MetaBiomeTMScore

MetaBiome TM Report
Report issue date 29/07/2019
Sample ID BBC9530

This score is an indication of your overall gut health, based on the eleven categories listed below. These are key indicators of gut health, and their contributions to the MetaBiome score are weighted based on the scientific evidence showing the level of influence each one has shown to have on our health. The healthy comparison range for the MetaBiomeTM Score is 70-98

MetaBiome[™] Score Contributors

Potential to promote health

Butyrate production

The typical range in healthy people is 10.32% to 27.71%

Butyrate is a short-chain fatty acid that is very important for gut health. It is the main fuel source for gut cells, helps keep the gut cell barrier intact, can reduce inflammation, help control appetite, and stimulate the production of serotonin from our gut cells. Consuming foods high in resistant starch (e.g. lentils, peas, beans, rolled oats) has been shown to increase butyrate levels.

Propionate production

43.6 9.8

The typical range in healthy people is 22.46% to 49.77%

22.5

Propionate is a short-chain fatty acid that is important for gut health. It helps maintain blood glucose levels, can reduce inflammation, helps control appetite and can stimulate the production of serotonin. The consumption of fibre from foods such as fruits, vegetables, legumes and grains are associated with increased short-chain fatty acids including propionate.

Acetate production

The typical range in healthy people is 48.41% to 69.81%

Acetate is the most abundant short-chain fatty acid produced in the gut. It plays an important role in fat metabolism, glucose metabolism and the immune system. Several bacterial species can also convert acetate to butyrate. The consumption of fruits, vegetables, legumes and fibre are associated with increased short-chain fatty acids, including acetate.

Potential to reduce health

0

0

Hexa-acylated Lipopolysaccharide

14.4

1.1

16.9

The typical range in healthy people is 0% to 0.73%

Lipopolysaccharides (LPS) are an important component of the cell wall of many bacteria, but when these bacteria die, the LPS is released into the gut where it can be pro-inflammatory, in particular hexa LPS. Diets high in fat, especially saturated fat, allow LPS to cross the intestinal barrier and enter the bloodstream. High levels of LPS in the blood have been observed in individuals with metabolic and inflammatory conditions. Avoiding excessive intake of saturated fat can help reduce the ability of LPS to enter the bloodstream.

Trimethylamine production

0.2

The typical range in healthy people is 0% to 0.2%

Trimethylamine is a compound produced by some gut microbes that is converted to another compound called trimethylamine-n-oxide (TMAO) in the liver. Increased TMAO levels have been observed in individuals with cardiometabolic disorders. However, the role of TMAO in these disorders is still not clear. It is unknown if TMAO plays a causal role, is a marker of the disorder, or if it plays a protective role in repairing damage from the disorder. Levels of TMAO are influenced by many factors including our gut microbiome, diet, integrity of the gut barrier, liver function and kidney function. Although diet may only play a small role, diets high in animal protein containing choline and carnitine (e.g. eggs, red meat), as well as salt, have been associated with increased TMAO levels while diets high in soluble fibre have been shown to reduce trimethylamine and TMAO levels. If your potential to produce trimethylamine is high, you may wish to increase your consumption of fibre and avoid eating excessive amounts of red meat and eggs.

Hydrogen sulphide production

Fibre degradation

The typical range in healthy people is 55.22% to 71.8%

A similar or high proportion of species that can break down fibre compared to the healthy group is considered beneficial. Fibre-consuming bacteria are responsible for producing important by-products such as short chain fatty acids which play a critical role in keeping the gut healthy. Specific prebiotic fibres (detailed in the Microbiome Fuel section below) will promote the growth of beneficial bacteria.

Microbial Diversity

The typical range in healthy people is 3.14% to 4.15% Microbial diversity is a measure of both the different types and the amount of bacterial species in your sample.

A varied diet rich in plant-based foods such as fruits, vegetables, whole grains and nuts is associated with increased microbial diversity. Low microbial diversity is often associated with poor health.

5.6

The typical range in healthy people is 1.03% to 5.55%

The gas hydrogen sulphide is produced by some species in the gut microbiome when sulphur-containing foods such as eggs, garlic, onion, cabbage, kale or Brussels sprouts are broken down. Hydrogen sulphide plays an important role in gut health by acting as an energy source for gut cells and protecting the gut barrier function. However, some studies have suggested that high levels of hydrogen sulphide can also disrupt the gut mucus barrier. This gas is also responsible for the rotton egg smell of flatulence. Laboratory based studies have suggested that fibre can reduce the production of hydrogen sulphide.

3-indolepropionic acid (IPA) production

The typical range in healthy people is 0.12% to 1.74% 3-indolepropionic acid (IPA) is a strong anti-oxidant produced by some gut bacteria that can help protect the nervous system from damage. Research has shown IPA may play a role in glucose metabolism and research in animal models suggests that IPA may also play a role in maintaining the gut barrier. IPA is formed by breaking down the amino acid tryptophan. Studies have indicated that consuming foods high in dietary fibre, and in particular foods containing rye, can increase IPA production.

MetaBiome™ Portal

Protein degradation

The typical range in healthy people is 57.74% to 72.84%

A similar or low proportion of species that can break down protein compared to the healthy group is generally considered beneficial. Everyone's microbiome contains species that can break down protein. However, a high proportion of these species may reflect an insufficient amount of fibre in the diet or an excessive intake of protein.

Most protein is absorbed by your body, however excess protein will get passed to the large intestine where it is available to the gut microbiome. Microorganisms that break down protein produce a variety of compounds, including some compounds that promote inflammation.

If there are a high proportion of species that can break down protein in the microbiome, make sure there is sufficient fibre in the diet and consider avoiding excessive consumption of protein.

Human DNA

The typical range in healthy people is 0% to 4%

A high amount (greater than 4%) of human DNA may indicate gut inflammation. If there is greater than 4% human DNA, and there was no contamination (e.g. accidentally touched the swab during sampling), further clinical investigation is needed.

Functional Insights

Going beyond which microbes are in the gut, what they are capable of doing is more important. Through comprehensive analysis of the genes in each and every microbe, we can understand the functional capacity of the microbiome to contribute to the health of different systems in the body.

General Gut Health

67%

These metabolites and microorganisms have been shown to influence your gut barrier function.

