Thank you for purchasing the CobraMarine™ CPI M2200 Power Inverter. Properly used, this product will give you many years of reliable service.

How Your CobraMarine™ Power Inverter Works

The CobraMarine™ Power Inverter is an electronic product that has been designed and built to take low voltage DC (Direct Current) power from your boat, RV, automobile or other low voltage power supplies and CONVERT it to standard 115 volt AC (Alternating Current) power like the current you have in your home. This conversion process thereby allows you to use many of your household appliances and electronic products in automobiles, RVs, boats, tractors, trucks and virtually anywhere else.

Customer Assistance

Should you encounter any problems with this product, or not understand its many features, please refer to this owner’s manual. If you require further assistance after reading this manual, Cobra® Electronics offers the following customer assistance services:

For Assistance In the U.S.A.

Automated Help Desk English only.
24 hours a day, 7 days a week 773-889-3087 (phone).

Customer Assistance Operators English and Spanish.
8:00 a.m. to 6:00 p.m. CT, Monday through Friday (except holidays)
773-889-3087 (phone).

Questions English and Spanish.
Faxes can be received at 773-622-2269 (fax).

Technical Assistance English only.
English and Spanish. productinfo@cobra.com (e-mail).

For Assistance Outside the U.S.A.

Contact Your Local Dealer
Introduction

Features
• GFCI Outlet with Two AC Receptacles
• Conformal Coating*
• Tinned Wiring*

Volts and Amps Meters
• Reverse Polarity Protection

Remote On/Off Operation
• Low Battery Alarm

Automatic Thermal Protection/Shutdown
• Low Battery Shutdown

* To help resist corrosion
Important Safety Information

Before installing and using your CobraMarine™ Power Inverter, please read these general precautions and warnings.

Caution and Warning Statements

To make the most of this inverter, it must be installed and used properly. Please read the installation and operating instructions carefully before installing and using it. Special attention must be paid to the CAUTION and WARNING statements in the manual.

CAUTION Statements specify conditions which could cause damage to the unit or other equipment.

WARNING Statements identify conditions that could result in personal injury or loss of life.

General Precautions

1. Never install the inverter in a boat’s engine compartment where gas and battery fumes are present.
2. Do not operate the inverter if it has been dropped or damaged in any way.
3. Do not open the inverter; it contains no user-serviceable parts. Attempting to service unit could cause electrical shock.

NOTE Internal components remain charged after all power is disconnected.

4. Do not expose the inverter to rain, snow, bilge water or spray.
5. Do not obstruct the ventilation openings.
6. Do not install the inverter in zero-clearance compartment.

CAUTION This inverter should be used in negative ground applications only.
WARNING Power inverters contain components that may produce arcs or sparks. To prevent fire or explosion, do not install the inverter in areas or compartments containing batteries or flammable materials or in locations that require ignition-protected equipment.

WARNING To reduce the risk of fire, do not cover or obstruct the ventilation openings. Do not install inverter in zero-clearance compartment.

Caution: Rechargeable Appliances

Certain chargers for small nickel cadmium batteries can be damaged if connected to the CobraMarine™ M2200 Power Inverter. Two (2) particular types of equipment are prone to this problem:

1. Small battery-operated appliances such as flashlights, razors, and night lights that can be plugged directly into an AC receptacle to recharge.

2. Certain battery chargers for battery packs used in hand power tools. These chargers have a WARNING label stating that dangerous voltages are present at the battery terminals.

This problem does not occur with the vast majority of battery-operated equipment. Most use a separate charger or transformer that is plugged into the AC receptacle and produces a low voltage output. If the label on the AC adapter or charger states that it produces a low voltage AC or DC output (less than 30 volts), the inverter will have no problem powering the adapter safely.

CobraMarine™ M2200 Output Waveform

The output waveform is referred to as “square wave” or “modified sine wave.” It is a stepped waveform designed to have characteristics similar to the sine wave shape of utility power. A waveform of this nature is suitable for most AC loads (including linear and switching power suppliers used in electronic equipment, transformers and motors). Some very sensitive electronic equipment may not operate satisfactorily on “square wave” or “modified sine wave.”

Ground Fault Circuit Interrupter (GFCI) Outlet

Test the GFCI periodically to make sure it is operating properly (see page 16 for details).
Quick Evaluation Before Installation

This section provides you with basic information about the inverter and how to check its performance before installation.

