Version: V1.0 Date: 2023-08-23

C2-M2X EVB User Manual

Revision History

Edition	Content	Revised by	Release date
V1.0	Initial	Y.ZHOU	2023-08-23

CONTENT

1 Overview
1.1 Product introduction 1
1.2 EVB Architecture
1.3 Function
1.4 EVB package
2 Hardware Introduction4
2.1 C2-M2X EVB
2.2 Power diagram4
3 Module Introduction5
3.1 28pin connector5
3.2 Power input8
3.2.1 5V DCDC boost circuit
3.2.2 3.3V step-down circuit
3.2.3 RTC circuit9
3.3 UART-USB circuit10
3.4 Analog switch11
3.5 M20/M21/M22 module12
3.6 RMII PHY
3.7 RF reception circuit
3.7.1 Antenna feeding Circuit14
3.7.2 Low-noise amplification circuit15
3.8 LED indicators15
4 Operation guide18
4.1 Powering On
4.2 USB Driver Installation

4.3 Connection and Use	
5 Precautions	
5.1 Precautions	
5.2 Common Troubleshooting	

1 Overview

For the convenience of users in testing M2 series modules, Bynav Technology can provide a complete C2-M2X EVB evaluation kit to facilitate the testing and use of M2 modules. This document provides a detailed introduction to the basic information of the C2-M2X EVB (evaluation board) and guides users on its proper use.

1.1 Product introduction

The C2-M2X EVB primarily consists of M20/M21/M22 modules, a 3.3V step-down circuit, a 5V boost circuit, RTC circuit, UTAR to USB circuit, RMII circuit, RF reception circuit, low-noise amplification circuit, and external interfaces. It is primarily used for testing various functions of the M20/M21/M22 modules and provides power and various interfaces for these modules. The C2-M2X EVB can be connected to a computer using a Type-C data cable and can also be used in conjunction with the BY6Vx carrier boards.

1.2 EVB Architecture

The C2-M2X EVB architecture block diagram is as follows:

Figure1-1 C2-M2X diagram

1.3 Function

The functional module layout of C2-M2X EVB is as follows:

Figure1-2 C2-M2X EVB

1. RF Reception Circuit

bynavitz

- 2. M2X Module
- 3. 3.3V Step-Down Circuit
- 4. 5V Boost Circuit
- 5. RTC Circuit
- 6. Type-C Interface
- 7. UART to USB Circuit
- 8. RMII PHY Circuit
- 9. Reset Circuit
- 10. Dual Row Header Pins
- 11.Three-hole Pins
- 12.Analog Switch Circuit
- 13.LED Indicator Lights
- 14.Test Points
- 15.RF Connectors
- 16.Mounting Holes

1.4 EVB package

C2-M2X EVB mainly includes the following items:

- C2-M2X EVB
- Certificate of conformity
- RF converter cable

bynavitz

2 Hardware Introduction

2.1 C2-M2X EVB

Figure2-1 C2-M2X

2.2 Power diagram

Figure2-2 Power diagram

3 Module Introduction

3.1 28pin connector

The C2-M2X external interface is led out through a 28-pin double

row of pin header, with a pin spacing of 2mm.

