

DigiTig 200AC/DC Inverter Pulse Welder

 \bigcirc

Ô

Read carefully and understand all **ASSEMBLY AND OPERATION INSTRUCTIONS** before operating. Failure to follow the safety rules and other basic safety precautions may result in serious personal injury.

۲

Please read this manual carefully before using

WARRANTY

EFFECTIVE JULY 1, 2015

LIMITED WARRANTY

This warranty applies to the original purchaser and is subject to the terms and conditions listed below. This Limited Warranty is for new equipment sold after the above date, providing coverage for defects in material and workmanship at the time it is shipped from the factory.

Limited to the warranty periods below, Crossfire Equipment or an approved Crossfire Repair Centre will repair or replace the item under warranty that fails due todefects in material and workmanship. Crossfire must be notified within 30 days of the failure, so as to provide instructions on how to proceed with the repair of you welder and warranty claim processing. Warranty period begins at the time the welder is purchased from Crossfire. <u>Keep your receipt as proof of purchase.</u>

Engine Warranty

The engine on this unit is warranted separately by the engine manufacturer. Please see the engine manual.

Warranty Periods

Limited Warranty is divided into four categories. No Warranty, 90 days, 1 year and 3 years.

No Warranty

Normal wear items, MIG gun parts (contact tips, nozzle, contact tip adapter, MIG gun liner), drive roll, electrode holder, ground clamps, Plasma torch parts (nozzle, electrode, diffuser, cover) are considered consumable items and are not covered under warranty.

90 days

Parts for Crossfire spool guns, welding carts and welding cabinets. This warranty covers the absence of or defective parts.

Parts and Labour on MIG gun parts (except those listed under normal wear items), cables, regulator, plasma torch (except those listed under normal wear items). Any shipping related to warranty repair is the responsibility of the customer.

Limited Warranty 1 year/Parts/Labour + 3 year Parts

This warranty covers parts and labour on items such as: transformer, reactor, rectifier, solenoid valve, PC Board, switches, controls, gas valve, drive motor, drive system other than drive roll and any other component that requires the removal of the sheet metal to access. Any shipping related to warranty repair is the responsibility of the customer.

Voiding Warranty

Warranty does not apply to: Shipping Damage, Misuse and abuse of the unit, alteration of the unit in any way.

Warranty Claim

This is a parts and labour warranty. <u>Do not return your unit</u>. Retain your receipt in case a warranty claim is needed. No warranty will be provided without the original receipt from retailer. To make a warranty claim, please contact <u>crossfirewelders@gmail.com</u>.

No Crossfire warranty service can begin without a service file number including – Model # - Serial Number – Purchase Date.

GENERAL SAFETY RULES

WARNING: Read and understand all instructions. Failure to follow all instructions listed below may result in serious injury.

CAUTION: Do not allow persons to operate or assemble this DigiTig 200AC/DC until they have read this manual and have developed a thorough understanding of how the DigiTig 200AC/DC works.

WARNING: The warnings, cautions, and instructions discussed in this instruction manual cannot cover all possible conditions or situations that could occur. It must be understood by the operator that common sense and caution are factors which cannot be built into this product, but must be supplied by the operator.

1.1 Your Welding Environment

-Keep the environment you will be welding in free from flammable materials.

-Always keep a fire extinguisher accessible to your welding environment.

-Always have a qualified person install and operate this equipment.

-Make sure the area is clean, dry and ventilated. Do not operate the welder in humid, wet or poorly ventilated areas.

-Always have your welder maintained by a qualified technician in accordance with local, state and national codes.

-Always be aware of your work environment. Be sure to keep other people, especially children, away from you while welding.

-Keep harmful arc rays shielded from the view of others.

-Mount the welder on a secure bench

or cart that will keep the welder secure and prevent it from tipping over or falling.

1.2 Your Welder's Condition

-Check ground cable, power cord and welding cable to be sure the insulation is not damaged. Always replace or repair damaged components before using the welder.

-Check all components to ensure they are clean and in good operating condition before use.

1.3 Use of Your Welder

A CAUTION

Do not operate the welder if the output cable, electrode, torch, wire or wire feed system is wet. Do not immerse them in water. These components and the welder must be completely dry before attempting to use them.

-Follow the instructions in this manual.

-Keep welder in the off position when not in use.

-Connect ground lead as close to the area being welded as possible to ensure a good ground.

-Do not allow any body part to come in contact with the welding wire if you are in contact with the

material being welded, ground or electrode from another welder.

-Do not weld if you are in an awkward position. Always have a secure stance while welding to prevent accidents. Wear a safety harness if working above ground.

-Do not drape cables over or around your body.

-Wear a full coverage helmet with appropriate shade (see ANSI Z87.1 safety standard) and safety glasses while welding.

-Wear proper gloves and protective clothing to prevent your skin from being exposed to hot metals, UV and IR rays.

-Do not overuse or overheat your welder. Allow proper cooling time between duty cycles.

-Keep hands and fingers away from moving parts and stay away from the drive rolls.