Be Sure to Have on Hand:

- A 12 volt DC power source (such as a vehicle battery). The power source must provide between 11 and 15 volts DC and be able to supply enough current to run the test load. As a rough guide, divide the wattage of the test load by 10 to get the current (in amperes) the power source must deliver.

- A set of cables to connect the power source to the inverter (not included). The cables must be as short and thick as possible in order to reduce the voltage drop between the power source and the inverter when drawing current from the power source. If the cable suffers an excessive voltage drop, the inverter may shut down when drawing higher currents because the voltage at the inverter dropped below 10 volts. #4 AWG stranded copper cable is recommended. It should be no longer than 1.5 meters (4 feet). The end of the cable that connects to the inverter must have its insulation stripped off for about ½ inch (1.25 cm) back from the end, exposing the bare copper. The other end of the cable, which connects to the power source, must be terminated with a lug or other connector that provides a secure, low resistance connection. For example, if the power source is a battery, the cable must be terminated with a battery terminal that clamps to the post on the battery.

- A test load that can be plugged into the AC receptacle on the inverter for short term testing at a low power level. The following cables are recommended for testing low power level test loads only.

<table>
<thead>
<tr>
<th>Test Load Power</th>
<th>Minimum Cable Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>100w</td>
<td>#16 AWG copper</td>
</tr>
<tr>
<td>250w</td>
<td>#12 AWG copper</td>
</tr>
<tr>
<td>500w</td>
<td>#8 AWG copper</td>
</tr>
</tbody>
</table>

To Check Your Inverter’s Performance Before Installation:

1. Turn the inverter Off (see page 15 for details). If the power source is a DC power supply, switch it Off as well.
2. Connect cables to Power Input Terminals (see page 8 for details).
3. Connect cables to Power Source (see page 8 for details).
4. Check to make sure all connections are secure.
5. Turn the inverter On. If the power source is a DC power supply, switch it On first.
6. Plug in the test load. The inverter should supply power to the load. If the inverter is not working properly, refer to the Troubleshooting Guide on page 21 or Power and Protection Indicators section on page 18.
7. Test the GFCI Outlet (see page 16 for details).
Installation Requirements

The inverter must be installed in an area that meets all of the following requirements:

A. Dry
- Do not place in an area where water can drip or splash on the inverter.

B. Cool
- Ambient air temperature should be between 30°F and 105°F (0°C and 40°C).
- The cooler the better.

C. Ventilate
- Allow at least 1 inch (3 cm) of clearance around the inverter for proper airflow.
- Make sure that ventilation openings on the ends of the unit are not obstructed.

D. Safe
- Do not install the inverter in the same compartment as a battery or in any compartment that contains flammable liquids such as gasoline.

E. Close to Battery
- Install unit as close to battery as possible (without being in the same compartment) to minimize the length of cable required to connect the inverter to the battery. It is better and cheaper to run longer AC wires than longer DC wires (cables).

CAUTION To avoid fire, do not cover or obstruct ventilation openings. Do not install inverter in a zero-clearance compartment. Overheating may result.

CAUTION The inverter must only be connected to batteries with a nominal output voltage of 12 volts. It will not work with a 6 volt battery, and will be damaged if it is connected to a 16 volt battery.

WARNING This unit contains components which can produce arcs or sparks. To prevent fire or explosion, do not install in compartments containing a battery or flammable materials, or in a location which requires ignition protected equipment.

WARNING This unit is suitable for installation in negative ground applications only. Do not attempt to install to a positive ground application.

Mounting

To Mount Your Inverter:

1. Place the inverter on a flat surface with the mounting bracket against the mounting surface.

2. Mount to secure surface using mounting hardware that is corrosion resistant (not included).

The inverter can be mounted horizontally or vertically.
Connecting Cables (not included)

Power wire and wiring are very important to the performance of the inverter. Because the inverter has a low voltage, high current input, low resistance wiring is essential between the battery and inverter. This is so it can deliver the maximum amount of energy to the load.

Use only copper wire. Aluminum wire has about ⅓ more resistance than copper wire of the same size, plus it is difficult to make good, low-resistance connections to aluminum wire.

We recommend #4 AWG copper cable (90°C insulation rating) as the minimum size for connections between the battery and inverter.

