Table 1 Vinecology integrates across domains, such as natural habitat, water, and soil, and at multiple scales to address conservation issues and seek ecosystem benefits | Vinecology domain
(scale) and mode of
engagement | Conservation challenges | Vinecology practices | Ecosystem
benefits | Supporting studies | | | |---|---|--|---|--|--|--| | | Wildlife habitat (H1) | | | | | | | Growing regions, appellations, winefarms, vineyards—major watersheds, catchments, riparian corridors (10 ¹⁶ m²) regional grower and sustainability groups (e.g., Biodiversity & Wine Initiative South Africa, Lodi | Conversion and fragmentation of natural habitat, especially shrublands, threatens endemic and rare species, disrupts connectivity, gene flow, and effective range size. | Maintain and conserve contiguous areas of native habitat. Water resc | Provides core native habitats and corridors to support wildlife, improves ecosystem functioning, and sustains ecosystem services. | (Heaton and Merenlender
2000; Merenlender
2000; Nicholls et al.
2001) | | | | Winegrape Commission California); conservation planning tools (e.g., InVEST, Vista); water-user associations and watershed councils; land trusts and conservancies | Wine, through viticultural and oenological operations, uses roughly 1000 L of water for each 1 L of wine produced. Production practices consume water and diminish water quality. | Develop and implement a catchment level assessment of water resources (e.g., water footprint analysis to determine hydrological balance); sustain hydrological functioning through restoration of streams, riparian zones, and wetlands. | Integrates operations into more holistic catchment perspective; integrates industry operations with broader ecosystem and societal objectives. | (Hoekstra and Chapagain
2007) | | | | | Vineyards on steep slopes
accelerate erosion and
loss of soil. Deep ripping
of soil horizons can
disrupt local
hydrogeology. | Design vineyard blocks with row orientation to minimize downslope processes; employ mulching and cover cropping with (native) perennials to reduce soil exposure. Wildlife he | Reduces erosion,
increases organic
matter and infiltration
rate, lowers soil
temperature, and
improves nutrient
cycling. | (Battany and Grismer
2000; Ruiz-Colmenero
et al. 2011) | | | | Vineyard blocks, rows, vines—habitat patches, hedgerows, field margins (10 ²⁻⁵ m²); conservation easements; cost-share and incentive programs; stream rehabilitation teams; alien species eradication councils | Land clearing, especially of
wetlands and riparian
areas, diminishes
ecosystem functioning,
degrades habitat, and
eliminates higher
trophic levels. | Maintain wetland and riparian areas, establish hedgerows and vegetation strips, and incorporate habitat islands. Water resc | Allows for wildlife
movement and
migrations; improves
biochemical cycling;
sustains trophic
interactions; buffers
against pesticide drift;
and serves as source for
beneficial insects. | (Hillty and Merenlender
2004; Baumgartner
et al. 2006; Smukler
et al. 2010; Jedlicka
et al. 2011; Williams
et al. 2011) | | | | | Seasonal water
abstraction (e.g., frost
protection) can critically | Utilize seasonal storage
ponds filled in winter to
augment supply during | Replenishes ecosystems
during seasonal dry
periods; reduces impact | (Lohse et al. 2008; Deitch
et al. 2009; Grantham
et al. 2012) | | | Table 1 Continued | Vinecology domain
(scale) and mode of
engagement | Conservation challenges | Vinecology practices | Ecosystem benefits | Supporting studies | |--|--|--|---|---| | | impair aquatic
ecosystems. | deficit and climatic
extremes; drain in
summer to prevent
biological invasion (e.g.,
American bullfrog). | on native aquatic and
riparian biota; prevents
critical stream
drawdowns that harm
fishes and other aquatic
organisms. | | | | Vineyard floor
management alters soil
dynamics (i.e.,
structure, water holding
capacity, and nutrient
cycling). | Employ cover cropping
and flower strips
between rows; establish
and maintain sediment
barriers and traps
between vineyard
blocks and stream
courses. | Increases organic matter,
improves soil structure
and water holding
capacity, sequesters
carbon, and accelerates
nutrient cycling. | (Wheeler et al. 2005;
Guerra and Steenwerth
2012) | | Vines, berries, phenolics—lone trees, fruits, nectars, carbon, nutrients (10 ⁰⁻¹ m²); viticulture and resource management extension specialists; continuing education workshops; worker training and skill development programs | Viticulture is a monocrop
often heavily managed
with biocides, and thus
biologically depleted. | Plant and maintain
flowering strips
between vine rows (can
be in conjunction with
cover crops and
integrated pest
management) as
"planned" biodiversity.
Water reso | Serves to increase insectary habitat as part of integrated pest management strategy; improves biodiversity by attracting pollinators and predatory insects (i.e., parasitoids). purces (W3) | (see Gurr et al. 2004) | | | Irrigated viticulture can
deplete local surface
water stores and
aquifers. | Employ improved technology, such as drip irrigation and real-time evapotranspiration and soil moisture monitoring, in conjunction with viticultural practices such as shoot thinning and leaf pulling. | Reduces consumptive use
and overall water
footprint; reduces
mildew and weeds;
reduced deficit
irrigation can improve
fruit quality. | (Chaves et al. 2007;
Schultz and Stoll 2010) | | | Farming practices deplete beneficial soil biota. | Mulch vine rows with
pomace and other
green manure. | Reduces pestilence and
adds source of nutrients
and organic matter;
sustain microbial
functions. | (Jacometti et al. 2007a,b;
Steenwerth and Belina
2008; Steenwerth and
Belina 2010) |