Metabolites

Potential to **promote** health

1.5

2.5

Hexa-acylated Lipopolysaccharide 0 0.73 14.4 The typical range in healthy people is 0% to 0.73% Hydrogen sulphide production 5.6 1 16.9 The typical range in healthy people is 1.03% to 5.55% Trimethylamine production 0.2 1.1 The typical range in healthy people is 0% to 0.2% Human DNA 0.04 4 The typical range in healthy people is 0% to 4% Ammonia (urease) production 1.4 7.5 9.6 The typical range in healthy people is 1.4% to 7.5% Histamine production 0.83 1.2 The typical range in healthy people is 0% to 0.83% B. fragilis toxin production 0.12 6 The typical range in healthy people is 0% to 0.16% Protein degradation 57.7 69.3 The typical range in healthy people is 57.74% to 72.84%

Species

0

0

Potential to promote health

Agathobacter faecis

Potential to reduce health

Bilophila wadsworthia

0

0

0

0

The two is all new region the althout research is 00% to 1.50%

The typical range in healthy people is 0% to 1.5%

Agathobacter rectalis

The typical range in healthy people is 0% to 4.77%

Akkermansia muciniphila

0 2.2

The typical range in healthy people is 0% to 2.15%

Bifidobacterium adolescentis

The typical range in healthy people is 0% to 0.4%

The typical range in healthy people is 0% to 0.2%

0.2

Clostridium_M bolteae

The typical range in healthy people is 0% to 0%

Eggerthella lenta

The typical range in healthy people is 0% to 0%

Fusobacterium nucleatum

The typical range in healthy people is 0% to 0%

Bifidobacterium animalis

Bifidobacterium bifidum

0

0

The typical range in healthy people is 0% to 0%

Bifidobacterium longum

The typical range in healthy people is 0% to 0.7%

Coprococcus eutactus

0.7

The typical range in healthy people is 0% to 0%

Eubacterium_E hallii

The typical range in healthy people is 0% to 0.63%

Faecalibacterium prausnitzii_C

The typical range in healthy people is 0% to 2.31%

Roseburia hominis

The typical range in healthy people is 0% to 0.4%

Roseburia intestinalis

Roseburia inulinivorans

Ruminococcus_E bromii

MetaBiome™ Portal

Peptostreptococcus stomatis

The typical range in healthy people is 0% to 0%

Hydrogen sulphide production

Gut Mucosal Health

These metabolites and microorganisms have been shown to influence your gut barrier function.

Metabolites

Potential to promote health

Fibre degradation

The typical range in healthy people is 55.22% to 71.8%

Lactate production

55.2

68.6

The typical range in healthy people is 25.76% to 56.12%

3-indolepropionic acid (IPA) production

0.12	0.9	1.7	
·		,	
The typical range in	hea	Ithy people is 0.12	2% to 1.74%

Butyrate production

The typical range in healthy people is 10.32% to 27.71%

5.6 1 The typical range in healthy people is 1.03% to 5.55%Ammonia (urease) production 7.5 9.6 1.4 The typical range in healthy people is 1.4% to 7.5%Hexa-acylated Lipopolysaccharide

57.7

0.83

69.3

16.9

The typical range in healthy people is 0% to 0.73%

0.73

Protein degradation

The typical range in healthy people is 57.74% to 72.84%

Human DNA

0

B. fragilis toxin production

0

The typical range in healthy people is 0% to 0.16%

Histamine production

The typical range in healthy people is 0% to 0.83%

Species

Potential to promote health

Agathobacter faecis 1.5 0 The typical range in healthy people is 0% to 1.5%Agathobacter rectalis 0 2.5 4.8 The typical range in healthy people is 0% to 4.77% Akkermansia muciniphila 2.2 0 The typical range in healthy people is 0% to 2.15%

Potential to reduce health

Bilophila wadsworthia

The typical range in healthy people is 0% to 0.1%

Bifidobacterium bifidum

Bifidobacterium animalis

The typical range in healthy people is 0% to 0%

Coprococcus eutactus

0

The typical range in healthy people is 0% to 0%

Eubacterium_E hallii

The typical range in healthy people is 0% to 0.63%

0	2.3
The typical range in he	althy people is 0% to 2.31%
Roseburia hominis	
0	0.4
The typical range in hea	althy people is 0% to 0.4%
Roseburia intestinalis	
0	1.6
The typical range in he	althy people is 0% to 1.63%
Roseburia inulinivoral	าร
0	
The typical range in hea	althy people is 0% to 0%
Ruminococcus_E bro	mii
0	0.97 2.5

Gut Motility

These metabolites and microorganisms have been shown to influence the rate at which food is moved through the digestive tract, which can impact bowel movement frequency.

Metabolites

Potential to promote health

The typical range in healthy people is 22.46% to 49.77%

Tyramine production

The typical range in healthy people is 0% to 0%

Species

Potential to promote health

Potential to reduce health

Potential to reduce health

Methanobrevibacter_A smithii

0		0.19
The t	pical range in healthy people is 0% to 0.19%	

0.2

Bilophila wadsworthia

0

Branched chain amino acids production

Metabolic Health

These metabolites and microorganisms have been shown to influence how the body metabolises nutrients such as glucose and fats, as well as the health of the circulatory system.

Metabolites

Potential to promote health Butyrate production 10.3 18.4 27.7 The typical range in healthy people is 10.32% to 27.71% Propionate production 22.5 43.6 9.8 The typical range in healthy people is 22.46% to 49.77% Acetate production 48.4 65.7 The typical range in healthy people is 48.41% to 69.81% Fibre degradation 55.2 68.6 The typical range in healthy people is 55.22% to 71.8% 3-indolepropionic acid (IPA) production 0.12 0.9 1.7 The typical range in healthy people is 0.12% to 1.74%

The typical range in healthy people is 34.26% to 65.26% Hexa-acylated Lipopolysaccharide 0.73 0 14.4 The typical range in healthy people is 0% to 0.73% Trimethylamine production 0.2 1.1 0 The typical range in healthy people is 0% to 0.2%Succinate production 14.2 4 46.5 The typical range in healthy people is 14.23% to 47.2%

34.3

58.2 5.3

Folate (B9) production

55.3 57

The typical range in healthy people is 29.11% to 55.25%

29.1

Species

Potential to promote health

Potential to reduce health

Eggerthella lenta

0

0

0

Prevotella copri

The typical range in healthy people is 0% to 23.37%

The typical range in healthy people is 0% to 0%

Bifidobacterium longum

Roseburia intestinalis	
0	1.6
The typical range in healthy people is 0% to 1.639	%
Roseburia inulinivorans	
0	
The typical range in healthy people is 0% to 0%	
Ruminococcus_E bromii	
0	0.97 2.5
The typical range in healthy people is 0% to 2.5%	

Nervous System Health

These metabolites and microorganisms have been shown to have a role in regulating the function of the brain and nervous system.