-Do not point torch at any body part of yourself or anyone else.

-Always use this welder in the rated duty cycle to prevent excessive heat and failure.

1.4 Specific Areas of Danger, Caution or Warning

Electrical Shock

Electric arc welders can produce a shock that can cause injury or death. Touching electrically live parts can cause fatal shocks and severe burns. While welding, all metal components connected to the wire are electrically hot. Poor ground connections are a hazard, so secure the ground lead before welding.

-Wear dry protective apparel: coat, shirt, gloves and insulated footwear.

-Insulate yourself from the work piece. Avoid contacting the work piece or ground.

- Do not attempt to repair or maintain the welder while the power is on.

-Inspect all cables and cords for any exposed wire and replace immediately if found.

-Use only recommended replacement cables and cords.

-Always attach ground clamp to the work piece or work table as close to the weld area as possible.

-Do not touch the welding wire and the ground or grounded work piece at the same time.

-Do not use a welder to thaw frozen pipes.

Fumes and Gases

AWARNING

-Fumes emitted from the welding process displace clean air and can result in injury or death.

-Do not breathe in fumes emitted by the welding process. Make sure your breathing air is clean and safe.

-Work only in a well-ventilated area or use a ventilation device to remove welding fumes from the environment where you will be working.

-Do not weld on coated materials (galvanized, cadmium plated or containing zinc, mercury or barium). They will emit harmful fumes that are dangerous to breathe. If necessary use a ventilator, respirator with air supply or remove the coating from the material in the weld area.

-The fumes emitted from some metals when heated are extremely toxic. Refer to the material safety data sheet for the manufacturer's instructions.

-Do not weld near materials that will emit toxic fumes when heated. Vapors from cleaners, sprays and degreasers can be highly toxic when heated.

UV and IR Arc Rays

A DANGER

The welding arc produces ultraviolet (UV) and infrared (IR) rays that can cause injury to your eyes and skin. Do not look at the welding arc without proper eye protection.

-Always use a helmet that covers your full face from the neck to top of head and to the back of each ear.

-Use a lens that meets ANSI standards and safety glasses. For welders under 160 Amps output, use a shade 10 lens; for above 160 Amps, use a shade 12. Refer to the ANSI standard Z87.1 for more information.

-Cover all bare skin areas exposed to the arc with protective clothing and shoes. Flame-retardant cloth or leather shirts, coats, pants or coveralls are available for protection.

-Use screens or other barriers to protect other people from the arc rays emitted from your welding.

-Warn people in your welding area when you are going to strike an arc so they can protect themselves.

Fire Hazards

AWARNING

Do not weld on containers or pipes that contain or have had flammable, gaseous or liquid combustibles in them. Welding creates sparks and heat that can ignite flammable and explosive materials.

-Do not operate any electric arc welder in areas where flammable or explosive materials are present.

-Remove all flammable materials within 35 feet of the welding arc. If removal is not possible, tightly cover them with fireproof covers.

-Take precautions to ensure that flying sparks do not cause fires or explosions in hidden areas, cracks or areas you cannot see.

-Keep a fire extinguisher close in the case of fire.

-Wear garments that are oil-free with no pockets or cuffs that will collect sparks.

-Do not have on your person any items that are combustible, such as lighters or matches.

-Keep work lead connected as close to the weld area as possible to prevent any unknown, unintended paths of electrical current from causing electrical shock and fire hazards.

-To prevent any unintended arcs, cut wire back to 1/4" stick out after welding.

Hot Materials

Welded materials are hot and can cause severe burns if handled improperly. -Do not touch welded materials with bare hands.

-Do not touch MIG gun nozzle after welding until it has had time to cool down.

Sparks/Flying Debris

Welding creates hot sparks that can cause injury. Chipping slag off welds creates flying debris.

-Wear protective apparel at all times: ANSI-approved safety glasses or shield, welder's hat and ear plugs to keep sparks out of ears and hair.

Electromagnetic Field

-Electromagnetic fields can interfere with various electrical and electronic devices such as pacemakers.

-Consult your doctor before using any electric arc welder or cutting device

-Keep people with pacemakers away from your welding area when welding.

-Do not wrap cable around your body while welding.

-Wrap MIG gun and ground cable together whenever possible.

-Keep MIG gun and ground cables on the same side of your body.

Shielding Gas Cylinders Can Explode

High pressure cylinders can explode if damaged, so treat them carefully.

-Never expose cylinders to high heat, sparks, open flames, mechanical shocks or arcs.

-Do not touch cylinder with MIG gun.

-Do not weld on the cylinder

-Always secure cylinder upright to a cart or stationary object.

-Keep cylinders away from welding or electrical circuits.

-Use the proper regulators, gas hose and fittings for the specific application.

-Do not look into the valve when opening it.

-Use protective cylinder cap whenever possible

1.5 Proper Care, Maintenance and Repair A DANGER

-Always have power disconnected when working on internal components.

