58 Wakis Avenue, Strijdompark Randburg, 2155 PO BOX 55536 Northlands 2116 Republic of South Africa Tel: +27 11 791 1033 | Fax: +27 11 791 1187 wireless@otto.co.za | www.otto.co.za # 32001345 MIPOT LORA TRX 868MHz The 32001345 is a LoRaTM technology-based transceiver operating in the 868 MHz SRD band, optimized for ultra-long range, ultra-low consumption applications, suitable for low power networks. In addition to its unparalleled range, spread spectrum modulation assures great immunity to interferers. A proprietary stack makes this module an RF modem, allowing to implement from point-to-point communication to more complex custom networks (provided that the network protocol is managed from the outside). Small LCC form factor (15.5 x 26 mm only) and ultra-low current consumption make this module ideal for the implementation of highly integrated low power (battery operated) solutions for Internet of Things (IoT) applications, security systems, alarms, sensor networks, metering, smart buildings, agriculture, supply chain. All messages can be cyphered with AES128 encryption algorithm ensuring confidential authentication and integrity during the exchanging of data payload. The module meets all the requirements in the industrial temperature range -40/+85°C and is compliant with REACH, RoHS and 2014/53/EU Radio Equipment (RED) directives. # **Mechanical Characteristics** ALL DIMENSIONS ARE IN MILLIMETERS GENERAL TOLERANCE +/-0.1MM 58 Wakis Avenue, Strijdompark Randburg, 2155 PO BOX 55536 Northlands 2116 Republic of South Africa Tel: +27 11 791 1033 | Fax: +27 11 791 1187 wireless@otto.co.za | www.otto.co.za # **Pin Description** | Pin | Name | Pin type | Description | Notes | |-----|----------------|----------|---|-------------| | 1 | GND | Supply | Ground (0V) | | | 2 | RF I/O | A IN/OUT | Tx: output RF
Rx: input RF | Note 3 | | 3 | GND | Supply | Ground (0V) | | | 5 | NU | NC | Not Used Pin – do not connect | | | 6 | NDATA_INDICATE | D OUT | Data Indicate Pin | | | 7 | NWAKE | D IN | Wake-up Pin | | | 8 | NU | NC | Not Used Pin – do not connect | | | 9 | NU | NC | Not Used Pin – do not connect | | | 10 | NU | NC | Not Used Pin – do not connect | | | 11 | UART TX | D OUT | UART TX Pin | | | 12 | UART RX | D IN | UART RX Pin | | | 13 | NU | NC | Not Used Pin – do not connect | | | 14 | NU | NC | Not Used Pin – do not connect | | | 15 | GND | Supply | Ground (0V) | | | 16 | GND | Supply | Ground (0V) | | | 17 | Vcc | Supply | Power supply | | | 18 | SWDAT | NC | Reserved for programming – do not connect | | | 19 | SWCLK | NC | Reserved for programming – do not connect | | | 20 | SWV | NC | Reserved for programming – do | not connect | | 21 | NRST | D IN | Reset. Input Pull-Up | | | 22 | NU | NC | Not Used Pin – do not connect | | | 23 | NU | NC | Not Used Pin – do not connect | | | 24 | NU | NC | Not Used Pin – do not connect | | | 25 | NU | NC | Not Used Pin – do not connect | | | 26 | NU | NC | Not Used Pin – do not connect | | | 27 | NU | NC | Not Used Pin – do not connect | | | 28 | NU | NC | Not Used Pin – do not connect | | | 29 | NU | NC | Not Used Pin – do not connect | | | 30 | GND | Supply | Ground (0V) | | 58 Wakis Avenue, Strijdompark Randburg, 2155 PO BOX 55536 Northlands 2116 Republic of South Africa Tel: +27 11 791 1033 | Fax: +27 11 791 1187 wireless@otto.co.za | www.otto.co.za # **ABS. Max Ratings** | Transceiver Power Supply +Vcc (pin 15) | 0 ÷ + 3.8V | |--|----------------| | Max. Voltage allowed on input pins | + Vcc+0.3V | | Storage Temperature (excl. package) | - 40 ÷ + 85° C | | Storage Temperature (incl. package) | - 10 ÷ + 65° C | | Operating Temperature | - 40 ÷ + 85° C | | Radio Frequency Input, pin 2: | +10 dBm | # Electrical Characteristics at 25°C Temperature | Parameter Supply Voltage (Vcc) | | Min. | Тур. | Max. | Unit | Notes | |--------------------------------|---------|----------------|------|---------|------|--------| | | | 2.1 | 3.3 | 3.7 | Volt | | | _ | Sleep | 84 | 1.2 | = | μΑ | Note 1 | | Current consumption | Tx mode | (- | 70 | - | mA | | | | Rx | 2 5 | 17 | .