68.6

43.6 19.8

55.3 57

Metabolites

Potential to promote health

3-indolepropionic acid (IPA) production 0.12 1.7 0.9

The typical range in healthy people is 0.12% to 1.74%

Butyrate production

The typical range in healthy people is 10.32% to 27.71%

Fibre degradation

GABA production

The typical range in healthy people is 5.47% to 24.28%

Propionate production

The typical range in healthy people is 22.46% to 49.77%

Tyramine production

Folate (B9) production

The typical range in healthy people is 29.11% to 55.25%

0	0.83	1.2
The typical range in health	y people is 0% to 0.83%	
GABA consumption		
0.74 5	5.3	15.5
The typical range in health	y people is 0.74% to 5.27%	6
Hexa-acylated Lipopolysa	accharide	
0 0.73		14.4
The typical range in health	y people is 0% to 0.73%	
Trimethylamine production	on	
0 0.2		1.1

The typical range in healthy people is 0% to 0.2%

These metabolites and microorganisms have been shown to be involved in regulating the immune system.

Metabolites

Potential to promote health

57.7

69.3

The typical range in healthy people is 57.74% to 72.84%

Species

Potential to promote health

Potential to reduce health

Eggerthella lenta

The typical range in healthy people is 0% to 0%

Fusobacterium nucleatum

The typical range in healthy people is 0% to 0%

Eubacterium_E hallii

0.63

The typical range in healthy people is 0% to 0.63%

Faecalibacterium prausnitzii

0

0

The typical range in healthy people is 0% to 0%

Roseburia hominis

0

0.4

The typical range in healthy people is 0% to 0.4%

Roseburia intestinalis

1.6 0

The typical range in healthy people is 0% to 1.63%

Roseburia inulinivorans

D The typical range in healthy people is 0% to 0%

Inflammatory Balance

These metabolites and microorganisms have been associated with the levels of inflammation in the body.

Metabolites

Potential to promote health

Butyrate production

10.3 18.4 27.7 The typical range in healthy people is 10.32% to 27.71% Propionate production 22.5 43.6 9.8 The typical range in healthy people is 22.46% to 49.77% Acetate production 48.4 65.7 The typical range in healthy people is 48.41% to 69.81% Fibre degradation 55.2 68.6 The typical range in healthy people is 55.22% to 71.8% Lactate production 25.8 41.3 56.1 The typical range in healthy people is 25.76% to 56.12%

3-indolepropionic acid (IPA) production

0.12 0.9 1.7

The typical range in healthy people is 0.12% to 1.74%

Hexa-acylated Lipopolysaccharide 0.73 0 14.4 The typical range in healthy people is 0% to 0.73% Histamine production 0.83 0 1.2 The typical range in healthy people is 0% to 0.83% Ammonia (urease) production 1.4 9.6 7.5 The typical range in healthy people is 1.4% to 7.5% Trimethylamine production 0.2 0 1.1 The typical range in healthy people is 0% to 0.2% Human DNA 0.04 4 The typical range in healthy people is 0% to 4% Protein degradation 57.7 69.3 The typical range in healthy people is 57.74% to 72.84% Hydrogen sulphide production 5.6 16.9 The typical range in healthy people is 1.03% to 5.55%B. fragilis toxin production 0 0.12 6

The typical range in healthy people is 0% to 0.16%

Species

Potential to promote health

Agathobacter faecis

The typical range in healthy people is 0% to 1.5%

Agathobacter rectalis

The typical range in healthy people is 0% to 4.77%

Akkermansia muciniphila

Potential to reduce health

Bilophila wadsworthia

The typical range in healthy people is 0% to 0.2%

Clostridium_M bolteae

0

0

0

The typical range in healthy people is 0% to 0% $% \left({{{\rm{D}}_{\rm{B}}}} \right)$

Eggerthella lenta

0

2.2

0.7

1.5

The typical range in healthy people is 0% to 2.15%

Bifidobacterium adolescentis

The typical range in healthy people is 0% to 0.4%

Bifidobacterium longum

The typical range in healthy people is 0% to 0.7%

Coprococcus eutactus

0

The typical range in healthy people is 0% to 0%

0

The typical range in healthy people is 0% to 0%

Fusobacterium nucleatum

The typical range in healthy people is 0% to 0%

0		0.63	
The typical range in he	althy people is 0% t	:0 0.63%	
Faecalibacterium pra	usnitzii_C		
0		2.3	
The typical range in hea	althy people is 0% t	:0 2.31%	
Roseburia hominis			
0	0.4		
The typical range in hea	althy people is 0% t	0.4%	
Roseburia intestinalis	;		
0		1.6	
The typical range in hea	althy people is 0% t	co 1.63%	
Roseburia inulinivorai	ns		
0			
The typical range in he	althy people is 0% t	0 0%	
Ruminococcus_E bro	mii		
0		0.97 <u>2.</u> 5	

Detoxification	100%
These markers and microorganism have been shown to influence the rates of i	nactivation and elimination of drugs and toxins from the body.
Metabolites	
Potential to promote health	Potential to reduce health
Oxalate consumption	Beta-glucuronidase production
7.4 17	6.5 14.1 20.5
The typical range in healthy people is 7.39% to 17%	The typical range in healthy people is 6.5% to 20.53%
Fibre degradation 55.2 68.6 The typical range in healthy people is 55.22% to 71.8%	
The typical range in healthy people is 55.22% to 71.6%	
Species	
Potential to promote health	Potential to reduce health
Oxalobacter formigenes	Eggerthella lenta
•	
The typical range in healthy people is 0% to 0%	The typical range in healthy people is 0% to 0%

Microbiome Diversity

Microbial diversity is a measure of the number of different microorganisms and the amount of each of these microorganisms in the sample.

Average to high microbial diversity is associated with good health. A varied diet rich in plant-based foods such as fruits, vegetables, whole grains and nuts can help increase microbiome diversity. The Shannon Index is a measure of diversity which is used by members of the scientific community to compare results through time.

Shannon Diversity Index

Microbiome Composition

Complete Microbiome Profile

Below is a list of each species detected in your microbiome, listed in order of abundance. Click on any species name to learn more about that species. Some microbes have been associated with health outcomes in scientific studies, while for others, little is known about them.

Everybody's microbiome composition is different, and science is telling us that the functional capacity of the microbiome is more important than which species inhabit it.

+ Species with this symbol beside the table have been implicated in influencing health.