- Do not touch or handle PC board without being properly grounded with a wrist strap. Put PC board in static proof bag to move or ship.

-Do not put hands or fingers near moving parts such as drive rolls of fan

DigiTig 200AC/DC USE AND CARE

- Do not modify the DigiTig 200AC/DC in any way. Unauthorized modification may impair the • function and/or safety and could affect the life of the equipment. There are specific applications for which the DigiTig 200AC/DC was designed.
- Always check of damaged or worn out parts before using the DigiTig 200AC/DC. Broken parts will affect the DigiTig 200AC/DC operation. Replace or repair damaged or worn parts immediately.
- Store idle DigiTig 200AC/DC. When DigiTig 200AC/DC is not in use, store it in a secure place out of the reach of children. Inspect it for good working condition prior to storage and before re-use.

Notice: * If the internal temperature exceess the safe zone the welder will shut down and the protection indicator will light up. The welder will come back on when it cools down.

* Turn off the power switch and Argon valve, before leaving the work area.

Shut off at end of day or temporary absences.

* Welders should wear canvas work clothes and welding face shield to protect from spares and light rays

- * Put welding screens up to protect others in the work area.
- * Flammable, explosive items should not be put near the welding area;
- * Every outlet of the welder should be connected and grounded correctly.

Notice: The cover protection degree of the WAVE series Square DigiTig 200AC/DC pulsed inverter TIG welder is IP21S.When the welder is operated, do not insert finger or round stick diameter less than 12.5mm (especially metal stick) into the welder; Do not allow to press heavily onto the welder.

TECHNICAL SPECIFICATION

TERM	UNIT	DigiTig 200AC/DC
Rated Input Voltage	V	230
Power Frequency	Hz	50/60
Rated Input Capacity	KVA	8.0
Rated Input Current	А	35
Output No Load Voltage	V	68
Rated Working Voltage	V	18
DC Argon Welding Current	А	5~200
AC Argon Welding Current	А	10~200
Stick Welding Current	А	5~170
Current Up Time	S	0~15
Current Drop Time	S	0~25
Pulse Frequency	Hz	0.5~250
Pulse Width Adjustment (DC)	%	15~85
AC Frequency	Hz	15~150
Clear Area Control (AC)	%	15~65
Gas Stop Delay Time	S	0~30
Rated Duty Cycle	%	35
Cooling Type		Air cooling
Effiency	η	≥ 85%
Power Factor	Cosφ	0.92
Insulation Degree		Н
Cover Protection Degree	IP	IP21S
Weight	kg	19.5
Dimension L×W×H	mm	500*240*410

Mode	Material Type	Designe d Joint	WORK Thicknes s (mm)	Wire Dia Φ (mm)	Welding Current (A)	Polarity	Argon Flow (dm ³ /mi n)	Tungste n Stick Dia Φ (mm)	Angle	Top Dia Φ (mm)
		Vertical Joint	1.6~3.0	1 6~2 5	50~90		8~12	1.0	12~20°	0.12~0.25
DC Stainless Steel	Stainless Steel	V groove	>3.0~6.0	1.0 2.0	70~120	DC Positive	0 12	1.6	25~30°	0.50~0.75
		X groove	>6.0~12	2.5~3.2	100~150		10~14	2.4	35~45°	0.75~1.10
	Pure	Vertical Joint	1~2.5	1.6~2.5	45~90		2~6	2~3		
AC	Aluminium, Alu-Mag	V groove	3~6	2~4	90~180	Positive	10~12	3~4	90°	1.50
	Alloy	X groove	8~12	4~5	150~220		12~16	4~5		

Welding regulations parameter table (only for reference)

KNOW YOUR WELDER

Description

The DigiTig 200AC/DC can be used for SMAW ,AC Tig ,DC Tig and pulse Tig The parameters are presented on a digital display allowing for easy operation

1. Front panel

1. 1. Know the Front panel

1.2. Current display

To show the preset current when setting and the welding current when working.

1.3. AC/DC transfer knob

Use this knob to choose AC or DC, when AC indicator light, means the Machine is under AC mode. When DC indicator light, means the machine is under DC mode.

1.4. Pulse switch

Use this knob to choose whether you need the pulse, when indicator is lit it you are working in pulse mode.

1.5. Welding mode knob

Use this knob to choose the welding mode, Either MMA、HF TIG and contact-type TIG.

1.6. Parameter knob and positive knob

Use this knob to choose the Procedure, indicator light will Display the procedure you have selected.

1.7. Adjustment knob

Use this knob to adjust the parameter, and the parameter will be shown on the display.

1.8. Gas check knob

This machine has A gas check function, use knob to check the gas. Press this knob, the gas check indicator light, air valve works, that means the gas circuit is Functioning. Press this knob again, the indicator extinguish, gas check function does not work.

1.9. Voltage display

To show the preset current when setting and the welding current when working.

1.10. Procedure parameter display

This displays the procedure, you have selected.

The illuminated process is the one you arc adjusting.