Figure3-1 C2-M2X pin header

Table 3-1 C2-M2X Pin definition

No	Pin	Тур е	Description	Comment
1	SPI_MOSI/I2C_S DA	I/O	SPI interface data output I2C interface data	3.3V LVTTL, leave it unconnected if not in use
2	SPI_CS/I2C_SCL	0	SPI interface chip select I2C interface clock	3.3V LVTTL, leave it unconnected if not in use
3	ETH_LINK_ACT	0	Ethernet connection indicator signal	3.3V LVTTL, leave it unconnected if not in use
4	ETH_BIAS	0	Ethernet signal bias voltage	3.3V LVTTL, leave it unconnected if not in use
5	-	/		Not connected
6	VCC_3V3	PWR	Power feed	+3.25V~+3.45V,Ripple< 50mV Vpp
7	gpio/ant1/dv/ IMU_RST	1/0	ANT1: ANT1 indicator GPIO: other DV: heading success indicator, active high IMU_RST: external IMU reset signal	3.3V LVTTL, leave it unconnected if not in use
8	SPI_MISO/RXD3	I	RXD3:COM3 serial input SPI MSIO:SPI input	3.3V LVTTL, leave it unconnected if not in use
9	RESETIN_N	I	Reset input	Reset software, low-level active, reset signal width >10ms, leave it unconnected if not in use
10	MEVENT_01/GPI O/CAN1RX/IMU _SYNC	1/0	IMU_SYNC: external IMU sync signal MEVENT_O1: output pulse signal GPIO: other CAN1RX: CAN1 input	3.3V LVTTL, leave it unconnected if not in use
11	MEVENT_I2/GPI O/CAN1TX/IMU _DR	1/0	MEVENT_I2: input external pulse signal GPIO: other CAN1TX: CAN1 output IMU_DR: external IMU DR	3.3V LVTTL, leave it unconnected if not in use
12	CAN2RX/GPIO	1/0	CAN2RX: CAN2 input GPIO: other	3.3V LVTTL, leave it unconnected if not in use
13	SEVENT_I1/GPIO / TXD3	1/0	TXD3: COM3 serial output SEVENT_I1: input external pulse signal GPIO: other	3.3V LVTTL, leave it unconnected if not in use
14	GND	PWR	signal and power ground	
15	TXD1	0	COM1 serial output	3.3V LVTTL, leave it unconnected if not in use

16	RXD1	I	COM1 serial input	3.3V LVTTL, leave it unconnected if not in use
17	GND	PWR	signal and power ground	
18	TXD2/SEVENT_O 1/GPIO	I/O	TXD2: COM2 serial output SEVENT_O1: output pulse signal GPIO: other	3.3V LVTTL, leave it unconnected if not in use
19	RXD2/SEVENT_I 2/GPIO	1/0	RXD2: COM2 serial input SEVENT_I2: input external pulse signal GPIO: other	3.3V LVTTL, leave it unconnected if not in use
20	GND	PWR	signal and power ground	
21	SPI_CLK/GPIO/P V/DIFF	1/0	DIFF: differential data indicator SPI_CLK: clock GPIO: other PV: position success indicator, active high	3.3V LVTTL, leave it unconnected if not in use
22	GND	PWR	signal and power ground	
23	PPS	0	1pps output	3.3V LVTTL, by default width 1ms, leave it unconnected if not in use
24	CAN2TX/SEVEN T_O2/GPIO	1/0	CAN2TX:CAN output SEVENT_O2:output pulse signal GPIO:other	3.3V LVTTL, leave it unconnected if not in use
25	ETH_TD_P	I/O	10M/100M Ethernet TX+	Analog, connect to TD+, leave it unconnected if not in use
26	ETH_RD_P	1/0	10M/100M Ethernet RX+	Analog, connect to RD+, leave it unconnected if not in use
27	ETH_TD_N	1/0	10M/100M Ethernet TX-	Analog, connect to TD-, leave it unconnected if not in use
28	ETH_RD_N	1/0	10M/100M Ethernet RX-	Analog, connect to RD-, leave it unconnected if not in use

Note 1: IO pin level is 3.3V LVTTL, drive capacity is 12mA, leave unconnected if not in use.

Note 2: TXD and RXD direction are defined for the dev board.

Note 3: "-"is reserved pin.

Note 4: "MEVENT_I2", "SEVENT_I1" and "SEVENT_I2" are EVENT_IN trigger, rising edge trigger, high level hold time must be more than 500ns, recommend to use "MEVENT_I2" with priority. Note 5: "MEVENT_O1", "SEVENT_O1" and "SEVENT_O2" are EVENT_OUT trigger, recommend to use "MEVENT_O1" with priority.

3.2 Power input

After applying input power to C2-M2X EVB and passing through power filtering, it can supply power to the M20/M21/M22 modules and their peripheral circuits. Additionally, the 3.3V to 5V boost circuit provides power to external antennas.

3.2.1 **5V DCDC** boost circuit

The 3.3V power input goes through a DC-DC boost chip to output 5V voltage, providing power to the antenna.

Figure 3-2 5V boost circuit

3.2.2 3.3V step-down circuit

The Type-C interface inputs 5V voltage to power the C2-M2X EVB through a 3.3V step-down circuit.

bynavitz

Figure 3-3 3.3V step-down circuit

3.2.3 RTC circuit

When using C2-M2X EVB for a hot start, backup power needs to be supplied to the module.