	Phylum	Species	Abundance 🔨	Range	Level	
	Bacteroidetes	Prevotella copri	12.65%	0.00% - 23.37%	Average	-
•	Proteobacteria	Escherichia coli	8.62%	0.00% - 0.33%	High	-
•	Proteobacteria	Klebsiella pneumoniae	6.30%	0.00% - 0.00%	High	-
	Bacteroidetes	Prevotella sp	3.83%	0.00% - 0.85%	High	-
	Firmicutes_A	Ruminiclostridium_E siraeum	3.04%	0.00% - 0.80%	High	-
•	Bacteroidetes	Alistipes putredinis	2.66%	0.00% - 3.22%	Average	-
•	Firmicutes_A	Agathobacter rectalis	2.47%	0.00% - 4.77%	Average	-
•	Bacteroidetes	Bacteroides_B vulgatus	2.37%	0.00% - 3.86%	Average	-
	Bacteroidetes	Muribaculum sp	1.60%	0.00% - 0.00%	High	-
	Bacteroidetes	Bacteroides_B sp	1.06%	0.00% - 0.00%	High	-
	Firmicutes_A	Fusicatenibacter saccharivorans	0.99%	0.00% - 2.34%	Average	-
•	Firmicutes_A	Ruminococcus_E bromii	0.97%	0.00% - 2.50%	Average	-
	Firmicutes_A	Faecalibacterium prausnitzii_B	0.93%	0.00% - 2.48%	Average	-
	Firmicutes_A	CAG-65 sp	0.86%	0.00% - 1.52%	Average	-
	Bacteroidetes	Bacteroides uniformis	0.76%	0.00% - 4.39%	Average	-
	Firmicutes_A	ER4 sp	0.72%	0.00% - 0.54%	High	-
	Bacteroidetes	Bacteroides_B massiliensis	0.62%	0.00% - 1.32%	Average	-
	Proteobacteria	Sutterella sp3	0.60%	0.00% - 0.83%	Average	-
	Firmicutes_A	Coprococcus eutactus_A	0.58%	0.00% - 1.52%	Average	-
	Bacteroidetes	Bacteroides_B dorei	0.58%	0.00% - 2.32%	Average	-
	Firmicutes_A	CAG-24 sp1	0.57%	0.00% - 0.42%	High	-
•	Bacteroidetes	Bacteroides fragilis	0.56%	0.00% - 0.66%	Average	-
	Bacteroidetes	Bacteroides stercoris	0.54%	0.00% - 1.77%	Average	-
•	Bacteroidetes	Parabacteroides distasonis	0.51%	0.00% - 0.93%	Average	-
	Firmicutes_A	Lachnospira eligens	0.49%	0.00% - 1.32%	Average	-
	Bacteroidetes	Bacteroides thetaiotaomicron	0.48%	0.00% - 0.81%	Average	-
	Firmicutes_A	CAG-83 sp2	0.48%	0.00% - 0.44%	High	-

Firmicutes_A	CAG-352 sp	0.47%	0.00% - 0.58%	Average	
Firmicutes_A	UBA3626 sp	0.47%	0.00% - 0.00%	High	-
Firmicutes_A	UBA11524 sp1	0.46%	0.00% - 3.45%	Average	-
Firmicutes_A	Eubacterium_R sp	0.45%	0.00% - 0.00%	High	-
Firmicutes_A	COE1 sp	0.39%	0.00% - 0.00%	High	-
Firmicutes_A	Negativibacillus sp	0.38%	0.00% - 0.00%	High	-
Firmicutes_A	Lachnospira sp	0.37%	0.00% - 0.15%	High	-
Bacteroidetes	Alistipes finegoldii	0.36%	0.00% - 0.58%	Average	-
Bacteroidetes	Bacteroides salyersiae	0.34%	0.00% - 0.08%	High	•
Bacteroidetes	Paraprevotella clara	0.33%	0.00% - 0.55%	Average	•
Firmicutes_A	UBA1394 sp	0.33%	0.00% - 0.09%	High	-
Bacteroidetes	Odoribacter splanchnicus	0.32%	0.00% - 0.34%	Average	•
Firmicutes_A	Dorea longicatena	0.32%	0.00% - 0.60%	Average	-
Firmicutes_A	Lachnospira sp	0.31%	0.00% - 0.09%	High	-
Bacteroidetes	Parabacteroides merdae	0.31%	0.00% - 0.66%	Average	-
Firmicutes_A	CAG-56 sp	0.30%	0.00% - 0.65%	Average	-
Bacteroidetes	Alistipes shahii	0.30%	0.00% - 1.47%	Average	-
Desulfobacterota	Desulfovibrio piger	0.29%	0.00% - 0.39%	Average	-
Bacteroidetes	UBA6382 sp	0.29%	0.00% - 0.00%	High	-
Proteobacteria	CAG-267 sp	0.29%	0.00% - 0.39%	Average	-
Firmicutes_A	Ruminococcus_B faecis	0.29%	0.00% - 0.49%	Average	-
Bacteroidetes	Prevotella corporis	0.28%	0.00% - 0.00%	High	-
Firmicutes_A	CAG-110 sp	0.25%	0.00% - 0.00%	High	-
Firmicutes_A	CAG-632 sp	0.23%	0.00% - 0.00%	High	-
Firmicutes_A	KLE1615 sp1	0.23%	0.00% - 0.77%	Average	-
Firmicutes_A	CAG-180 sp	0.21%	0.00% - 0.00%	High	-
Firmicutes_A	Oscillibacter sp	0.20%	0.00% - 0.43%	Average	-
Firmicutes_A	CAG-882 sp	0.20%	0.00% - 0.00%	High	-
Proteobacteria	51-20 sp	0.20%	0.00% - 1.05%	Average	-
Firmicutes_A	Ruminococcus_B lactaris	0.20%	0.00% - 0.34%	Average	-
Firmicutes_A	CAG-303 sp	0.19%	0.00% - 0.76%	Average	-
Firmicutes_A	UBA4263 sp	0.18%	0.00% - 0.25%	Average	-
Actinobacteria	Collinsella aerofaciens	0.18%	0.00% - 0.31%	Average	-
Firmicutes_A	Faecalibacterium sp	0.18%	0.12% - 1.14%	Average	-
Firmicutes_A	F23-B02 sp	0.17%	0.00% - 0.00%	High	-
Firmicutes_A	Butyricicoccus sp1	0.16%	0.00% - 0.78%	Average	-
Firmicutes_A	Faecalibacterium sp	0.15%	0.00% - 0.54%	Average	-