1	Pre-flow Time indicator light	8	Pulse frequency indicator light (PULSE)
2	Hot start current indicator light (MMA)	9	Background current indicator light(PULSE)
3	Arc starting current indicator light(4T)	10	Minus grade time indicator light (4T)
4	Uphill time indicator light (4T)	11	Arc stopping current indicator light (4T)
5	Welding current indicator light (CC)	12	Gas delay time indicator light
6	Peak current indicator light (PULSE)	13	Clear area width (ACTIG) / arc force (MMA)
7	Pulse width indicator light (PULSE)	14	AC frequency (ACTIG)

1.11.1. Thermal protection:

This machine use NTC for temperature sensing element to monitor & protect internal components

in real time.

1.11.2. Overvoltage protection:

When the input voltage is below or Above the specified voltage, the machine will cut off the power to protect itself until the Proper input voltage is available.

INSTALLATION

 POWER REQUIREMENT - AC single phase 230V, 60 HZ with a 50 amp circuit breaker is required. DO NOT OPERATE THIS UNIT if the ACTUAL power source voltage is less than 220 volts AC or greater than 240 volts AC.

AWARNING

- High voltage danger from power source! Consult a qualified electrician for proper installation of receptacle. This welder must be grounded while in use to protect the operator from electrical shock.
- Do not remove grounding prong or alter the plug in any way. Do not use any adapters between the welder's power cord and the power source receptacle. Make sure the POWER switch is OFF when connecting your welder's power cord to a properly grounded 220 VAC, 60 HZ, Single Phase, 50 Amp input power supply.

2. EXTENSION CORD - We do not recommend an extension cord because of the voltage drop they produce. This drop in voltage can affect the performance of the welder. If you need to use an extension cord, we recommend you check with a qualified electrician and your local electrical codes for your specific area. Do not use an extension cord over 25 ft. in length.

3. MMA mode connection method

4. TIG mode connection method

5. Input connection method

AWARNING

EXPOSURE TO A WELDING ARC IS EXTREMELY HARMFUL TO THE EYES AND SKIN! Prolonged exposure to the welding arc can cause blindness and burns. Never strike an arc or begin welding until you are adequately protected. Wear flame-proof welding gloves, a heavy long sleeved shirt, trousers without cuffs, high topped shoes, and an ANSI approved welding helmet.

OPERATION

High voltage danger from power source! Consult a qualified electrician for proper installation of receptacle at the power source. This welder must be grounded while in use to protect the operator from electrical shock. If you are not sure if your outlet is properly grounded, have it checked by a qualified electrician. Do not cut off the grounding prong or alter the plug in any way and do not use any adapter between the welder's power cord and the power source receptacle. Make sure the POWER switch is OFF then connect your welder's power cord to a properly grounded 220 VAC, 60 HZ, single phase, 50 amp power source.

1. MMA: DC Stick arc welding

Set the [Welding mode knob] to ", adjust the [Adjustment knob] to change the welding current.

The hot start current " \int -"and arc force current " \Box " can be adjusted at this mode according to the welding materials.

NOTICE: If set [Welding mode knob] to ", just the hot start current " /-' and arc force current

2. TIG:

2.1 DC TIG welding

Set the [Welding mode knob] to " f f ?, and [AC/DC transfer knob] to DC" ,would enter

into DC TIG welding mode. In this mode use the Parameter positive knob":

- **[**] to adjust the Pre-flow time
- [Ic] to adjust the welding current;
- **(** \mathbf{i}° **)** to adjust the stopping gas delay time;

2.2 DC pulse TIG welding

Set [Welding mode knob] to "TIG f = f, [AC/DC transfer knob] to "DC ", [Pulse switch] set on "Pulse" to enter pulse tig welding .Use Parameter knob""Parameter positive knob":

- $\begin{bmatrix} \circ \\ \bullet \end{bmatrix}$ to adjust the Pre-flow time;
- [] to adjust the pulse peak current;
- to adjust the Pulse width;
- [) [) to adjust the Pulse frequency;
- [] to adjust the Pulse Background current;
- **[** $\dot{\bullet}^{\circ}$ **]** to adjust the stopping gas delay time;

2.3 Trigger Mode Control Button (HF TIG and LIFT TIG Mode only)

The trigger mode control is used to switch the torch trigger between 2T (normal), and 4T (latch mode).

2.3.1 2T Normal Mode

In this mode, the torch trigger must remain depressed for the welding output to be active. Press and hold the torch trigger to activate the power source (weld). Release the torch trigger switch to cease welding.

NOTE

in this operation mode, the function of UP SLOPE and DOWN SLOPE is not used!

2.3.2 4T Latch Mode

This mode of welding is mainly used for long welding runs to reduce operator fatigue. In this mode the operator can press and release the torch trigger and the output will remain active. To deactivate the power source, the trigger switch must again be depressed thus eliminating the need for the operator to hold the torch trigger.

