Development Help

ocument

BLUETOOTH SDK MOUDEL

Table of Contents

INTFOAUCTION TO SDK ...ttt 2
Program DEMONSITAtIONcccvciiiieiceieee ettt 2
Program INSTAIATION ..ottt st 2
BIUBLOOTN BLE ...ttt 4
BIUETOOTN SPP ..o 11
QUICK USE .ottt ettt et en s en e 19
SYSTEM PEIMISSIONS ..ottt 19
INEIAHIZATION ... 19
BLE Mode Scan and CONNECE DEVICES. ...t sssse s 20
BLE Mode: Receiving Data and Sending Commandscccocceviieiinieiienisiesie e, 25
SPP Mode: Scanning and CoNNECLING DEVICEScoveevcueveieeeeeeeeeee oo 27
SPP Mode: SeENdiNg COMMEANGASc.iviiiiiiiieiece sttt 35
List Of COMMAN METNOAS. ... 35
ScannerUtil.ConvertByte(String CMA) ..ot 35
ScannerUtil.SOftTrigger(int SECONA)t 44
ScannerUtil.CustomBeep(iNt [EVEI) ..o 44
ScannerUtil. CustomBeepTime(int time,int type,int freqQUENCY)......ccoceveveeevceeeeeeeee e 45
ScannerUtil. SetTimeStamp(Date date).......cccciieiieiiieesieee e 46
USBQE EXAMIPIE ...ttt ettt 46
Send software trigger COMMANGccouiiriiieees e s 46

Send custom beep Vibration COMMANG ..o s 47

Introduction to SDK

This SDK is designed to assist users in interacting with scanners through
Bluetooth communication using Android smartphones. It allows users to

send commands to control the scanner and receive data from it.
Development Language: Java
Development Tool: Android Studio

This document summarizes common scenarios for user support and

demonstrates program construction using the SDK.

Program Demonstration

Program Installation
1.Unzip the SDK development package and locate the file within the folder:

app -> release -> app-release.apk

2.Install the APK program on your Android device. After installation, open

the software as shown below:

START SCANNING

I O <

Bluetooth BLE

1. Use the scanner to scan the command code below to switch the
scanner to Bluetooth mode.

e#IFSNOS4

2. Use the scanner to scan the command code below to change the

scanner's Bluetooth mode to Bluetooth BLE.

R AT

Wi A" BLE F3 ¢

3. Open the app and navigate to the Bluetooth BLE device search and

pairing interface.

11:01 Gd

NetumApp

X
STOP SCANNING 4

*)) RS barcode scanner

-48 CONNECT
DD:0D:30:5E:4B:40 -\\\

*)) RS barcode scanner

-56 CONNECT
DD:0D:30:5E:4B:B4 R\\

Il 0)

4. Select "RS barcode scanner” to connect to the scanner. Upon

successful connection, the main interface displays as follows:

11:02 Gd

NetumApp

START SCANNING

RS barcode scanner

DISCONNECT
0 DD:0D:30:5E:4B:40

—~1 RS barcode scanner ENT

DISCONNECT ER

DD:0D:30:5E:4B:B4

I O <

» The main interface is used to display Bluetooth devices detected

and connected scanners.

5. Click on the menu option button located at the top-right corner of

the main interface to access the testing and receiving interface.

11:02 Gd

Scan record

All

A
Software triggered scanning | 3 \ SCAN

M S

~ N
Sound vibration control 10 | m
|)

Receive Count:2

2024-01-23 11:02:21

RS barcode scanner-DD:0D:30:5E:4B:40
6928804014662

2024-01-23 11:02:18

RS barcode scanner-DD:0D:30:5E:4B:B4
6928804014662

I O <

a) Device Selection: You can choose the device you wish to control.

b) Software-triggered scanning command with a set range of 1-7

seconds.

c) Sound and vibration control with a set range of 0-26.