1	MetaBiome™ Portal					
	Firmicutes_A	CAG-110 sp	0.15%	0.00% - 0.00%	High	
	Bacteroidetes	Butyricimonas virosa	0.14%	0.00% - 0.00%	High	-
	Bacteroidetes	Parabacteroides goldsteinii	0.14%	0.00% - 0.00%	High	-
	Firmicutes_A	CAG-83 sp	0.14%	0.00% - 0.12%	High	-
	Firmicutes_A	CAG-110 sp	0.14%	0.00% - 0.00%	High	-
	Firmicutes_A	CAG-81 sp	0.14%	0.00% - 0.11%	High	-
	Firmicutes_A	ER4 sp	0.14%	0.00% - 0.27%	Average	-
	Firmicutes_A	Subdoligranulum sp	0.14%	0.00% - 0.35%	Average	-
	Proteobacteria	CAG-495 sp	0.14%	0.00% - 1.21%	Average	-
	Firmicutes_A	CAG-226 sp	0.13%	0.00% - 0.33%	Average	-
	Firmicutes_A	Oscillibacter sp	0.13%	0.00% - 0.41%	Average	-
	Firmicutes_A	TF01-11 sp	0.12%	0.00% - 0.07%	High	-
•	Actinobacteria	Bifidobacterium animalis	0.11%	0.00% - 0.10%	High	-
	Firmicutes_A	COE1 sp	0.11%	0.00% - 0.00%	High	-
	Firmicutes_A	Anaerotignum sp1	0.11%	0.00% - 0.14%	Average	-
	Firmicutes_A	ER4 sp	0.11%	0.00% - 0.00%	High	-
	Bacteroidetes	Porphyromonas sp	0.10%	0.00% - 0.00%	High	-
	Firmicutes_A	Negativibacillus massiliensis	0.10%	0.00% - 0.00%	High	-
	Firmicutes_A	Ruminiclostridium_C sp	0.10%	0.00% - 0.20%	Average	-
	Firmicutes_A	UBA1206 sp	0.10%	0.00% - 0.00%	High	-
	Firmicutes_A	CAG-170 sp	0.10%	0.00% - 0.48%	Average	-
	Firmicutes_A	CAG-170 sp	0.09%	0.00% - 0.15%	Average	-
	Proteobacteria	CAG-495 sp	0.08%	0.00% - 0.00%	High	-
	Firmicutes_A	Coprococcus_A catus	0.07%	0.00% - 0.22%	Average	-
	Firmicutes_A	Blautia_A obeum_A	0.07%	0.00% - 0.17%	Average	-
	Proteobacteria	Duodenibacillus sp	0.06%	0.00% - 0.00%	High	-
	Firmicutes_A	UBA10281 sp	0.06%	0.00% - 0.00%	High	-

Health Associated Species

Below is a list of all species detected in the sample that have been implicated in influencing health.

Phylum	Species	Abundance 🔨	Range	Level	
Bacteroidetes	Prevotella copri	12.65%	0.00% - 23.37%	Average	-

This is a common inhabitant of the human gut and includes a large number of strains.

Fuel sources used: It can use resistant starch, fibre, simple sugars, and protein as energy sources.

Key metabolites produced: It can produce succinate, the short-chain fatty acids, acetate and propionate and ethanol. It can also produce branched chain amino acids (BCAA); high levels of BCAAs have been linked to metabolic conditions.

Emerging research: High levels of some strains within this species have been associated with metabolic and inflammatory conditions. [1] [2] [3] [4] [5]

21/00	12010	۱
24/03	/2013	l

			MetaBiome™ Portal		1	
	Proteobacteria	Escherichia coli	8.62%	0.00% - 0.33%	High	
This species number of s not harmfu	is a common inhabitant of strains with diverse properti l.	the gut, although it is usually present at a estimate of the second s	a low abundance compared to ot ic strains that are a common cau	her normal gut species. This s se of gastrointestinal disease.	pecies encompass However, most st	ses a large trains are
uel source: orm kidney	s used: This species can use ⁄ stones.	fibre, simple sugars (including lactose), pr	otein and fats. Some strains can	also break down a compound	d called oxalate, м	/hich can
ey metabo compoun	lites produced: It can produ d called trimethylamine, wh	ice lactate, succinate, the short-chain fatty ich has been associated with cardiovascul	acid acetate, and essential B and ar conditions.	d K vitamins. Some strains cai	n also produce his	stamine a
merging re 1] [2] [3] [4	esearch: The harmful strains [4] [5] [6]	s can produce pro-inflammatory compoun	ds, and toxins that cause infectio	n and diarrhea.		
	Proteobacteria	Klebsiella pneumoniae	6.30%	0.00% - 0.00%	High	-
his species	can be found in several bo	dy sites, such as the mouth, nose, lungs ar	nd gut and can cause infection.			
uel source:	s used: It uses simple sugars	s (including lactose) and protein for energy	/.			
ev metabo	lites produced: It can produ	ice lactate, ethanol, and the short-chain fo	atty acid acetate			
ey metubo	ntes produced. It can produ	ice factate, ethanoi, and the short-chain ja				
merging respecies and	esearch: An overgrowth of th intestinal symptoms, pleas [] [5] [6]	nis species in the gut has been associated v e see a healthcare practitioner.	with diarrhea, inflammation and	cardiovascular conditions. If y	you have high leve	els of this
•	Bacteroidetes	Alistipes putredinis	2.66%	0.00% - 3.22%	Average	-
This is a cou	mmon inhahitant of the gut	microhioma				
	innon innabitant oj tre gat	microbionie.				
Fuel sources	s used: It can use limited typ	pes of simple sugars (including lactose) and	d protein for energy.			
Key metabo	lites produced: It primarily	produces succinate but can also produce l	low amounts of the short-chain f	atty acids acetate, propionate	and butyrate, an	d the
neurotransi	mitter GABA.					
Emerging re [1] [2] [3] [4	esearch: High levels of this s 4] [5] [6] [7] [8]	pecies have been associated with both poc	or gut health and improved mark	ers of cardiac health.		
	Firmicutes_A	Agathobacter rectalis	2.47%	0.00% - 4.77%	Average	-
Previously r	named Eubacterium rectale,	this is a common member of the human g	gut.			
uel source	s used: It can use resistant r	alant resistant starches after initial degrad	ation by Ruminococcus bromii			
der source.						
key metabo and is an in	lites produced: It produces nportant mediator of inflan	the short-chain fatty acid butyrate. Butyra 1mation.	te is important for a healthy gut	as it is the primary fuel of cell	is lining the intest.	inal tract
- Emerging re	esearch: Low levels of this sr	necies have been observed in inflammatory	/ conditions			
[1] [2] [3]						
	Bacteroidetes	Bacteroides_B vulgatus	2.37%	0.00% - 3.86%	Average	-
his is one o	of the most common inhabi	tants of the human gut.				
-upl source	s used: It can use dietary fik	re simple sugars protein and mucus for a	pnprav			
uer source.		, simple sugars, protein and macas jor e	energy.			
Key metabo Tinked to me	lites produced: It primarily etabolic conditions.	produces succinate and the short-chain fa	tty acid propionate. It can also p	roduce branched chain aming	o acids, which hav	ie been
Emerging re red meat. [1] [2] [3] [4	esearch: High levels of this b	pacterium have been associated with metal	bolic and inflammatory conditior	ns. This species has also been	associated with a	diet high
	Firmicutes_A	Ruminococcus_E bromii	0.97%	0.00% - 2.50%	Average	-
his is a coi	mmon member of the humo	an gut and is considered a keystone species	s of the gut microbiome for its ak	nility to break down resistant s	starch.	
uel source:	s used: Ruminococcus brom	ii uses resistant starch for energy.				
(ey metabo	lites produced: It can produ	ice the short-chain fatty acid acetate and s	simple sugars that other bacteria	, such as Agathobacter rectali	is can use to prod	uce shor
chain fatty	acids such as butyrate.					