Note that when operating in GTAW (HF and LIFT TIG modes), the power source will remain activated until the selected down slope time has elapsed

NOTE

This Up Slope operates in (4T) TIG modes only and is used to set the time for the weld current to ramp up, after the torch trigger switch has been pressed then released, from Initial Current to High or BASE current.

2.4 AC TIG welding

Set [Welding mode knob] to "TIG f = f = and [AC/DC transfer knob] to "AC <math>f" would enter into AC TIG welding mode. Then use "Parameter positive knob":

I to adjust the Pre-flow time;
I to adjust the welding current;
I to adjust the stopping gas delay time;
I to adjust the clear area width;
I to adjust the AC square wave frequency;

Choose 2step,4step switch]set on different gears to choose the welding method "2 step 2T", "four

2.5 AC pulse TIG welding

Set [Welding mode knob] to "TIG f = f and [AC/DC transfer knob] to "AC f ", [Pulse switch] set on "Pulse" to enter into AC pulse TIG welding mode. Then use "Parameter positive knob":

- **to adjust the Pre-flow time;**
- [] to adjust the pulse peak current;
- to adjust the Pulse width;
- [) [] to adjust the Pulse frequency;
- [] to adjust the Pulse Background current;
- I to adjust the stopping gas delay time;
- [] to adjust the AC square wave frequency;

Choose [2step,4step switch] set on different gears to choose the welding method "2 step 27", "four

step 4T

2.6 LIFT TIG welding

Set [Welding mode knob] to "TIG $\widehat{\square}$ ", let the TIG torch contact the workpiece, press the switch, at this time there will be a 50A arc starting current, press the switch more than 0.5s(Pre-flow time not included), then lift the torch, make the distance between the torch and workpiece is 2~4mm, then start welding.

2.7 Description for using TIG torch with amperage control and foot pedal control:

Firstly, preset max output current on the front panel of machine which user will welding, e.g. 100A. the digital will show 100A preset current;

Secondly, user can only adjust max welding current on TIG torch or foot pedal during welding. However, output amperage range will be limited to preset amperage on welder, that means the output amperage range is min amperage to 100A.

Note: if there is no other adjustment after presetting current 4s or 5s, digital will show real current.

3. Stick welding skill

3.1 Welding positions

There are two basic positions, for welding: Flat and Horizontal. Flat welding is generally easier, faster, and allows for better penetration. If possible, the work piece should be positioned so that the bead will run on a flat surface.

3.2 Preparing the Joint

Before welding, the surface of work piece needs to be free of dirt, rust, scale, oil or paint or it will create brittle and porous welds. If the base metal pieces to be joined are thick or heavy, it may be necessary to bevel the edges with a metal grinder, the correct bevel should be around 60 degree. See following picture:

Based on different welding position, there are different welding joint, see following images for more information.

3.3 GROUND CLAMP CONNECTION

Clear any dirt, rust, scale, oil or paint on the ground clamp. Make certain you have a good solid ground connection. A poor connection at the ground clamp will waste power and heat. Make sure the ground clamp touches the metal.

3.4 ELECTRODE

The welding electrode is a rod coated with a layer of flux. When welding, electrical current flows between the electrode (rod) and the grounded metal work piece. The intense heat of the arc between the rod and the grounded metal melts the electrode and the flux. For best performance on this unit, we suggest the use of 6013 electrodes.

3.5 SELECTING THE PROPER ELECTRODE

There is no golden rule that determine the exact rod or heat setting required for every situation. The type and thickness of metal and the position of the work piece determine the electrode type and the amount of heat needed in the welding process. Heavier and thicker metals required more amperage. It is best to practice your welds on scrap metal which matches the metal you intend to work with to determine correct heat setting and electrode choice. See the following helpful trouble shooting tips to determine if you are using a correct electrode.

3.5.1. When proper rod is used:

3.5.1.a. The bead will lay smoothly over the work without ragged edges

3.5.1.b. The base metal puddle will be as deep as the bead that rises above it

3.5.1.c. The welding operation will make a crackling sound similar to the sound of eggs frying

3.5.2. When a rod too small is used;

3.5.2. a. The bead will be high and irregular

3.5.2. b. The arc will be difficult to maintain

3.5.3. When the rod is too large

3.5.3. a. The arc will burn through light metals

3.5.3. b. The bead will undercut the work

3.5.3. c. The bead will be flat and porous

3.5.3. d. Rod may be freeze or stick to work piece

Note: Rate of travel over the work also affects the weld. To ensure proper penetration and enough deposit of rod, the arc must be moved slowly and evenly along the weld seam.

3.6 SETTING THE AMPERAGE CONTROL

The welder has an infinite current control. It is capable of welding with electrodes up to 3/32" diameter. There is no golden rule that determines the exact amperage required for every situation. It is best to practice your welds on scrap metal which matches the metals you intend to work with to determine correct setting for your job. The electrode type and the thickness of the work piece metal determine the amount of heat needed in the welding process. Heavier and thicker metals require more voltage (amperage), whereas lighter and thinner metals require less voltage (amperage). Consult the welding electrode packaging for recommended welding amperage range.