= | mA | | | Operating frequency range | | 868.075 | - | 869.925 | MHz | | | Tx frequency accuracy | | 10# | ±10 | - | kHz | | | Sensitivity | | X | - | -124 | dBm | | | Output Power (on 50 Ohm load) | | 72 | + 14 | - u | dBm | Note 2 | | Modulation | | | LoRa | | | | | UART Interface Datarate | | 9600 | 9600 | 115200 | bps | | Note 1: Current consumption measured at power supply level of +3.3V. Note 2: All RF parameters are measured with input/output (pin 2) connected to 50 Ohm impedance signal source or load # **Typical Connection Diagram** #### Notes: NRST pin connection is optional but recommended. NDATA_INDICATE pin connection is optional but it is mandatory for low power designs where host microcontroller is in sleep state and module 32001345M activates NDATA_INDICATE pin to wake host microcontroller 58 Wakis Avenue, Strijdompark Randburg, 2155 PO BOX 55536 Northlands 2116 Republic of South Africa Tel: +27 11 791 1033 | Fax: +27 11 791 1187 wireless@otto.co.za | www.otto.co.za # **Typical Characteristics** 58 Wakis Avenue, Strijdompark Randburg, 2155 PO BOX 55536 Northlands 2116 Republic of South Africa Tel: +27 11 791 1033 | Fax: +27 11 791 1187 wireless@otto.co.za | www.otto.co.za Note 1: Current consumption measured at power supply level of +3.3V. Note 2: All RE parameters are measured with Input/output (pin 2) connected to 50 Ohm imped. Note 2: All RF parameters are measured with Input/output (pin 2) connected to 50 Ohm impedance signal source or load. # **Process Information** #### 7.1. Delivery 32001345M modules are delivered in tape/reel packaging including 250 units. Dimensions are: W = 44 mm P = 20 mm T = 0.35 mm Ao = 16 mm $Bo = 26.5 \, mm$ Ko = 3.6 mm D0 = 1.5 mm D1 = 1.5 mm #### 7.2. STORAGE AND HANDLING #### 7.2.1. Moisture Sensitivity Level (MSL) The Moisture Sensitivity Level (MSL) relates to the packaging and handling precautions for devices that are sensitive to moisture-induced stress. The MSL standard is IPC/JEDEC J-STD-020 and can be downloaded from www.jedec.org. Following table summarizes the dry pack requirements for different MSL levels in the IPC/JEDEC specification. 58 Wakis Avenue, Strijdompark Randburg, 2155 PO BOX 55536 Northlands 2116 Republic of South Africa Tel: +27 11 791 1033 | Fax: +27 11 791 1187 wireless@otto.co.za | www.otto.co.za | Dry Pack Requirement | | | | | |----------------------|----------------------|--|--|--| | MSL LEVEL | Dry Pack Requirement | | | | | 1 | Optional | | | | | 2 | Required | | | | | 3 | Required | | | | | 4 | Required | | | | According to IPC/JEDEC specification J-STD-020, if a device passes MSL level 1, it is classified as not moisture sensitive and does not require dry pack. If a device fails level 1 but passes a higher level, it is classified as moisture sensitive and must be dry packed in accordance with J-STD-033. ### The 32001345M is qualified for MSL level = 3. #### 7.2.2. Dry Bag Products with an MSL level of 2 or above are shipped dry packed in a Moisture Barrier Bag (MBB). Carrier materials such as trays, tubes, reels, etc., that are placed in the MBB can affect the moisture level within the dry bag. The effect of these materials is compensated by adding additional desiccant in the MBB to ensure the shelf life of the SMT packages. IPC/JEDEC specifications require that MSD sensitive devices be packaged together with a Humidity Indicator Card (HIC) and desiccant to absorb humidity. If no moisture has been absorbed, the three fields in the HIC indicate blue color. #### 7.2.3. Storage and floor life The calculated shelf life for dry packed SMT packages is a minimum of 12 months from the bag seal date, when stored in a non-condensing atmospheric environment of <40°C/90% RH. Following table lists floor life for different MSL levels in the IPC/JDEC specification. | Floor life | | | | |------------|--|--|--| | MSL level | Floor life (out of bag) at factory ambient ≤30°C/60% RH or as stated | | | | 1 | Unlimited