Emerging research: Studies suggest the role of R. bromii as a primary starch degrader helps stimulate the growth of butyrate-producing bacterial species. [1] [2] [3]

•	Bacteroidetes	Bacteroides uniformis	0.76%	0.00% - 4.39%	Average	-
This is one oj	^f the most common inhabitan	ts of the human gut.				
Fuel sources	used: It can use fibre, resistan	t starch, simple sugars (including lactose), p	rotein and mucus for energy.			
Key metaboli produce the	tes produced: It primarily pro neurotransmitter GABA, which	duces succinate, although it can also produc is important for mental health.	e lactate and the short-chain	fatty acids, acetate and prop	ionate. This spe	ecies can also
Emerging res against diet i [1] [2] [3] [4]	earch: Certain strains have be induced obesity in mouse moo l	een observed to promote the production of a lels. Further research needs to be conducted	nti-inflammatory compounds, to determine if these benefits	. improve immune function, a translate to humans.	nd provide pro	tection
•	Bacteroidetes	Bacteroides_B massiliensis	0.62%	0.00% - 1.32%	Average	

This is a normal inhabitant of the human gut microbiome.

Fuel sources used: This species can use resistant starch, simple sugars (including lactose), protein and mucus for energy. It can also break down a compound called oxalate, which can form kidney stones.

Emerging research: High levels of this species have been correlated with poor gut health and a diet high in red meat. **[1] [2] [3] [4]**

211	no	201	C
24/	09/	201	J

			MetaBiome™ Portal			
	Firmicutes_A	Coprococcus eutactus_A	0.58%	0.00% - 1.52%	Average	
This is a cor	mmon inhabitant of the humar	n gut.				
Fuel sources	s used: It can use fibre, simple s	sugars (including lactose) and limited types o	of protein for energy.			
Key metabo propionate	lites produced: It primarily pro in smaller amounts.	duces formate and the short-chain fatty acio	l butyrate, but can also produ	ce lactate and the short-chain	n fatty acids ac	etate and
Emerging re [1] [2] [3] [4	esearch: This species has been o [] [5] [6]	bserved at decreased levels in children with	inflammatory conditions.			
	Bacteroidetes	Bacteroides_B dorei	0.58%	0.00% - 2.32%	Average	-
This is a cor	mmon inhabitant of the gut an	d is closely related to Bacteroides vulgatus.				
Fuel sources	s used: It can use fibre, resistan	t starch, simple sugars (including lactose), a	wide range of proteins and m	nucus as energy sources.		
Key metabo	lites produced: It can produce	succinate, lactate, and the short-chain fatty	acid acetate. It can also produ	ice GABA, an important neurc	otransmitter.	
Emerging re	esearch: High levels of this spec	ies have been associated with poor gut healt	h and autoimmune condition.	s in children. This species has	also been asso	ciated with
diets high ir [1] [2] [3] [4	n red meat. 4] [5] [6] [7]					
	Bacteroidetes	Bacteroides fragilis	0.56%	0.00% - 0.66%	Average	-
This is a noi	rmal inhabitant of the human	eut.				
Fuel sources	s used: It can use protein muci	is resistant starch and simple sugars (inclu	ding lactose) for energy			
Kay matabo	litas producad: It primarily pro	duces succingta and the short chain fatty ac	id acatata			
Key metabo	ntes produced. It primarily pro	auces succinate and the short-chain july ac				
Emerging re	esearch: This species has two di	ifferent forms: a non-toxic form and a toxin-	producing form. The majority	of B. fragilis strains found in	the gut microbi	ome are of
toxin-produ	icing form is much less commo	n, but has been correlated with diarrhea and	d inflammation. This species c	an also become an opportuni	istic pathogen i	f it manage
to infiltrate	the gut wall and enter the body	y cavity (e.g. through surgery).				
[1] [2] [3] [4	4] [5]					
	Bacteroidetes	Parabacteroides distasonis	0.51%	0.00% - 0.93%	Average	-
Formerly kn	oown as Bacteroides distasonis.	This is a common inhabitant of the human	gut.			
Fuel sources	s used: It can use fibre, resistan	t starch, simple sugars (including lactose), p	rotein and mucus for energy.			
Key metabo	lites produced: It primarily pro	duces succinate and the short-chain fatty ac	id, acetate. It can also produc	e GABA, an important neuroti	ransmitter.	
Emerging re	esearch: High levels of this spec	ies have been associated with poor gut healt	h and metabolic conditions in	n pregnant women.		
[1] [2] [3] [4	4] [5] [6]					
	Bacteroidetes	Alistipes finegoldii	0.36%	0.00% - 0.58%	Average	-
This is a cor	mmon inhabitant of the gut mi	crobiome.				
Fuel sources	s used: It can use simple sugars	s and protein for energy.				
Kev metabo	lites produced: It primarily pro	duces succinate and can also produce low a	mounts of the neurotransmitt	er GABA.		
Emerging re	esearch: High levels of this spec	ies have been associated with poor aut healt	h and a diet high in red meat	and/or low in fruits and vege	tables	
[1] [2] [3]	seurch. High levels of this spec	les nuve been associated with poor gat near	n ana a alet nign in rea meat	anaror low in jruits and vege	lubles.	
	Bacteroidetes	Paraprevotella clara	0.33%	0.00% - 0.55%	Average	-
This is a rec	ently discovered bacterial spec	ies and a common inhabitant of the human	gut microbiome.			
Fuel sources	s used: It can use fibre, simple :	sugars (including lactose) and protein as ene	rgy sources.			
Key metabo	lites produced: It can produce	succinate and the short-chain fatty acid acet	tate.			
Emerging re [1] [2]	esearch: Elevated levels of this s	pecies have been associated with poor gut h	ealth.			
•	Bacteroidetes	Odoribacter splanchnicus	0.32%	0.00% - 0.34%	Average	-
					-	

Formerly known as Bacteroides splanchnicus. This a common inhabitant of the human gut.