3.7 WELDING TECHNIQUES

The best way to teach yourself how to weld is with short periods of practice at regular intervals. All practice welds should be done on scrap metal that can be discarded. Do not attempt to make any repairs on valuable equipment until you have satisfied yourself that your practice welds are of good appearance and free of slag or gas inclusions.

3.7.1 Holding the electrode

The best way to grip the electrode holder is the way that feels most comfortable to you. Position the Electrode to the work piece when striking the initial arc it may be necessary to hold the electrode perpendicular to the work piece. Once the arc is started the angle of the electrode in relation to the work piece should be between 10 and 30 degrees. This will allow for good penetration, with minimal spatter. 3.7.2 Striking the arc

AWARNING

EXPOSURE TO A WELDING ARC IS EXTREMELY HARMFUL TO THE EYES AND SKIN! Prolonged exposure to the welding arc can cause blindness and burns. Never strike an arc or begin welding until you are adequately protected. Wear flame-proof welding gloves, a heavy long sleeved shirt, trousers without cuffs, high topped shoes, and an ANSI approved welding helmet.

Scratch the work piece with the end of electrode to start arc and then raise it quickly about 1/8 inch gap between the rod and the work piece, see following picture

It is important that the gap be maintained during the welding process and it should be neither too wide or too narrow. If too narrow, the rod will stick to the work piece. If too wide, the arc will be extinguished. It needs much practice to maintain the gap. A beginner may get sticker or arc extinguishing. When the rod is stuck to the work piece, gently rock it back and forth to make them separate. If not, a short circuit will occur and it will break the welder. A good arc is accompanied by a crisp, cracking sound. The sound is similar to that made by eggs frying. To lay a weld bead, only 2 movements are required; downward (as the electrode is consumed) and in the direction the weld is to be laid, as in following figure:

3.7.3 Types of weld bead

The following paragraphs discuss the most commonly used arc welding beads.

<u>The stringer bead</u> Formed by traveling with the electrode in a straight line while keeping the electrode centered over the weld joint.

<u>The weave bead</u> Used when you want to deposit metal over a wider space than would be possible with a stringer bead. It is made by weaving from side to side while moving with the electrode. It is best to hesitate momentarily at each side before weaving back the other way.

3.7.4 Welding position

<u>Flat position</u> It is easiest of the welding positions and is most commonly used. It is best if you can weld in the flat position if at all possible as good results are easier to achieve.

Flat Position

Horizontal Position

<u>The horizontal position</u> it is performed very much the same as the flat weld except that the angle is different such that the electrode, and therefore the arc force, is directed more toward the metal above the weld joint. This more direct angle helps prevent the weld puddle from running downward while still allowing slow enough travel speed to achieve good penetration. A good starting point for your electrode angle is about 30 degrees DOWN from being perpendicular to the work piece.

3.7.5 Judge the good weld bead

When the trick of establishing and holding an arc has been learned, the next step is learning how to run a good bead. The first attempts in practice will probably fall short of acceptable weld beads. Too long of an arc will be held or the travel speed will vary from slow to fast (see following)

- A. Weld speed is too fast.
- B. Weld speed is too slow.
- C. Arc is too long.
- D. Ideal weld.

A solid weld bead requires that the electrode be moved slowly and steadily along the weld seam.

Moving the electrode rapidly or erratically will prevent proper fusion or create a lumpy, uneven bead.

ELECTRIC SHOCK CAN KILL! To prevent ELECTRIC SHOCK, do not perform any welding while standing, kneeling, or lying directly on the grounded workpiece.

3.7.6 Finish the bead

As the coating on the outside of the electrode burns off, it forms an envelope of protective gases around the weld. This prevents air from reaching the molten metal and creating an undesirable chemical reaction. The burning coating, however, forms slag. The slag formation appears as an accumulation of dirty metal scale on the finished weld. Slag should be removed by using a chipping hammer.

PEENING THE SLAG FROM A WELD JOINT CAUSES SMALL CHIPS OF METAL TO FLY THROUGH THE AIR! Metallic chips flying through the air can cause eye injury or injury to other parts of the head, hands or exposed portions of the body. Wear goggles or safety glasses with side shields and protect the hands and other exposed parts of the body with protective garments, or if possible, work with a shield between the body and the work piece.

The intense heat produced at the arc sets up strains in the metal joined by welding. Peening the weld not only removes the scale left behind in the welding but relieves the internal strains developed by the heating and cooling process.

4. TIG welding skill

Gas Tungsten Arc Welding (GTAW) or TIG (Tungsten Inert Gas) as it is commonly referred to, is a welding process in which fusion is produced by an electric arc that is established between a single tungsten (non-consumable) electrode and the work piece. Shielding is obtained from a welding grade shielding gas or welding grade shielding gas mixture which is generally Argon based. A filler metal may also be added manually in some circumstances depending on the welding application.