at ≤30°C/85% RH | | | | 2 | 1 year | | | | 2a | 4 weeks | | | | 3 | 168 hours | | | | 4 | 72 hours | | | The parts must be processed and soldered within the time specified for the MSL level. If this time is exceeded, or the humidity indicator card in the sealed package indicates that they have been exposed to moisture, the devices need to be pre-baked before the reflow solder process. #### 7.2.4. Drying Both encapsulate and substrate materials absorb moisture. IPC/JEDEC specification J-STD-020 must be observed to prevent cracking and delamination associated with the "popcorn" effect during reflow soldering. The popcorn effect can be described as miniature explosions of evaporating moisture. Baking before processing is required in the following cases: - Humidity indicator card: At least one circular indicator is no longer blue - Floor life or environmental requirements after opening the seal have been exceeded, e.g. exposure to excessive seasonal humidity. Refer to Section 4 of IPC/JEDEC J-STD-033 for recommended baking procedures. Table 4-1 of the specification lists the required bake times and conditions for drying. 58 Wakis Avenue, Strijdompark Randburg, 2155 PO BOX 55536 Northlands 2116 Republic of South Africa Tel: +27 11 791 1033 | Fax: +27 11 791 1187 wireless@otto.co.za | www.otto.co.za # **Specified Recommendations** | Bake Tin | ne | | | | | | | |---|--------------|--------------------------------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | | Bake @ 125°C | | Bake @ 90°C
≤ 5% RH | | Bake @ 40°C
≤ 5% RH | | | Package
Body | MSL
Level | Exceeding
Floor Life
by > 72 h | Exceeding
Floor Life
by ≤ 72 h | Exceeding
Floor Life
by >72 h | Exceeding
Floor Life
by ≤ 72 h | Exceeding
Floor Life
by > 72 h | Exceeding
Floor Life
by ≤ 72 h | | | 2 | 5 hours | 3 hours | 17 hours | 11 hours | 8 days | 5 days | | | 2a | 7 hours | 5 hours | 23 hours | 13 hours | 9 days | 7 days | | Thicknes | 3 | 9 hours | 7 hours | 33 hours | 23 hours | 13 days | 9 days | | s
≤ 1.4 mm | 4 | 11 hours | 7 hours | 37 hours | 23 hours | 15 days | 9 days | | *************************************** | 5 | 12 hours | 7 hours | 41 hours | 24 hours | 17 days | 10 days | | | 5a | 16 hours | 10 hours | 54 hours | 24 hours | 22 days | 10 days | | | 2 | 18 hours | 15 hours | 63 hours | 2 days | 25 days | 20 days | | Thicknes | 2a | 21 hours | 16 hours | 3 days | 2 days | 29 days | 22 days | | s | 3 | 27 hours | 17 hours | 4 days | 2 days | 37 days | 23 days | | >1.4 mm | 4 | 34 hours | 20 hours | 5 days | 3 days | 47 days | 28 days | | ≤ 2.0 mm | 5 | 40 hours | 25 hours | 6 days | 4 days | 57 days | 35 days | | | 5a | 48 hours | 40 hours | 8 days | 6 days | 79 days | 56 days | | | 2 | 48 hours | 48 hours | 10 days | 7 days | 79 days | 67 days | | Thicknes
s
>2.0 mm
≤ 4.5 mm | 2a | 48 hours | 48 hours | 10 days | 7 days | 79 days | 67 days | | | 3 | 48 hours | 48 hours | 10 days | 8 days | 79 days | 67 days | | | 4 | 48 hours | 48 hours | 10 days | 10 days | 79 days | 67 days | | | 5 | 48 hours | 48 hours | 10 days | 10 days | 79 days | 67 days | | | 5a | 48 hours | 48 hours | 10 days | 10 days | 79 days | 67 days | Packages of sensitive components in 32001345M have a thickness ≤1.4 mm. - Do not attempt to bake modules at temperatures higher than 60°C while contained in tape and rolled up in reels. If baking at higher temperature is required, remove modules from packaging and place them individually onto oven tray. - Oxidation Risk: Baking SMT packages may cause oxidation and/or intermetallic growth of the terminations, which if excessive can result in solderability problems during board assembly. The temperature and time for baking SMT packages are therefore limited by solderability considerations. The cumulative bake time at a temperature greater than 90°C and up to 125°C shall not exceed 96 hours. If the bake temperature is not greater than 90°C, there is no limit on bake time. Bake temperatures higher than 125°C are not allowed. 