Fuel sources used: It can use fibre, resistant starch, simple sugars (including lactose), protein and mucus as energy sources.

Key metabolites produced: It can produce succinate, lactate and the short fatty acids, acetate, propionate and butyrate.

Emerging research: This species has been negatively correlated with metabolic conditions in postmenopausal obese women, suggesting it may have a beneficial role in metabolism. Another study observed this species was reduced in women with bladder pain.

[<u>1] [2] [3]</u>

•	Firmicutes_A	Dorea longicatena	0.32%	0.00% - 0.60%	Average	-
This is a com	nmon inhabitant of the humar	o gut.				
Fuel sources	used: It can use fibre, simple s	sugars (including lactose) and protein for ene	ergy.			
Key metaboli	ites produced: It can produce ;	formate, ethanol, and the short-chain fatty a	acids acetate and propionate.			
Emerging res [1] [2] [3] [4]	earch: There are conflicting re	rsults about the association of this species w	ith metabolic conditions and i	more study is needed.		

211	na	120	10
2 4/	03	20	10

			MetaBiome™ Portal			_
	Bacteroidetes	Parabacteroides merdae	0.31%	0.00% - 0.66%	Average	
ormerly kr	nown as Bacteroides merde	ae. This is a common inhabitant of the hun	nan gut.			
uel source.	s used: It can use simple su	ugars (including lactose), protein and mucu	is as energy sources.			
(ev metabo	olites produced: It can proa	luce succinate and the short fatty acid ace	tate and lactate.			
- merging re	esearch: High levels of this	species have been associated with poor gu	it and cardiovascular health. Th	's species has also heen asso	ciated with a diet low	w in fruits
and vegetal 1] [2] [3] [4	bles. 4] [5]	species nave been associated with poor ga				in franco
	Bacteroidetes	Alistipes shahii	0.30%	0.00% - 1.47%	Average	-
his is a coi	ש. mmon inhabitant of the hנ	ıman gut.				
uel source.	s used: It can use fibre, sim	nple sugars (including lactose) and protein	for energy.			
(ev metabo	olites produced: It primarily	/ produces succinate, but can also produce	e the short-chain fatty acid aceta	ite.		
merging r	esearch: This species appe	ars to have mostly heneficial effects. It has	heen associated with heneficial	markers of cardiac health a	nd a study in mice sl	howed this
pecies may	improve the efficacy of in	nmunotherapy. However, high levels of this	species have also been observed	d in neurodegenerative cond	itions.	TOWED LITE
<u>1] [2] [3] [</u> 4	4] [5] [6]					
	Desulfobacterota	Desulfovibrio piger	0.29%	0.00% - 0.39%	Average	-
nis is an ir	nnabitant of the human gu	τ.				
-uel source. Sulfate and	s used: It can use limited ty nitrate to produce hydrog	/pes of simple sugars as well as lactate and en sulphide and ammonia.	d protein for energy. It can prod	uce the short-chain fatty acid	d acetate. It can also	reduce
uel source. ulfate and	s used: It can use limited ty nitrate to produce hydrog geograph: Elevated levels of I	/pes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with infle	d protein for energy. It can prod	uce the short-chain fatty acio	d acetate. It can also	reduce
uel source. ulfate and merging re 1] [2] [3] [4	s used: It can use limited ty nitrate to produce hydrog esearch: Elevated levels of t 4] [5]	/pes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with inflo	d protein for energy. It can prod ammation.	uce the short-chain fatty acio	d acetate. It can also	reduce
ulfate and merging re 1] [2] [3] [4	s used: It can use limited ty nitrate to produce hydrog esearch: Elevated levels of t 4] [5] Eirmicutes A	vpes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with inflo Ruminococcus, Blactaris	d protein for energy. It can prode	uce the short-chain fatty acid	d acetate. It can also	reduce
uel source. ulfate and merging re 1] [2] [3] [4	s used: It can use limited ty nitrate to produce hydrog esearch: Elevated levels of t 4] [5] Firmicutes_A	vpes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with inflo Ruminococcus_B lactaris	d protein for energy. It can prode ammation. 0.20%	uce the short-chain fatty acid 0.00% - 0.34%	d acetate. It can also Average	reduce
iuel source. ulfate and merging re 1] [2] [3] [4 (his is a cou	s used: It can use limited ty nitrate to produce hydrog esearch: Elevated levels of t 4] [5] Firmicutes_A mmon inhabitant of the hu	vpes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with inflo Ruminococcus_B lactaris uman gut.	d protein for energy. It can prode ammation. 0.20%	uce the short-chain fatty acia 0.00% - 0.34%	d acetate. It can also Average	reduce
ivel source. ulfate and merging re 1] [2] [3] [2 (1) [2] [3] (1) [3] [2] [3] (1) [3] [2] [3] (1) [3] [2] [3] (1) [3] [3] [2] (1) [3] [3] [3] (1) [3] [3] [3] [3] (1) [3] [3] [3] [3] (1) [3] [3] [3] [3] [3] [3] (1) [3] [3] [3] [3] [3] [3] [3] [3] [3] [3]	s used: It can use limited ty nitrate to produce hydrog esearch: Elevated levels of t 4] [5] Firmicutes_A mmon inhabitant of the hu s used: It can use simple su	vpes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with inflo Ruminococcus_B lactaris uman gut. ugars (including lactose) and protein for en	d protein for energy. It can prode ammation. 0.20% nergy.	uce the short-chain fatty acid	d acetate. It can also Average	reduce
Tuel source. ulfate and merging re 1] [2] [3] [1] [2] [3] (1] [2] [3] (1] (1] [2] [3]	s used: It can use limited ty nitrate to produce hydrog esearch: Elevated levels of t 4] [5] Firmicutes_A mmon inhabitant of the hu s used: It can use simple su	vpes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with inflo Ruminococcus_B lactaris uman gut. ugars (including lactose) and protein for en luce lactate and the short-chain fatty acids	d protein for energy. It can prode ammation. 0.20% hergy. 5 acetate and propionate.	uce the short-chain fatty acid	d acetate. It can also Average	reduce