Tungsten Electrode Current Ranges

Electrode Diameter	DC Current (Amps)
0.040" (1.0 mm)	30-60
1/16" (1.6 mm)	60-115
3/32" (2.4 mm)	100-165
1/8" (3.2mm)	135-200
5/32" (4.0 mm)	190-280
3/16" (4.8 mm)	250-340

Guide for Selecting Filler Wire Diameter

Filler Wire Diameter	DC Current Range (Amps)
1/16" (1.6 mm)	20-90
3/32" (2.4 mm)	65-115
1/8" (3.2 mm)	100-165
3/16" (4.8 mm)	200-350

Tungsten Electrode Types

Electrode Type (Ground Finish)	Welding Application	Features	Color Code
Thoriated 2%	DC welding of mild steel, stainless steel and copper	Excellent arc starting, Long life, High current carrying capacity	Red
Zirconated 1%	High quality AC weld- ing of aluminium, magnesium and their alloys.	Self cleaning, Long life, Maintains balled end, High current car- rying capacity.	White
Ceriated 2%	AC & DC welding of mild steel, stainless steel, copper, alumin- ium, magnesium and their alloys	Longer life, More stable arc, Easier starting, Wider current range, Narrower more concentrated arc.	Grey

Aluminium Welding Material

Base Metal Thickness	AC Current for Aluminium	Tungsten Electrode Diameter	Filler Rod Diameter (if required)	Argon Gas Flow Rate	JOINT TYPE
1/16"	60-80	1/16"	1/16"	15 CFM	Butt/Corner
1.6 mm	70-90	1.6 mm	1.6 mm	7 I PM	
1/8"	125-145	3/32"	1/16"-3/32"	17 CFM	Butt/Corner
3.2 mm	140-160	2.4 mm	1.6 mm - 2.4 mm	8 LPM	Lap/Fillet

Welding Rate

Base Metal Thickness	DC Current for Mild Steel	DC Current for Stainless Steel	Tungsten Electrode Diameter	Filler Rod Diameter (if required)	Argon Gas Flow Rate	Joint Type
0.040"	35-45	20-30	0.040"	1/16"	10 CFH(5 LPM)	Butt/Corner
1.0 mm	40-50	25-35	1.0 mm	1.6 mm		Lap/Fillet
0.045"	45-55	30-45	0.040"	1/16"	13 CFH(6 LPM)	Butt/Corner
1.2 mm	50-60	35-50	1.0 mm	1.6 mm		Lap/Fillet
1/16"	60-70	40-60	1/16"	1/16"	15 CFH(7 LPM)	Butt/Corner
1.6 mm	70-90	50-70	1.6 mm	1.6 mm		Lap/Fillet
1/8"	80-100	65-85	1/16"	3/32"	15 CFH(7 LPM)	Butt/Corner
3.2 mm	90-115	90-110	1.6 mm	2.4 mm		Lap/Fillet
3/16"	115-135	100-125	3/32"	1/8"	21 CFH(10 LPM)	Butt/Corner
4.8 mm	140-165	125-150	2.4 mm	3.2 mm		Lap/Fillet
1/4"	160-175	135-160	1/8"	5/32"	21 CFH(10 LPM)	Butt/Corner
6.4 mm	170-200	160-180	3.2 mm	4.0 mm		Lap/Fillet

TIG Welding is generally regarded as a specialized process that requires operator competency. While many of the principles outlined in the previous Arc Welding section are applicable a comprehensive outline of the TIG Welding process is outside the scope of this Operating Manual.

TROUBI	ESHOOTING
INCODE	

No.	Breakdown	Analysis	Solutions
	Cooling fan	Cooling fan broken	Replace the fan
1	Not work	Cable broken/fallen off	Find the disconnected wire and
	Not work		Connect reliably
		Torch switch broken	Replace the torch
	No piloting	Main PC board broken	Replace the PC board
2	high	Run-on plate	Replace the run-on plate
	frequency	Oabla brahan (fallon aff	Find the disconnected wire and
		Cable broken/fallen off	Connect reliably
	No Argon		Check the flow meter and resume
		No Argon Input	supplying gas to the welder
		Main PC board broken	Replace the PC board
		Electromagnetism	
3		Valve	Change the electromagnetism valve
	output	broken	
			Clear the eyewinker and dredge the
		Gas path blocked	gas
			path
4	Protection		Returns to normal when internal
4	Indicator On	Unit has overneated	temperature cools

		Thermal relay broken	Replace the thermal relay	
		Voltage variance of	Returns to normal when voltage is	
		mode than 15%	corrented	
		Relevant	Replace the potentiometer	
F		potentiometer		
	Panel knob	broken		
5	not adjustable	Main PC board broken	Replace the PC board	
		Cable broken/fellen off	Find the disconnected wire and	
		Cable broken/failen off	Connect reliably	
		Digital Amp meter	Change the meter	
	No display on the AMP meter	broken		
6		Cable broken/fellen off	Find the disconnected wire and	
		Cable broken/fallen off	Connect reliably	
		Main PC board broken	Replace the PC board	
		Wrong connection	Check and correct according the	
		between torch and	manual	
7	Arc photing	welder		
1	not	Argon not pure	Use 99.99% pure Argon	
	SHIOOTH	Tungsten electrode or	Use qualified Tungsten electrode	
		pin broken		
		First use after two or	Not fault, trip caused by the	
8	Power trip	more days of inactinity	charging filter capacitor in the main	
			board, reset the power swith	
9	Others		Please contact authorized repair depot	