Keep the cable length as short as possible, no more than 4 feet (1.5 meters). This will keep the voltage drop to a minimum.

If the cable has too much voltage drop, the inverter may shut down when drawing higher currents because voltage at the inverter may drop below 10 volts. If you must use longer cables, choose thicker cables, such as #2 AWG, and trim the ends of the cable to fit the terminals.

To Connect the Cables Between the Inverter and the Battery:

1. Turn the On/Off Switch on the inverter to the Off position. If the power source is a DC power supply, switch it Off as well.

2. On the end of the cable that connects to the inverter, strip back the insulation about ½ inch (1.25 cm), exposing the bare copper conductor.

3. Connect cables to the Power Input Terminals on right side panel of the inverter. The red terminal is positive (+) and the black terminal is negative (−). Insert the bare ends of the cables into the terminals and tighten the screws to clamp the wires safely.

4. Connect cables to the power source:
 a. Connect each cable from the Negative (Black) Terminal of inverter to the Negative Terminal of the power source. Make a secure connection.
 b. Connect each cable from the Positive (Red) Terminal of the inverter to the Positive Terminal of the power source (the battery’s main fuse or the battery selector switch, if you are using one). Make a secure connection.

You might observe a spark when you make this connection, since current can flow to charge capacitors in the inverter.

Continued…
Connecting Cables

All power connections to your CobraMarine™ Power Inverter must be Positive To Positive and Negative To Negative.

CAUTION Electrical installations must meet local and national wiring codes, and should be performed by a qualified electrician.

CAUTION Do not connect the inverter and another AC source (such as a generator or utility power) to the AC wiring at the same time. The inverter will be damaged if its output is connected to AC voltage from another source. Damage can even occur if the inverter is switched Off.

CAUTION Do not connect the inverter to an AC branch circuit that has high-power consumption loads. It will not operate electric heaters, air conditioners, stoves, and other electrical appliances that consume more than 2200 watts.

CAUTION Loose connectors result in excessive voltage drop and may cause overheated wires and melted insulation.

CAUTION Reverse polarity connections (positive to negative) will blow internal fuses in the inverter and may permanently damage the unit. Such damage is not covered by the warranty.

CAUTION We recommend a main fuse in the battery’s positive cable to protect against DC wiring short circuits (external to the inverter). The fuse should be as close to the battery as possible. We recommend a Buss Fuse ANL-250 or equivalent. The specific fuse ampere rating should be sized to allow operation of all your DC powered equipment.

CAUTION Remove any jewelry (watch, ring, etc.). Be careful not to short circuit the battery with any metallic object (wrench, etc.).

WARNING If you are making a permanent AC connection to the inverter, make sure that the AC wiring steps are performed before any DC wiring is done. (DC hook-up energizes internal components, regardless of the position of the On/Off Switch). Working on AC connections in such a circumstance may result in an electric shock.

WARNING 115 volt AC power is potentially lethal. Do not work on AC wiring when it is connected to the inverter (even if it is switched Off) unless the DC power source is physically disconnected from the inverter. Also, do not work on AC wiring if it is connected to another AC power source such as a generator or the utility line.

WARNING You may observe a spark when making the connection because current can flow to charge the capacitors in the inverter. Do not make this connection in the presence of flammable fumes. Explosion or fire may result. Thoroughly ventilate the battery compartment before making this connection.
Power Consumption

For each piece of equipment you will be operating from the inverter, you must determine the battery’s **reserve capacity** (how long the battery can deliver a specific amount of current — in automotive batteries, usually 25 amperes) or **ampere-hour capacity** (a measure of how many amperes a battery can deliver for a specified length of time).

Example – Reserve capacity: a battery with a reserve capacity of 180 minutes can deliver 25 amperes for 180 minutes before it is completely discharged.

Example – Ampere-hour capacity: a battery with an ampere-hour capacity of 100 ampere-hours can deliver 5 amperes for 20 hours before it is completely discharged.

To Determine the Battery Ampere-Hour Capacity You Require:

1. Determine how many watts each piece of equipment consumes. This can normally be found on the product label. If only the current draw is given, multiply the current draw by 115 to get the watt consumption.

