TECHNICAL

MQ-135 GAS SENSOR

FEATURES

Wide detecting scope Stable and long life

DATA

.. .

Fast response and High sensitivity Simple drive circuit

APPLICATION

They are used in air quality control equipments for buildings/offices, are suitable for detecting of NH3,NOx, alcohol, Benzene, smoke,CO₂,etc.

SPECIFICATIONS

A. Standard work condition				
Symbol	Parameter name	Technical condition	Remarks	
Vc	Circuit voltage	5V±0.1	AC OR DC	
$V_{\rm H}$	Heating voltage	5V±0.1	ACOR DC	
R _L	Load resistance	can adjust		
R _H	Heater resistance	33Ω ±5%	Room Tem	
P _H	Heating consumption	less than 800mw		
B. Environment condition				

D. L	D. Environment condition				
Symbol	Parameter name	Technical condition	Remarks		
Tao	Using Tem	-10 °C+45 °C			
Tas	Storage Tem	-20°C+70°C			
R _H	Related humidity	less than 95% Rh			
O ₂	Oxygen concentration	21%(standard condition)Oxygen	minimum value is		
		concentration can affect sensitivity	over 2%		

C. Sensitivity characteristic				
Symbol	Parameter name	Technical parameter	Remark 2	
Rs	Sensing Resistance	30KΩ -200KΩ	Detecting concentration	
	Resistance	(100ppm NH ₃)	scope : 10ppm-300ppm NH ₃	
α	Concentration		10ppm-1000ppm	
(200/50)	Slope rate	\leq 0.65	Benzene	
NH ₃			10ppm-300ppm	
Standard	Temp: 20℃±2℃ Vc:5V±0.1		Alcohol	
Detecting	Humidity: 65%±5% Vh: 5V±0.1			
Condition				
Preheat time				

D. Structure and configuration, basic measuring circuit

1	Parts Gas sensing	Materials SnO ₂	
	layer	-	
2	Electrode	Au	
3	Electrode line	Pt	
4	Heater coil	Ni-Cr alloy	3 3 A B $DC 5v$ 4 $Vout$
5	Tubular ceramic	Al ₂ O ₃	
6	Anti-explosion	Stainless steel gauze	
	network	(SUS316 100-mesh)	
7	Clamp ring	Copper plating Ni	
8	Resin base	Bakelite	
9	Tube Pin	Copper plating Ni	
			→ 20mm → 9 ¹ H Fig.2

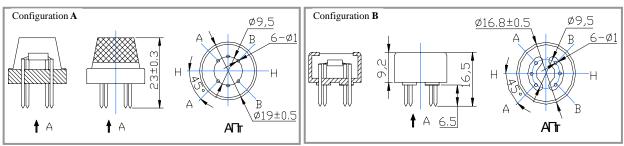


Fig. 1

Structure and configuration of MQ-135 gas sensor is shown as Fig. 1 (Configuration **A or B**), sensor composed by micro AL2O3 ceramic tube, Tin Dioxide (SnO2) sensitive layer, measuring electrode and heater are fixed into a crust made by plastic and stainless steel net. The heater provides necessary work conditions for work of

sensitive components. The enveloped MQ-135 have 6 pins ,4 of them are used to fetch signals, and other 2 are used for providing heating current.

Electric parameter measurement circuit is shown as Fig.2

E. Sensitivity characteristic curve

MQ-135 10 AI R 002 ന sЖ NH4 ч Ы Rs/Ro þþm 0. 1 10 100 1000 - 33%RH 85%RH **Rs/Ro** 1.2 0. 8 0.6 Fig.4 0.4

Fig.2 sensitivity characteristics of the MQ-135

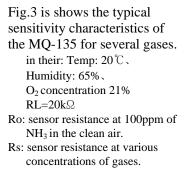
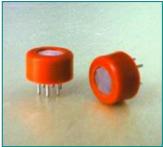


Fig.4 is shows the typical dependence of the MQ-135 on temperature and humidity. Ro: sensor resistance at 100ppm of NH_3 in air at 33%RH and 20 degree.


Rs: sensor resistance at 100ppm of NH₃ at different temperatures and humidities.

SENSITVITY ADJUSTMENT

Resistance value of MQ-135 is difference to various kinds and various concentration gases. So, When using this components, sensitivity adjustment is very necessary. we recommend that you calibrate the detector for 100ppm NH₃ or 50ppm Alcohol concentration in air and use value of Load resistancethat(R_L) about 20 KΩ (10KΩ to 47 K Ω).

When accurately measuring, the proper alarm point for the gas detector should be determined after considering the temperature and humidity influence.

^{0.2} degr ee 30 40 - 20 - 10 0 10 20 50 60