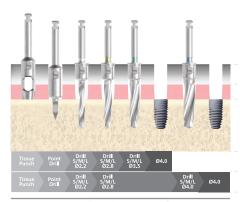
Bone

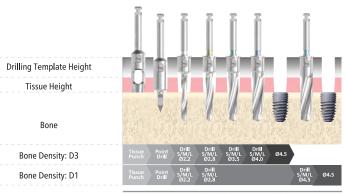

Bone Density: D3
Bone Density: D1

Drilling Template Height
Tissue Height

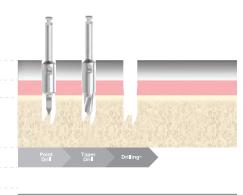

Bone

Bone Density: D3


Bone Density: D1


Tru Guide Kit drilling protocol for Ø2.5 or Ø3.0 implant.

Tru Guide Kit drilling protocol for Ø3.5 implant.


Tru Guide Kit drilling protocol for Ø4.0 implant

Tru Guide Kit drilling protocol for Ø4.5 implant

Tru Guide Kit drilling protocol for Ø5.0 implant

Tru Guide Kit drilling protocol for Extraction Socket

Instructions on Creating CEREC® Guide 2

CEREC

Optical Impression

- a. Scan the situation in the mouth either intraorally or using a model.

 The following applies to all areas, which are intended to later serve as a support for the CEREC® Guide 2. The surface scan is also used for the overlay of the x-ray volume.
- b. Design a restoration at the planned implant position. Mark the emergence profile of the tooth on the gingiva in manual entry mode.
- c. Export the data record using in *.SSI format.

Sirona CBCT

Sirona CBCT

A CBCT scan can be performed before or after the optical impression.

Make sure that there are no metal artifacts in the scan, as these may hinder the overlay of optical data. Do not scan the patient at the final bite position, but rather with a slightly opened jaw.

Remove all removable metal parts in the opposing jaw (e.g. prosthetics).

If possible, record 3/4 of the arch of the jaw. This increases the likeliness that teeth free from artifacts can be used for registration.

Implant Planning

To produce a CEREC® Guide 2, the import of the previously created *.SSI data record in GALILEOS Implant is necessary.

The optical surface scan is superimposed over the X-ray volume.

Select CEREC® Guide 2 as the sleeve system. You have three sleeves available to choose from, S, M or L respectively.

The specification of a depth stop is oriented on the length of the drill used. The planned position is reached when the mechanical stop of the drill reaches the guide or the sleeve.

In the GALILEOS Implant software, the depth stop is entered using the D2 value. The D2 value is defined as the distance from the top of the drilling template to the apical top of the implant.

D2 = drill length

The statement of the D1 value is to be ignored.

After entering the D2 value, the sleeve is visualized above the implant at the relevant height.

- Ensure that the sleeve does not collide with adjacent teeth and the drill itself can be inserted into the guide without obstruction.
- If the representation of the underside of the sleeve cuts the scan shown as the yellow line, this indicates that the position of the sleeve is at least partially sub-gingival. Multiple implants and sleeve positions are planned in the same way. It is possible to export this as a file. Export the plan "processing by third-party providers by way of optical impressions" as a CMD.DXD file or a CMG.DXD file to import into CEREC*/InLab.

Design and Development of the CEREC® Guide 2

By selecting "Import", you can load the *CMG.DXD file.

ADMINISTRATION Phase

If the plan contains multiple implants, these will be treated as separate restorations. Select the machine type for development. This determines the possibilities for further processing.

MODEL Phase

All areas which are not intended to serve as a support for the CEREC® Guide 2 should be cut. This includes, for example, larger areas of gingiva outside the planned implant position. Parts of the residual teeth may also be discarded if they are not required for support. Note that a longer template is easier to hold in position with one finger and ensures secure support.

DESIGN Phase

The position and shape of the sleeve cannot be changed using general design tools. If a sleeve is shown in red, parts of it are sub-gingival. Determine whether these areas are to be cut away (e.g. to enable the unhindered placement on a model) or are to be left as they are. The color of the sleeve then turns green. Optionally, you can create side access to introduce the drill from the side. After calculating the template element and if necessary orienting it in the block, you have the option of creating viewing panels, which you can use to check the fitting of the template even during the surgical intervention. You can then still adapt the design of the template by cutting away any problematic areas.

MILL Phase

Where necessary, ensure that you have activated the option "Milling" in configuration. So that the milling process runs without interruption, ensure where necessary that milling tools with a sufficient service life are used, the water filter has been cleaned and there is sufficient water in the tank. After milling, ensure that no shavings enter into the tank during the cleaning process, as these can quickly clog the water filter.