DIAGRAM & PARTS LIST

No	Code number	Description	Qty
1	2.05.08.115	Handle	1
2	1.1.01.01.0742	Enclosure	1
3	1.1.10.34.0030	Remote control absorption module	1
4	1.1.05.11.0062	Secondary inverter arc plate	1
5	2.05.17.028	Tension disc	2
6	2.04.30.103	Cable holder	1
7	1.1.11.34.0046	Power line	1
8	2.07.80.987	Switch	1
9	2.07.54.115	Aerial socket	1
10	1.1.01.03.1740	Back panel	1
	2.02.02.034	Connecting screw rod	1
11	2.06.14.813	Copper nut	1

12	1.1.10.34.0029	Fan	1
13	1.1.05.01.0547	Switching power supply board	1
14	1.1.05.10.0038	Pulse run-on plate	1
15	2.07.37.553	Single phase rectifier bridge	2
16	1.1.05.11.0064	Rectifier inverter board	1
17	2.07.33.996	Single tube (IGBT)	4
18	2.05.05.173	Radiator support	4
19	2.07.43.962	Rectifier heat sink	1
20	1.1.01.04.1411	Bottom panel	1
21	2.05.05.999	Feet	4
22	1.1.01.05.3106	Mounting plate	1
23	2.07.25.107	Output reactor	1
24	1.1.04.05.0049	Coupling transformer	1
25	2.07.55.203	Argon joint	1
26	2.03.30.1302	Gun switch wiring harness	1
27	2.05.05.140	Plastic panel	1
28	1.2.08.04.0171	Torch	1
29	1.2.08.02.0466	Earth cable	1
30	2.07.57.960	Europe type quick socket	2
31	2.07.11.022	Potentiometer knob	1
32	1.1.02.01.9020	Board support plate	1
33	1.1.05.07.0157	Faceplate	1
34	1.1.11.34.0043	Hall	1
35	2.07.43.963	Secondary rectifier heat sink(down)	1
36	2.07.28.813	Fast recovery diode	2
37	2.07.43.964	Secondary rectifier heat sink (upper)	1
38	1.1.05.11.0063	Secondary rectifier inverter board	1
39	2.07.33.996	Single tube (IGBT)	8
	2.03.30.1321	Resistance 2	1
40	2.03.30.1320	Resistance 1	1
41	1.1.05.09.0032	Gun switch isolation plate	1
42	1.1.02.01.9019	Board fixed plate	1
43	1.1.05.02.0591	Main PCB	1
	0.99.07-22	8m Foot Pedal	1
	1.2.08.04.0184	5m TIG Torch Assembly	1
L			1

Spare Parts List for Foot Control

1			~~~
No	Code number	Description	Qty
1	2.05.10.405	Top Plate	1
2	1.1.01.01.0210	Enclosure	1
3	2.07.80.584	Micro Switch	1
4	2.05.14.001	Gear 1	1
5	2.06.29.003	Torsional Spring	1
6	2.06.29.033	Spring 2	1
7	2.05.14.003	Gear Support	1
8	1.1.01.04.0240	Bottom Enclosure	1
9	1.1.03.02.0053	Spindle	1
10	1.1.03.02.0054	Piovt pin	1
11	1.1.02.02.0518	Axle Sleeve	1
12	2.06.29.032	Spring 1	1
13	2.06.25.004	Rivet	2
14	2.05.10.406	Bottom Plate	1
15	2.02.21.004	Gear 2	1
16	2.07.10.043	Potentiometer	1
17	2.04.30.105	Cable Head	1
18	2.03.07.902	Cable	8m
19	2.07.54.019	5-pin connector	1

Reference	part	Description	Qty.
1	10N47	Nozzle	1
2	10N32	Tungsten Electrode Holder, 2.4MM	1
3	10N25	Tungsten Electrode Holder, 2.4MM	1
4	2.4MMC	Tungsten Electrode, 2.4MM	1
5	PRO26FX	Torch head	1
6	57Y02	Tungsten Electrode	1
7	PRO1MS-10	10K Potentiometer Switch	1
8	PROSWL5	5 Switch Wiring	1
9	PROH200	Handle	1
10	PROSP	Screw	1
11	PROKJ200	Diversion Connector	1
12	PROLC200-08	TORCH COVER	1
13	PROCO200-40	Cable	1
14	PROJK200	Diversion Connector	1
15	PRONCL-32	Protector	1
16	XS16J5P	5-pin Control	1
17	D3595-1-10	Dinse Connector, M10	1