									V	cc	_3\	/3_B	CKF	0										P1		3						
VCC	C	3V	3⊢	30	2	3	2		024	1	10 I 18 I	<u> </u>	•	R	91	_	be∕	1	K	्र १४	(t)	2	÷	4	1		ŀ	Ĺ	12	3	्र ११	40
																								2								16
												u.	Ц											22		I						
												on	0											NU	1.2							
											8 <u>0-</u>	-	=											110								
												8	8																			
												5	5																			
												Ŭ	0																			
												S. 25	8 8																			
													+ -																			
												2 - 8 <u>8-</u>	3 38																			

Figure 3-4 RTC circuit

Important Notes:

The V_3V3_BCKP power supply is typically provided by a battery.

The battery charging circuit should be designed with reverse protection to ensure that the battery only powers VCC_3V3_BCKP and does not backflow into the 3.3V power domain, as shown in Figure D24.

3.3 UART-USB circuit

The evaluation board features a Type-C interface as the power and communication interface, enabling communication through a UART to USB circuit.

Figure3-5 UART-USB module

3.4 Analog switch

C2-M2X EVB is equipped with four analog switches. When USB is disconnected, the M2X module's serial port is connected to the header pins. When USB is connected, the M2X module's serial port switches to USB, disconnecting from the header pins.

Figure3-6 analog switch circuit

3.5 M20/M21/M22 module

The evaluation board uses M20/M21/M22 modules with the following characteristics:

- 22nm process GNSS SOC chip Alice
- Deeply coupled integrated navigation (DR accuracy up to 0.2%)
- Full-system, full-frequency GNSS (1507 channels)
- L-BAND satellite-based enhancement
- Support NRTK/PPP/PPP-RTK/CLAS
- Anti-interference and anti-spoofing
- AEC-Q104

Figure3-7 M20/M21/M22 module

3.6 RMII PHY

C2-M2X EVB features an Ethernet PHY circuit, which can be used for

network interface interactions.

							U3	0.8A	3
ENET_MDIO ENET_MDC	\gg	R31 R28	200	ENET_MI	DIO_A DC_A	11 12	MDIO VDDA_3V3	3 170.8A	4
							VDDIO	C45 100nF	
ENET_RXD0 ENET_RXD1	\gg	R36 AM	<u>100</u> 100	ENET_R	(D0_A (D1_A	16	RXD0/DUPLEX VDD_1V2	2 C48 10uF C50 100nF	
ENET_CRSDV	>>	R43 , , , , , , , , , , , , , , , , , , ,	~200	ENET_CF	RSDV_A	18	RXER/ISO CRS_DV/CONFIG2 TXP	7 ТХ_Р	
ENET_TXD0 ENET_TXD1	\gg	R45 AM	<u>100</u> <u>100</u> 200	ENET_T>	(D0_A (D1_A (EN_A	24 25 23	TXD0 TXM	<u>6</u> ≪ тх_N	
ENET_TX_EN	>>	R51 A.MX	100	ENET_R	CLK_A	19	REF CLK/B-CAST OFF	5 RX_P	
					P	13 14	PHYAD0		
					D D D	22 26	LED0/NWAYEN NC1 LED1/SPEED	30 31 □	
					Ē	27	NC3 REXT	10 R52 AMA 6.49K	
VCC_3V E	3_ENE		R53 R54 R56	4.7K 10K NU	+	21 32	INTRP/NAND_TREE# RST# CONFIG0 CONFIG1	28 R55 AMA 4.7K	VCC_3V3_ENET
		11	PHY	CLK_25MHZ		9 8	XI GND	1 33 ,	

Figure3-8 RMII PHY circuit

3.7 RF reception circuit

3.7.1 Antenna feeding Circuit

3.7.1 Antenna Feeding Circuit

After the power supply input goes through reverse protection and a secondary LC filter circuit, it provides power to the antenna. The RF signal, after passing through a DC-blocking capacitor, is then input into the M20/M21/M22 modules.

Figure3-9 Antenna Feeding Circuit

3.7.2 Low-noise amplification circuit

C2-M2X EVB has a low-noise amplification circuit that can amplify

the input RF signal.

