Optimization of a lab-on-a-chip device and method for quantification of extravasation

Background
Metastasis comprises of intravasation, extravasation and new tumor formation at a secondary site in the body. Understanding the mechanism of metastasis and developing new platforms to study metastasis plays a critical role in both the diagnosis and the treatment of cancer.

Questions
Extravasation on a chip has been modeled before. Yet, the approach requires further optimization.

Methods

Results
Presence of dextran in the endothelial cell suspension prevented formation of cluster.

Real time imaging and analysis showed that 70 kDa fluorescent dextran did not diffuse from the flow channel into the matrix.

References and acknowledgements

Acknowledgements: The authors would like to thank TUBITAK (Grant no: 115E057 and 115Z428) for providing financial support to this project.

We have optimized surface coating, cell density and medium composition for successful mimicking of a blood vessel in a LOC device. The optimized method enables the determination of extravasation of cancer cells.