58 Wakis Avenue, Strijdompark Randburg, 2155 PO BOX 55536 Northlands 2116 Republic of South Africa Tel: +27 11 791 1033 | Fax: +27 11 791 1187 wireless@otto.co.za | www.otto.co.za Rev 0.2 #### 7.3. SOLDERING INFORMATION #### 7.3.1. Soldering pad pattern The finished surface on the printed circuit board pads should be made of Nickel/Gold. The recommended soldering pad layout on the host board for the 32001345M is shown in the diagram below (purple lines): All dimensions in mm Neither via-holes nor wires are allowed on the PCB upper layer in area occupied by the module. #### 7.3.2. Solder Paste 32001345M module is designed for surface mounting using half-moon solder joints (see diagram below). For proper module assembly, solder paste must be printed on the target surface of the host board. The suggested solder paste height should be within 150 μm and 180 μm . The following diagram shows mounting characteristics for Module integration on host PCB: #### 7.3.3. Placement The 32001345M module can be automatically placed on host boards by pick&place machines like any integrated circuit. ### 7.3.4. Soldering Profile (RoHS Process) It must be noted that 32001345M module should not be allowed to be hanging upside down during the reflow operation. This means that the module has to be assembled on the side of the printed circuit board that is soldered last. The recommendation for lead-free solder reflow in IPC/JEDEC J-STD-020D Standard should be followed. | Profile Feature | Sn-Pb Assembly | Pb-Free Assembly | |-------------------------------------|----------------|------------------| | Average Ramp-UP Rate (Ts max to Tp) | 3°C/second max | 3°C/second max | | Preheat | 100°C | 130°C | | -Temperature Min (Ts min) | 179°C | 217°C | 58 Wakis Avenue, Strijdompark Randburg, 2155 PO BOX 55536 Northlands 2116 Republic of South Africa Tel: +27 11 791 1033 | Fax: +27 11 791 1187 wireless@otto.co.za | www.otto.co.za | | | Rev 0.2 | | | |---|------------------------|------------------------|--|--| | -Temperature Max (Ts max) -Time (ts min to ts max) | 80-135 seconds | 80-135 seconds | | | | Time maintained above: -Temperature (TL) -Time (tL) | 183°C
30-90 seconds | 220°C
30-90 seconds | | | | Peak/Classification
Temperature (Tp) | max. Peak Temp. 220°C | max. Peak Temp. 250°C | | | | Time within 5°C of actual Peak Temperature (tp) | 10-15 seconds | 10-15 seconds | | | | Ramp-Down Rate | 4°C/second max | 4°C/second max | | | | Time 25°C to Peak
Temperature | 6 minutes max | 8 minutes max | | | Note: All temperatures refer to topside of the package, measured on the package body surface CAUTION – Please note that if the host board is submitted to a wave soldering after the reflow operation, a solder mask must be used in order to protect the 32001345M module's metal shield from being in contact with the solder wave. 58 Wakis Avenue, Strijdompark Randburg, 2155 PO BOX 55536 Northlands 2116 Republic of South Africa Tel: +27 11 791 1033 | Fax: +27 11 791 1187 wireless@otto.co.za | www.otto.co.za # **Regulatory Approval** The 32001345M module is a RED Directive assessed radio module manufactured and tested with the intention of being integrated into a final product. The 32001345M module has been tested to RED Directive 2014/53/EU Essential Requirements for Health and Safety (Article 3.1a), Electromagnetic Compatibility (EMC) (Article 3.1b) and Radio (Article 3.2). Restrictions in terms of maximum allowed RF power or duty cycle may apply: it is the responsibility of the system integrator to assure conformance of the final application to these requirements. **Note:** To maintain conformance to the testing applied on the 32001345M device, the module shall be installed in accordance with the installation instructions in this data sheet and shall not be modified. When integrating a radio module into a completed product the integrator becomes the manufactirer of the final product and is therefore responsible for demonstrating compliance of the final product with the essential requirements of the RED Directive.