3.8 LED indicators

C2-M2X EVB is equipped with LED indicator lights to indicate the

operational status of various functional units.

Figure3-11 LED indicator

Table 3-2 Indicator description

Indicator	Color	Description					
Dower indicator (2.21/)	Croop	When the power supply is normal, the indicator remains					
Power Indicator (3.3V)	Green	on.					
	Croop	When the serial port is in operation, the indicator					
	Green	remains on.					
PPS indicator	Green	During normal operation, the indicator blinks.					
		If D1 is constantly on and D2 is constantly					
		offabnormality in operation.					
		If D1 is constantly off and D2 is constantly					
FuCaindicator	Croop	onabnormality in operation.					
rusa mulcator	Green	If both D1 and D2 are constantly off, it enters a safe					
		state.					
		If both D1 and D2 are constantly on, it is operating					
		normally.					
RTK indicator	Green	The module blinks when it enters RTK fixed solution.					

4 Operation guide

4.1 **Powering On**

(1) The C2-M2X EVB can be powered directly via Type-C. The Type-C interface on the board serves both power supply and serial communication functions. Simply connect the Type-C port on the module to your computer using a Type-C USB cable to power it on.

(2) The C2-M2X EVB can be connected to the BY6Vx carrier board through a 28-pin header. Power the BY6Vx carrier board with a 12V DC power supply and turn on the 3.3V switch to power it on.

4.2 USB Driver Installation

Before starting to use, it's necessary to install the USB driver program CH340/341 (please download it online, recommended link: <u>https://www.wch.cn/download/CH341SER_EXE.html</u>). Make sure to install or update the driver tool to the latest version.

Once the installation is completed, you'll be able to see two COM ports recognized in the Device Manager, as shown in the following image:

La 设备管理器
文件(F) 操作(A) 查看(V) 帮助(H)
V 🛔 DESKTOP-0Q01TEG
> ma IDE ATA/ATAPI 控制器
> 🛐 安全设备
> □ 处理器
> _ 磁曲驱动器
> 2# 存储控制器
> 南打印队列
> 目 第□ (COM 和 LPT)
員 USB 串行设备 (COM29)
■ USB 串行设备 (COM30)
2 10/14
> 🛄 计算机
>
> 🔤 縫典
> 🛯 茲牙
> 圖 人体学输入设备
> 副 软件设备
> ■ 软件组件
> 前 声音、视频和游戏控制器
> 圖 鼠标和其他描针设备
> 圖 通用書行总线控制器

Figure4-1 Two COM ports recognized in Device Manager

4.3 Connection and Use

The GNSS antenna should be installed in a stable, unobstructed area. If using it indoors, ensure that the antenna's RF signal can penetrate indoors. Connect the antenna to the C2-M2X development board using RF coaxial cable and use a Type-C data cable to connect the C2-M2X to external communication devices. If powered through the BY6Vx carrier board, provide DC 12V power to the BY6Vx carrier board, press the 3.3V switch, and connect the serial and Ethernet ports on the carrier board to external communication devices.

Figure4-2 Device connection

5 Precautions

5.1 Precautions

C2-M2X EVB is suitable for laboratory or engineering development environments. Before starting any operations, please read the following precautions:

- Under no circumstances should performing the hot-plugging on the development board's interfaces or the carrier boards.
- To prevent electrostatic discharge (ESD) from damaging the development board hardware, take necessary anti-static measures before unpacking and installing the development board.
- When handling the development board, hold it by the edges and avoid touching exposed metal parts to prevent ESD damage to the board components.
- Place the C2-M2X development board on a dry, flat surface to keep it away from heat sources, electromagnetic interference sources, radiation sources, and electromagnetic radiation-sensitive equipment (e.g., medical devices).

5.2 Common Troubleshooting

bynavitz

- Serial Communication Issues: Check if the power supply voltage is correct. Verify that the USB cable or the serial cable of the L-shaped carrier board is properly connected. Ensure that the USB driver is installed and up to date. Verify if the serial indicator lights on the development board are functioning correctly.Check the software for the correct serial port selection and baud rate.
- No Satellite Reception: Confirm if the antenna selection is correct.
 Check for excessive attenuation before the development board.
 Verify the correctness of the firmware version.