SDE sound (n=0x30" 0x44) “4BUZZHEn” see right beep/led table
e.2. SDE sound 0 V$BUZZHBD” 1 high shert heep
e.g. SDE sound 26 “$BUZZHB]” High-high-low—low beep

Beep / LED Action Value

1 high short beep
2 high short beeps
3 high short beeps
4 high short beeps
5 high short beeps
1 low short beep

2 low short beeps
3 low short beeps
4 low short beeps
5 low short beeps
1 high long beep

2 high long beeps
3 high long beeps
4 high long beeps
5 high long beeps
1 low long beep

2 low long beeps

3 low long beeps

4 low long beeps

5 low long beeps
Fast warble beep
Slow warble beep
High-low beep
Low-high beep
High-low-high beep
Low-high-low beep
High-high-low-low beep

d) Custom sound and vibration control with three parameters:

Time: Continuous action time of sound or vibration, range: 10-

2540 ms.

Type: Control type, 0 = control both sound and vibration, 1 =

control sound, 2 = control vibration.

Frequency: Sound frequency, range: 100-5200 Hz.

@~ ;b WA O

SR S T H T N SR G G G G G G G 0.
& UN 2000 NDORE N 2SO

25
26

+t=02 FF, beep 10ms 2. 54z;
n=0"2,
0. beeptvibration
1. onlv beepn,
2, only vibration.
fF=00"FF (1007 5200H2) , fregence=100+f£+20.

Continue beep “IBUZZABEttnff”

e) Reception list for receiving scanner scan data.

6. Click on the connected scanner in the main interface to enter the

scanner's individual control interface (under construction).

Bluetooth SPP

1. Use the scanner to scan the command code below to switch the
scanner to Bluetooth mode.

‘e#IFSNOS4

2. Use the scanner to scan the command code below to change the

scanner's Bluetooth mode to Bluetooth SPP.

A

T+MODE=1
7. Open the app and navigate to the Bluetooth SPP device search and

pairing interface.

11:01

NetumApp

START SCANNING

I O <

8. While the app is in search mode, the scanner scans the specified
format connection setup code. Follow the steps below to actively

connect the phone:

a) Scan the clear pairing record setup code.

Un-pair the scanner

b) Scan the Bluetooth address setup code.

Format 1: %%88BD45335E2C$, where 88BD45335E2C is the

phone's Bluetooth address.

Format 2: AT+SPPCONN=88BD45335E2C, where 88BD45335E2C

is the phone's Bluetooth address.

[=] % =]

w ula

[=] et

9. Select "RS barcode scanner" to connect to the scanner. Upon

successful connection, the main interface displays as follows:

11:01 Gd

NetumApp

X
STOP SCANNING 4

*)) RS barcode scanner

-48 CONNECT
DD:0D:30:5E:4B:40 -\\\

*)) RS barcode scanner

-56 CONNECT
DD:0D:30:5E:4B:B4 R\\

Il 0)

» The main interface is used to display Bluetooth devices detected

and connected scanners.

10.Click on the menu option button located at the top-right corner of

the main interface to access the testing and receiving interface.

11:02 Gd

Scan record

All

A
Software triggered scanning | 3 \ SCAN

M S

~ N
Sound vibration control 10 | m
|)

Receive Count:2

2024-01-23 11:02:21

RS barcode scanner-DD:0D:30:5E:4B:40
6928804014662

2024-01-23 11:02:18

RS barcode scanner-DD:0D:30:5E:4B:B4
6928804014662

I O <

a) Device Selection: You can choose the device you wish to control.

b) Software-triggered scanning command with a set range of 1-7

seconds.

c) Sound and vibration control with a set range of 0-26.

SDE sound (n=0x30" 0x44) “4BUZZHEn” see right beep/led table
e.2. SDE sound 0 V$BUZZHBD” 1 high shert heep
e.g. SDE sound 26 “$BUZZHB]” High-high-low—low beep

Beep / LED Action Value

1 high short beep
2 high short beeps
3 high short beeps
4 high short beeps
5 high short beeps
1 low short beep

2 low short beeps
3 low short beeps
4 low short beeps
5 low short beeps
1 high long beep

2 high long beeps
3 high long beeps
4 high long beeps
5 high long beeps
1 low long beep

2 low long beeps

3 low long beeps

4 low long beeps

5 low long beeps
Fast warble beep
Slow warble beep
High-low beep
Low-high beep
High-low-high beep
Low-high-low beep
High-high-low-low beep

d) Custom sound and vibration control with three parameters:

Time: Continuous action time of sound or vibration, range: 10-

2540 ms.