2. Estimate the time (in hours) that each piece of equipment will be running between battery charging cycles.

3. Calculate the total watt-hours of energy consumption (power x operating time) using the average power consumption and the total estimated running time (in hours).

 \[
 \text{Power} \times \text{Operating Time} = \text{Watt-Hours.}
 \]

4. Divide the watt-hours by ten (10) to determine how many power supply's (12 volt) ampere-hours will be consumed.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Power Consumption (Watts)</th>
<th>Time (Hours)</th>
<th>Watt-Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laptop</td>
<td>100</td>
<td>2</td>
<td>200</td>
</tr>
<tr>
<td>TV/VCR (up to 25")</td>
<td>115</td>
<td>3</td>
<td>345</td>
</tr>
<tr>
<td>Blender</td>
<td>300</td>
<td>15</td>
<td>75</td>
</tr>
</tbody>
</table>

Ground Wiring

There is a screw on the rear panel for **Chassis Ground**. This is to connect the chassis of the inverter to ground.

The **Chassis Ground Screw** must be connected to a grounding point, which will vary depending on where the unit is installed. Use a #8 AWG copper wire (preferably with green/yellow insulation) to connect the chassis ground screw to the grounding point.

In a Vehicle:
Connect the **Chassis Ground** to the chassis of the vehicle.

In a Boat:
Connect to the **Boat Grounding System**.

In a Fixed Location:
Connect the **Chassis Ground Screw** to earth ground by connecting to a ground rod (a metal rod pounded into the earth) or other proper service entrance ground.
Remote On/Off Switch

The Remote On/Off Switch allows you to turn On or Off the CobraMarine™ Power Inverters from a convenient location — up to 20 feet (6 meters) away — while the inverter is mounted out of reach and sight.

To Install Remote On/Off Switch:

1. Select a location that is convenient for operation (and where the Remote On/Off Switch assembly and cable does not interfere with the driver or a passenger). Be sure there is adequate clearance behind the panel before drilling or cutting.

2. Cut out the mounting template included with this manual on a separate card.

3. Position the template on the wall/surface where you want to install the Remote On/Off Switch.

4. Mark the location of the two screw holes and the square to be cut out for the switch board.

5. Create two pilot holes for the screws.

6. Cut out the square from the template to accommodate the switch board.

 If cutting a square on the wall is not desirable, use bushings (not included) to raise the switch assembly so that switch board clears the wall.

7. Fasten the switch plate using the two screws (included).

8. Connect the cable (RJ-11 connector) to the inverter's remote jack.

 If more than 20 feet of cable is required, use a 1-to-1 female connector and a 4-wire conductor, phone extension cord with RJ-11 male connectors on each end to extend the cable. 50 feet of cable is maximum recommended.

Turning Your Inverter On or Off

Be sure to have your power inverter properly installed before attempting to turn the unit On (see “Installation” page 6).

To Turn the Power Inverter On:

1. If a DC power supply is being used as the power source, switch it On.
2. On the left side panel, switch the On/Off Switch to On.

 The inverter is now ready to deliver AC power to your loads. If several loads are to be operated by the inverter, turn them On separately, after the inverter has been turned On. This will ensure that the inverter does not have to deliver the starting currents required for all the loads at once.

To Turn the Power Inverter Off:

1. On the left side panel, switch the On/Off Switch to Off.

 Continued…
NOTE The On/Off Switch turns the control circuit in the inverter On and Off. It does not disconnect power from the inverter.

When the switch is in the Off position, the inverter draws no current from battery. When it’s in the On position, but no power is being supplied to the load, the inverter draws less than 500 milliamperes from the battery. This is low current draw. It would take more than a week to discharge a 100 ampere-hour battery at this rate depending on the age of the battery.

Remote On/Off Switch

A Remote On/Off Switch can be connected to the Remote Jack allowing you to turn the inverter On or Off from a convenient location when the inverter is installed in an out-of-reach location. Be sure to have your power inverter and Remote On/Off Switch properly installed before attempting to turn the unit On (see “Installation” page 6).

To Turn the Power Inverter On or Off:
1. On the left side panel of the inverter, switch the On/Off Switch to On.
2. Press the Remote On/Off Switch button to toggle On or Off. The remote On/Off Switch power indication light will remain lit when power is On.

The inverter is now ready to deliver AC power to your loads. If several loads are to be operated by the inverter, turn them On separately, after the inverter has been turned On. This will ensure that the inverter does not have to deliver the starting currents required for all the loads at once.