Fuel source. ulfate and Emerging re 1] [2] [3] [4 This is a cou Fuel source. Key metabo Emerging re 1] [2] [3]	s used: It can use limited ty nitrate to produce hydrog esearch: Elevated levels of t 4] [5] Firmicutes_A mmon inhabitant of the hu s used: It can use simple su plites produced: It can prod esearch: Elevated levels of t	vpes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with inflo Ruminococcus_B lactaris uman gut. ugars (including lactose) and protein for en luce lactate and the short-chain fatty acids this species have been observed with inflam	d protein for energy. It can prode ammation. 0.20% hergy. 5 acetate and propionate. nmatory conditions, but reduced	uce the short-chain fatty acid 0.00% - 0.34% I levels have been observed w	d acetate. It can also Average	tions.
iuel source. ulfate and imerging re 11 [2] [3] [4 inis is a con iuel source. iuel source. iue	s used: It can use limited ty nitrate to produce hydrog esearch: Elevated levels of t 4] [5] Firmicutes_A mmon inhabitant of the hu s used: It can use simple su plites produced: It can prod esearch: Elevated levels of t Actinobacteria	vpes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with inflo Ruminococcus_B lactaris uman gut. ugars (including lactose) and protein for en luce lactate and the short-chain fatty acids this species have been observed with inflam Bifidobacterium animalis	d protein for energy. It can prode ammation. 0.20% hergy. 5 acetate and propionate. nmatory conditions, but reduced 0.11%	uce the short-chain fatty acid 0.00% - 0.34%	d acetate. It can also Average	tions.
iuel source. ulfate and imerging re 11 [2] [3] [4 inis is a cou- iuel source. iuel source. iuel source. imerging re 11 [2] [3] inis is a na	s used: It can use limited ty nitrate to produce hydrog esearch: Elevated levels of t 4] [5] Firmicutes_A mmon inhabitant of the hu s used: It can use simple su plites produced: It can prod esearch: Elevated levels of t Actinobacteria turally occurring human g	vpes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with inflo Ruminococcus_B lactaris uman gut. ugars (including lactose) and protein for en duce lactate and the short-chain fatty acids this species have been observed with inflan Bifidobacterium animalis ut bacterium and probiotic; it is sometimes	d protein for energy. It can prode ammation. 0.20% acetate and propionate. amatory conditions, but reduced 0.11% s also called Bifidobacterium lac	uce the short-chain fatty acid 0.00% - 0.34% ' levels have been observed w 0.00% - 0.10% tis.	d acetate. It can also Average	tions.
iuel source. ulfate and imerging re 1] [2] [3] [4 inis is a col iuel source. iuel source. imerging re 1] [2] [3] inis is a na iuel source.	s used: It can use limited ty nitrate to produce hydrog esearch: Elevated levels of t 4] [5] Firmicutes_A mmon inhabitant of the hu s used: It can use simple su plites produced: It can prod esearch: Elevated levels of t Actinobacteria turally occurring human g s used: It can use fibre, res	vpes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with inflo Ruminococcus_B lactaris uman gut. ugars (including lactose) and protein for en luce lactate and the short-chain fatty acids this species have been observed with inflan Bifidobacterium animalis ut bacterium and probiotic; it is sometimes istant starch, simple sugars (including lact	d protein for energy. It can prode ammation. 0.20% ergy. 5 acetate and propionate. nmatory conditions, but reduced 0.11% s also called Bifidobacterium lac ose) and protein for energy.	uce the short-chain fatty acid 0.00% - 0.34% ' levels have been observed w 0.00% - 0.10% tis.	d acetate. It can also Average with metabolic condit High	tions.
iuel source. ulfate and imerging re 1] [2] [3] [4 inis is a con iuel source. iey metabo inerging re 1] [2] [3] inis is a na iuel source. iey metabo his is a na iuel source.	s used: It can use limited ty nitrate to produce hydrog esearch: Elevated levels of t 4] [5] Firmicutes_A mmon inhabitant of the hu s used: It can use simple su olites produced: It can prod esearch: Elevated levels of t Actinobacteria turally occurring human g s used: It can use fibre, res olites produced: It produces tion of butyrate.	vpes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with inflo Ruminococcus_B lactaris uman gut. ugars (including lactose) and protein for en luce lactate and the short-chain fatty acids this species have been observed with inflam Bifidobacterium animalis ut bacterium and probiotic; it is sometimes istant starch, simple sugars (including lact s lactate and the short-chain fatty acid, ace	d protein for energy. It can prode ammation. 0.20% eergy. 5 acetate and propionate. anmatory conditions, but reduced 0.11% s also called Bifidobacterium lac ose) and protein for energy. etate. Acetate from Bifidobacteri	uce the short-chain fatty acid 0.00% - 0.34% l levels have been observed w 0.00% - 0.10% tis.	d acetate. It can also Average //ith metabolic condia High tyrate-producing ba	tions.
iuel source. ulfate and imerging re 11 [2] [3] [4 inis is a con iuel source. iuel source. iuel source. inis is a na iuel source. iuel source. iue	s used: It can use limited ty nitrate to produce hydrog esearch: Elevated levels of t 4] [5] Firmicutes_A mmon inhabitant of the hu s used: It can use simple su olites produced: It can prod esearch: Elevated levels of t Actinobacteria turally occurring human g s used: It can use fibre, res olites produced: It produces tion of butyrate.	pes of simple sugars as well as lactate and en sulphide and ammonia. this species have been associated with inflo Ruminococcus_B lactaris uman gut. ugars (including lactose) and protein for en luce lactate and the short-chain fatty acids this species have been observed with inflan Bifidobacterium animalis ut bacterium and probiotic; it is sometime: istant starch, simple sugars (including lact s lactate and the short-chain fatty acid, ace pointed with a low BMI and has been used	d protein for energy. It can prode ammation. 0.20% nergy. 5 acetate and propionate. nmatory conditions, but reduced 0.11% 5 also called Bifidobacterium lac ose) and protein for energy. etate. Acetate from Bifidobacteriu	uce the short-chain fatty acid 0.00% - 0.34% l levels have been observed w 0.00% - 0.10% tis. a promotes the growth of bu	d acetate. It can also Average ith metabolic condit High tyrate-producing ba	tions.