Type: Control type, 0 = control both sound and vibration, 1 =

control sound, 2 = control vibration.

Frequency: Sound frequency, range: 100-5200 Hz.

@~ ;b WA O

SR S T H T N SR G G G G G G G 0.
& UN 2000 NDORE N 2SO

25
26

tt=02"FF, beep 10ms 2. 54z ;
n=0"2,
0. beeptvibration
1. onlv heep,
2. only vibration.
f=00"FF (100"5200HZ) , fregence=100+f f+20.

Continue beep "IBUZZHBEttnff”

e) Reception list for receiving scanner scan data.

Click on the connected scanner in the main interface to enter the

scanner's individual control interface (under construction).

Quick Use

System Permissions
1. Add the following permission to the Android application manifest file

(AndroidManifest.xml):

<uses-permission
<uses-permission
<uses-permission

<hame

<uses-permission
/>

<uses-permission

<uses-permission
<uses-permission
:name

<uses-permission

<uses-permission

/>

Initialization

» Initialize only once, call before using methods in the library, not necessarily in the
Application

SPPManager.getInstance().init(getApplication())

> Global Configuration

SPPManager.getInstance()

.enablelLog()
.setReConnectCount(
.setConnectOverTime(

.setOperateTimeout(

» Configure Logs
By default, the runtime logs in the library are enabled. If preferred, they can be disabled.

SPPManager enablelog(enable)

» Configure Reconnection

Set the number of reconnect attempts and the reconnect interval in milliseconds, defaulting
to 0 attempts for no reconnection.

Manager setReConnectCount(count)

» Configure Split Write

Set the data length for split write, defaulting to 20 bytes per package.

Manager setSplitWriteNum(num)

» Configure Connection Timeout

Set the connection timeout in milliseconds, defaulting to 10 seconds.

Manager setConnectOverTime(time)

» Configure Operation Timeout

Set the timeout for readRssi, setMtu, write, read, notify, indicate operations in milliseconds,
defaulting to 5 seconds.

BLE Mode Scan and Connect Devices

» Configure Scan Rules

BleScanRuleConfig scanRuleConfig = BleScanRuleConfig.Builder()

.setDeviceName(names)

.setDeviceMac(mac)

.setAutoConnect(isAutoConnect)

.setScanTimeOut (

.setFilter(

.build()

Manager.getInstance().initScanRule(scanRuleConfig)

BLEManager.getInstance().scan(BleScanCallback() {
@Override
onScanStarted(success) {

// Start scanning (main thread)
.clearScanDevice()
.notifyDataSetChanged()

.startAnimation(
.setVisibility(View.
.setText(getString(R.string.

@Override
onLeScan(BleDevice bleDevice) {

.onLeScan(bleDevice)

@Override
onScanning(BleDevice bleDevice) {
// Scan a BLE device that meets the scan rules (main thread)
.addDevice(bleDevice)
.notifyDataSetChanged()

@Override
onScanFinished(List<BleDevice> scanResultlList) {
// Scan finished, list all BLE devices that meet the scan rules
(main thread)
.clearAnimation()
.setVisibility(View.
.setText(getString(R.string.

})

The scanning and filtering process occurs in a separate thread, so it won't
affect UI operations in the main thread. Ultimately, each callback result

returns to the main thread.

» Connect through Device Object

Connect using the scanned BleDevice object.

BLEManager.getInstance().connect(bleDevice BleGattCallback() {

@0verride
onStartConnect() {

// Start connecting
.show()

@0verride

onConnectFail(BleDevice bleDevice, BleException exception)

// Connection failed
.clearAnimation()
.setVisibility(View.
.setText(getString(R.string.))
.dismiss()
Toast.makeText(MainActivity. getString(R.string.