Ground Fault Circuit Interrupter (GFCI) Outlet

The AC outlet on your CobraMarine™ Power Inverter is a Ground Fault Circuit Interrupter (GFCI). This protects you against hazardous electrical shock that could be caused by dampness, faulty mechanism, worn cables, water spray, etc.

Test the GFCI periodically to make sure it is operating properly.

To Test the GFCI Outlet:
1. Turn the inverter On (see page 15 for details).
2. Plug a test lamp into the outlet.
3. On the GFCI Outlet, press the Test Button.

The Reset Button should pop out and power to the lamp should turn Off. If the lamp remains On, or if the Reset Button does not pop out, the unit is defective. Return the inverter to the place of purchase for replacement or service.
4. On the GFCI Outlet, push the Reset Button to return to regular operation.
Power and Protection Indicators

The Power and Protection Indicators include, along with an audible alarm, an over temperature indicator, an amps meter, a volts meter and an overload indicator.

Over Temperature Indicator

Temperature Overload:
The indicator light will turn On, then the inverter will shutdown. The inverter will continue to check for appropriate temperature levels while trying to restart the load.

Volts Meter

The volts meter indicates the battery voltage level input.
For long term operation, the volts meter should remain in the green sections of the bar graph. If the meter enters the red sections of the bar graph, the alarm will sound and inverter will shutdown. The inverter will continue to check for appropriate voltage levels while trying to restart the load.

Amps Meter and Overload Indicator

Amps Meter:
The amps meter indicates the current drawn from the battery. It will not indicate the current drawn by other loads also connected to the battery. For long term operation, the amps meter should remain in the green sections of the bar graph.

Current Overload:
The meter will enter the red section of the bar graph, the alarm will sound, the overload indicator light will turn On, then the inverter will shutdown. The inverter will continue to check for appropriate current levels while trying to restart the load.

NOTE
A momentary sound of the internal alarm and/or flash of the indicators or meters is normal at start up.
Operating Limits

Power Output
The inverter can deliver 2200 watts for about 60 minutes. The inverter must cool for 15 minutes before it can resume operation at 2200 watts. Note: The wattage rating applies to resistive loads.
The inverter will operate most AC loads within its power rating. Some induction motors used in freezers, pumps, and other motor-operated equipment require very high surge currents to start. The inverter may not be able to start some of these motors even though their rated current draw is within the inverter’s limits. The inverter will normally start single phase induction motors rated at ½ HP or less.

Input Voltage
The inverter will operate from input voltage ranging from 10 volts to 15 volts. Optimum performance will occur when the voltage is between 12 volts and 14 volts. If the voltage drops below 10.5V+/-0.3V, an audible low battery warning will sound. The inverter will shut down if the input voltage drops below 9.5V+/-0.3V. This protects the battery from being over-discharged. It will restart when the input voltage exceeds 12V +/-0.3V.
The inverter will also shut down if the input voltage exceeds 15.75V+/-0.75V. This protects the inverter against excessive input voltage. Although the inverter has protection against over-voltage, it may still be damaged if the input voltage was to exceed 16 volts.

Troubleshooting Guide

Problem/Symptom	Possible Causes	Solution
Low output voltage | Overload | Reduce the load. |
No output voltage | Low input voltage | Recharge battery. Check connections and cable. |
No output voltage after prolonged use | Thermal shutdown | Allow inverter to cool Off. Reduce load, continuous operation input current required. Improve ventilation; Make sure ventilation openings in the inverter are not obstructed. Reduce ambient temperature. |
No output voltage, “Protect” indicator lighted | High input voltage | Make sure the inverter is connected to 12V battery. Check regulation of charging system. |
No output voltage | Short circuit | Check load for proper operation. |
No output voltage | Inverter switched Off | Turn inverter On. |
No power to inverter | Check wiring to inverter. |
Reverse DC polarity | Observe correct polarity. |
Low battery alarm on all the time | Poor DC wiring | Check connections. |
Poor battery condition | Make sure battery is fully charged. |
Specifications