Toast.) .show()
)i

@0override
onConnectSuccess(BleDevice bleDevice, BluetoothGatt gatt

status) {
// Connection successful, BleDevice is the connected scanner

.dismiss()
.addDevice(bleDevice)
.notifyDataSetChanged()

receive(bleDevice)

@0override
onDisConnected(isActiveDisConnected, BleDevice

bleDevice, BluetoothGatt gatt status) {
// Connection interrupted, isActiveDisConnected indicates whether
the disconnection method was actively called
.dismiss()

.removeDevice(bleDevice)
.notifyDataSetChanged()

(isActiveDisConnected) {

Toast.makeText(MainActivity.

getString(R.string.), Toast.

} {
Toast.makeText(MainActivity.

getString(R.string.), Toast.). show()

ObserverManager.getInstance().notifyObserver(bleDevice)

- On some phone models, connectGatt must be in the main thread to be
effective. It is highly recommended to perform the connection process in
the main thread.

- Reconnect after connection failure: The framework includes a reconnect
mechanism after connection failure, which can be configured with the number
of reconnect attempts and time intervals. Alternatively, you can manually
call the "connect™ method with a delay in the “onConnectFail" callback.

- Reconnect after connection disconnection: You can call the "connect’
method again in the “onDisConnected™ callback.

- To ensure a successful reconnection rate, it is recommended to wait for
some time after disconnection before attempting reconnection.

- On some device models, after a connection failure, the device may be
briefly unable to scan. Directly connecting to the device through its

object or MAC address, without scanning, can be done to address this.

» Connect through MAC

Connect directly using the known device's Mac address.
BLEManager.getInstance().connect(mac BleGattCallback() {
@Override
onStartConnect() {
// Start connecting
.show()

@Override

onConnectFail(BleDevice bleDevice, BleException exception)

// Connection failed
.clearAnimation()
.setVisibility(View.
.setText(getString(R.string.))
.dismiss()
Toast.makeText(MainActivity. getString(R.string.
Toast.) .show()

}

@Override
onConnectSuccess(BleDevice bleDevice, BluetoothGatt gatt
status) {
// Connection successful, BleDevice is the connected scanner
.dismiss()

.addDevice(bleDevice)

.notifyDataSetChanged()

receive(bleDevice)

@0verride
onDisConnected(isActiveDisConnected, BleDevice
bleDevice, BluetoothGatt gatt status) {
// Connection interrupted, isActiveDisConnected indicates whether
the disconnection method was actively called
.dismiss()

.removeDevice(bleDevice)
.notifyDataSetChanged()

(isActiveDisConnected) {
Toast.makeText(MainActivity.
getString(R.string.), Toast.
} {
Toast.makeText(MainActivity.
getString(R.string.), Toast.) .show()
ObserverManager.getInstance().notifyObserver(bleDevice)

- This method can attempt to directly connect to scanners around with the
specified MAC address without scanning.

Scan and Connect

After scanning and identifying the first device that meets the scanning

criteria, stop scanning and proceed to connect to that device.

BLEManager.getInstance().scanAndConnect(new BleScanAndConnectCallback() {

@Override
public void onScanStarted(boolean success) {

// Start scanning (main thread)

@Override
public void onScanFinished(BleDevice scanResult) {
// Scan finished, the result is the first BLE
device that meets the scan rules; if empty, no device was found (main

thread)
}

@Override

public void onStartConnect() {

// Start connecting (main thread)

@Override
public void onConnectFail(BleDevice bleDevice,BleException
exception) {

// Connection failed (main thread)

@Override
public void onConnectSuccess(BleDevice bleDevice, BluetoothGatt
gatt, int status) {

// Connection successful, BleDevice is the

connected BLE device (main thread)(main thread)

}

@Override
public void onDisConnected(boolean isActiveDisConnected, BleDevice
device, BluetoothGatt gatt, int status) {
// Connection disconnection, isActiveDisConnected
indicates whether it is actively disconnected (main thread)(main thread)
}
}s

Tips:

- The scanning and filtering processes take place in the working thread, so
they do not affect the UI operations of the main thread. However, each
callback result returns to the main thread. Connection operations occur in

the main thread.

» Stop Scanning

During the scanning process, stop the scanning
operation.BLEManager.getInstance().cancelScan()
Tips:

- After calling this method, if the scanning is still ongoing, it will end

immediately and callback to the “onScanFinished™ method.

BLE Mode: Receiving Data and Sending Commands

» Start Receiving Data

BLEManager.getInstance().startReceive(
bleDevice
BleNotifyCallback() {

@Override
onNotifySuccess() {
runOnUiThread(Runnable() {
// Notification operation successful

@Override

run() {

@Override
onNotifyFailure(BleException exception) {
runOnUiThread(Runnable() {
// Notification operation successful

@Override

run() {

@Override
onCharacteristicChanged([] data) {
// After the notification is opened, the data sent by the
scanner will appear here
String message = String(data)
runOnUiThread(Runnable() {
@Override

run() {
(MessageActivity.

MessageActivity. .addMessage(bleDevice.getName()+
+bleDevice.getMac(),message)
} {
Toast.makeText(MainActivity. message
) .show()

}

})

» Stop Receiving (Unsubscribe)

BLEManager.getInstance().stopReceive(bleDevice)

» Send Scanner Commands

BLEManager.getInstance().ScannerCommand(device
ScannerUtil.CustomBeep(Integer.parseInt(.getText().toString(
))) BleWriteCallback() {

@Override
onWriteSuccess(current
[1 justWrite) {

@Override

onWriteFailure(BleException exception) {

SPP Mode: Scanning and Connecting Devices
» Configure Scanning Rules

BleScanRuleConfig scanRuleConfig = BleScanRuleConfig.Builder()

.setDeviceName(names)
.setDeviceMac(mac)
.setAutoConnect(isAutoConnect)
.setScanTimeOut (

.setFilter(

.build()

Manager.getInstance().initScanRule(scanRuleConfig)

SPPManager.getInstance().scan(
BleScanCallback()

@Override

onScanStarted(success) {

.clearScanDevice()
.notifyDataSetChanged()
.startAnimation(
.setVisibility(View.
.setText(getString(R.string.

@Override
onLeScan(BleDevice bleDevice) {

.onLeScan(bleDevice)

@Override
onScanning(BleDevice bleDevice) {
.addDevice(bleDevice)

.notifyDataSetChanged()

@Override

onScanFinished(List<BleDevice> scanResultList) {

.clearAnimation()
.setVisibility(View.
.setText(getString(R.string.
}

}
SppScanAndConnectCallback()

@Override

onScanStarted(success) {

.clearScanDevice()
.notifyDataSetChanged()

.startAnimation(

.setVisibility(View.
.setText(getString(R.string.

@Override
onLeScan(BleDevice bleDevice) {
.onLeScan(bleDevice)

@Override
onScanning(BleDevice bleDevice) {

.addDevice(bleDevice)
.notifyDataSetChanged()

@Override
onScanFinished(List<BleDevice> scanResultList) {

.clearAnimation()
.setVisibility(View.
.setText(getString(R.string.

@Override
onStartConnect() {
.show()

@Override
onConnectFail(BleDevice bleDevice, BleException
exception) {

.clearAnimation()
.setVisibility(View.
.setText(getString(R.string.
.dismiss()
Toast.makeText(MainActivity.

getString(R.string.), Toast.
}

@Override

onConnectSuccess(BleDevice bleDevice
BluetoothSocket socket status) {

.dismiss()
.addDevice(bleDevice)
.notifyDataSetChanged()

@Override
onDataReceiving(BleDevice bleDevice

String message = String(data)
runOnUiThread(Runnable() {
@0override

run() {
(MessageActivity.

MessageActivity. .addMessage(bleDevice.getName()+
+bleDevice.getMac(),message)
} {
Toast.makeText(MainActivity. message
) .show()
}

@Override
onDisConnected(isActiveDisConnected
BleDevice bleDevice, BluetoothSocket socket status) {

.dismiss()

.removeDevice(bleDevice)
.notifyDataSetChanged()

(isActiveDisConnected) {
Toast.makeText(MainActivity.

getString(R.string.), Toast.
}

Toast.makeText(MainActivity.
getString(R.string.), Toast.). show()
ObserverManager.getInstance().notifyObserver(bleDevice)

The scanning and filtering processes occur in the working thread, so they
do not affect the UI operations of the main thread. Ultimately, each
callback result returns to the main thread.