Continuous output power (1 hour) 2200w
Surge rating (0.1 second) .. 4400w
Peak efficiency (12V – ½ load) > 88%
Efficiency (full load, 12V) ... > 83%
No load current draw .. < 0.5A (12.6V)
Output waveform (resistive load) Modified sine wave
Output frequency .. 58HZ – 62HZ
Output voltage .. 109V – 120V
Input voltage .. 10.4VDC – 14.4VDC
Alarm voltage (unload) ... 10.2V – 10.8V
Shutdown voltage (unload) 9.2V – 9.8V
Operating temperature range 0°C – 40°C
(32°F – 104°F)
Storage temperature range -40°C – 85°C
(-40°F – 185°F)
Protection ... Overload, short-circuit, overtemp,
reverse polarity, under/over voltage

Notes
All protection is automatically recovered.
To protect the battery, if the unit needs to be restarted after low voltage protection,
the voltage of DC input should be above 12V.
To extend the life of the fan, it will stop when there is no load. The speed of the fan
increases as the load increases.
The unit is completely insulated in input and output for added safety.
Maintenance

Very little maintenance is required to keep the inverter operating properly. The exterior of the unit should be cleaned periodically with a damp cloth to prevent accumulation of dust and dirt. At the same time, tighten the screws on the DC input terminals. Be sure vents and fans are free of dust or debris.

Product Service

If you have any questions about operation or installing your new CobraMarine™ product, or if you are missing parts...

Please call Cobra® first! DO NOT RETURN THIS PRODUCT TO THE STORE!
See customer assistance on page A1.

If your product should require factory service, please call Cobra® first before sending your power inverter. This will ensure the fastest turn-around time on your repair. You may be asked to send your power inverter to the Cobra® factory.

It will be necessary to furnish the following to have the product serviced and returned:
1. For Warranty Repair include some form of proof-of-purchase, such as a mechanical reproduction or carbon copy of a sales receipt. If you send the original receipt, it cannot be returned.
2. Send the entire product.
3. Enclose a description of what is happening with the power inverter. Include a typed or clearly printed name and address of where the power inverter is to be returned.

4. Pack power inverter securely to prevent damage in transit. If possible, use the original packing material.
5. Ship prepaid and insured by way of a traceable carrier such as United Parcel Service (UPS) or First Class Mail to avoid loss in transit to:

 Cobra® Factory Service
 Cobra® Electronics Corporation
 6500 West Cortland Street
 Chicago, Illinois 60707 USA.

6. If the power inverter is in warranty, upon receipt of your power inverter, it will either be repaired or exchanged depending on the model. Please allow approximately 3 – 4 weeks before contacting Cobra® for status. If the power inverter is out of warranty, a letter will automatically be sent informing you of the repair charge or replacement charge.

If you have any questions, please call 773-889-3087 for assistance.
Accessories and Order Form

Name

Address (No P.O. Boxes)

City
State/Province
Zip
Country

Telephone

Credit Card Number

Type: [] Visa
[] Mastercard
[] Discover
Exp. Date

Customer Signature

Item #
U.S. Cost Each
Qty
Amount

<table>
<thead>
<tr>
<th>Item #</th>
<th>U.S. Cost Each</th>
<th>Qty</th>
<th>Amount</th>
</tr>
</thead>
</table>

Tax Table

- Ohio, Wisconsin add 5%
- Indiana, Michigan add 6%
- California add 7.25%
- Illinois add 8.75%

U.S. Subtotal

Shipping/Handling

For AK, HI and PR add additional $26.95 for FedEx Next Day or $10.95 for FedEx 2nd Day. Excludes weekend and holiday shipments. Please allow 2-3 weeks for delivery in the U.S. Prices subject to change without notice.

Ordering From U.S.A.

Call 773-889-3087 for pricing or visit www.cobra.com.

For credit card orders, complete and return this order form to fax number 773-622-2269. Or call 773-889-3087 (Press 1 from the main menu) 8:00 a.m. to 6:00 p.m. CT, Monday through Friday.

Make check or money order payable to: Cobra® Electronics, Attn: Accessories Dept.
6500 West Cortland Street, Chicago, IL 60707 USA

To order online, please visit our website: www.cobra.com

Amount
Shipping/Handling

- $10.00 or less $3.00
- $10.01-$25.00 $5.50
- $25.01-$50.00 $7.50
- $50.01-$90.00 $10.50
- $90.01-$130.00 $13.50
- $130.01-$200.00 $16.50
- $200.01 plus 10% off

Optional Accessories

You can find quality Cobra® products and accessories at your local Cobra® dealer, or in the U.S.A., you can order directly from Cobra®.