» Connect via Device Object

Connect using the scanned BleDevice
object.SPPManager.getInstance().connect(bleDevice SppConnectCallback()
{
@0override
onStartConnect() {
.show()

@0verride
onConnectFail(BleDevice bleDevice, BleException exception)

.clearAnimation()
.setVisibility(View.
.setText(getString(R.string.))
.dismiss()
Toast.makeText(MainActivity. getString(R.string.
Toast.) .show()

}

@0verride
onConnectSuccess(BleDevice bleDevice, BluetoothSocket
socket status) {

.dismiss()

.addDevice(bleDevice)
.notifyDataSetChanged()

@0verride

onDataReceiving(BleDevice bleDevice [] data) {

String message = String(data)
runOnUiThread(Runnable() {
@Override

run() {
(MessageActivity.

MessageActivity. .addMessage(bleDevice.getName()+
+bleDevice.getMac(),message)
} {
Toast.makeText(MainActivity. message
) .show()

@0verride
onDisConnected(isActiveDisConnected, BleDevice
bleDevice, BluetoothSocket socket status) {

.dismiss()

.removeDevice(bleDevice)
.notifyDataSetChanged()

(isActiveDisConnected) {
Toast.makeText(MainActivity.

getString(R.string.), Toast.
} {

Toast.makeText(MainActivity.

getString(R.string.), Toast.). show()
ObserverManager.getInstance().notifyObserver(bleDevice)

- On some phone models, connectGatt must be in the main thread to be
effective. It is highly recommended to perform the connection process in
the main thread.

- Reconnect after connection failure: The framework includes a reconnect
mechanism after connection failure, which can be configured with the number
of reconnect attempts and time intervals. Alternatively, you can manually
call the "connect™ method with a delay in the “onConnectFail" callback.

- Reconnect after connection disconnection: You can call the "connect’
method again in the “onDisConnected™ callback.

- To ensure a successful reconnection rate, it is recommended to wait for
some time after disconnection before attempting reconnection.

- On some device models, after a connection failure, the device may be
briefly unable to scan. Directly connecting to the device through its

object or MAC address, without scanning, can be done to address this.

» Connect through Mac

Connect directly using the known device's Mac address.
SPPManager.getInstance().connect(mac SppConnectCallback() {
@Override
onStartConnect() {
.show()

@Override
onConnectFail(BleDevice bleDevice, BleException exception)

.clearAnimation()
.setVisibility(View.
.setText(getString(R.string.))
.dismiss()
Toast.makeText(MainActivity. getString(R.string.
Toast.) .show()

}

@Override
onConnectSuccess(BleDevice bleDevice, BluetoothSocket

socket status) {

.dismiss()
.addDevice(bleDevice)
.notifyDataSetChanged()

@Override
onDataReceiving(BleDevice bleDevice [1 data) {

String message = String(data)
runOnUiThread(Runnable() {
@Override

run() {
(MessageActivity.

MessageActivity. .addMessage(bleDevice.getName()+
+bleDevice.getMac(),message)
} {
Toast.makeText(MainActivity. message
) .show()

@0verride
onDisConnected(isActiveDisConnected, BleDevice
bleDevice, BluetoothSocket socket status) {

.dismiss()

.removeDevice(bleDevice)
.notifyDataSetChanged()

(isActiveDisConnected) {
Toast.makeText(MainActivity.
getString(R.string.), Toast.
} {
Toast.makeText(MainActivity.
getString(R.string.), Toast.) .show()
ObserverManager.getInstance().notifyObserver(bleDevice)

- This method can attempt to directly connect to scanners around with the

specified MAC address without scanning.

Stop Scanning

During the scanning process, stop the scanning

operation.BLEManager.getInstance().cancelScan()

Tips:
- After calling this method, if the scanning is still ongoing, it will end

immediately and callback to the “onScanFinished™ method.

SPP Mode: Sending Commands

» Send Scanner Commands

SPPManager.getInstance().ScannerCommand(device
ScannerUtil.CustomBeep(Integer.parseInt(.getText().toString(
))) BleWriteCallback() {

@Override
onWriteSuccess(current
[1 justWrite) {

@Override

onWriteFailure(BleException exception) {

List of Command Methods

ScannerUtil.ConvertByte(String cmd)
instructions: This method is used to encapsulate the scanner's regular
character string command into a byte[] command before sending it to

the scanner.

Parameter:

com.netum.device.instruction.Scanner

ScannerUtil.SoftTrigger(int second)
instructions:This method is used to obtain the byte[] command that

controls the scanner to perform the scanning action.

Parameter:

ScannerUtil.CustomBeep(int level)

instructions: This method is used to obtain the byte[] command that

customizes the buzzer vibration of the scanner.

Parameter:

| SDE_sound (n=0x30" 0x44)

“4BUZZHEn”

see right beep/led table

.2, SDE sound Q

“BUZZHE0”

1 high short heep

e.g. SDE sound 26

“$BUZZHET”

High-hizsh-low—low beep

Beep / LED Action Value

1 high short beep 0
2 high short beeps 1
3 high short beeps 2
4 high short beeps 3
5 high short beeps 4
1 low short beep 5
2 low short beeps 6
3 low short beeps T
4 low short beeps 8
5 low short beeps 9
1 high long beep 10
2 high long beeps 11
3 high long beeps 12
4 high long beeps 13
5 high long beeps 14
1 low long beep 15
2 low long beeps 16
3 low long beeps 17
4 low long beeps 18
5 low long beeps 19
Fast warble beep 20
Slow warble beep 21
High-low beep 22
Low-high beep 23
High-low-high beep 24
Low-high-low beep 25

High-high-low-low beep 26

ScannerUtil. CustomBeepTime(int time,int type,int frequency)

instructions: This method is used to obtain the byte[] command that

customizes the buzzer vibration of the scanner.

Parameter:

£t=0x02 FF, beep 10ms 2. 54s;
=072, (0x3070x32)
0. beeptvibration
1. only heep,
2. only wibration.
ff=0x01"FF (12075200H7) , freqence=100+f f*20.

[

Contime heep/vibration| “IBUZZH#BEttnff”

Fa=ho. s

$BUZZ

#BK402

3300hzE18 R0, s

SBUZZ#BK400A0

BU
ScannerUtil. SetTimeStamp(Date date)

instructions: This method is used to generate the byte[] command for

updating the timestamp in the scanner.

Parameter:

Usage Example

instructions:Please refer to the quick start guide for pairing and data

interaction first.

Send software trigger command

® API: Manager.getinstance().ScannerCommand(device, ScannerUtil.SoftTrigger
(Integer.parselnt(LedBeep_Control.getText().toString())),new BleWriteCallback());

® Parameter:second

] Sample:

SPPManager.getInstance().ScannerCommand(device, ScannerUtil.SoftTrigger

(Integer.parseInt(.getText().toString()))
BleWriteCallback() {

@Override
onWriteSuccess(current
[] justWrite) {

@Override
onWriteFailure(BleException exception) {

Send custom beep vibration command
® API: MainScannerSdk.changeTimelnterval
® Parameter
level=26;
® Sample:

SPPManager.getInstance().ScannerCommand(device
ScannerUtil.CustomBeep(Integer.parseInt(.getText().toString(
))) BleWriteCallback() {

@Override

onWriteSuccess(current
[1 justWrite) {

@Override

onWriteFailure(BleException exception) {

	Introduction to SDK
	Program Demonstration
	Program Installation
	Bluetooth BLE
	Bluetooth SPP

	Quick Use
	System Permissions
	Initialization
	BLE Mode Scan and Connect Devices
	BLE Mode: Receiving Data and Sending Commands
	SPP Mode: Scanning and Connecting Devices
	SPP Mode: Sending Commands

	List of Command Methods
	ScannerUtil.ConvertByte(String cmd)
	ScannerUtil.SoftTrigger(int second)
	ScannerUtil.CustomBeep(int level)
	ScannerUtil. CustomBeepTime(int time,int type,int frequency)
	ScannerUtil. SetTimeStamp(Date date)

	Usage Example
	Send software trigger command
	Send custom beep vibration command

