INTRUCTION MANUAL FOR
 MODEL 7054-1
 SPIKE GENERATOR

March 10, 1971

Revised: June 11, 1976
Revised: March 9, 2007
Revised: June 30, 2009

Solar Electronics Company
A Division of A. T. Parker, Inc.
10866 Chandler Boulevard

TABLE OF CONTENTS

1.0 Application 4
2.0 Description 4
3.0 Specifications 6
4.0 Operation. 7
4.1 General. 7
4.2 Interconnections for Parallel Injection. 7
4.3 Interconnections for Series Injection. 8
4.4 FUNCTION Switch 9
4.5 Pulse Positioning 9
4.6 Repetition Rate 10
4.7 Spike Amplitude 10
4.8 Amplitude with Low Impedance Loads 10
4.9 Pulse Shape 11
5.0 Maintenance and Calibration 11
5.1 Equipment 11
Required 11
5.2 Preliminary Procedure 11
5.3 Voltage Check 13
5.4
5.4
5.4 Trigger Waveform 15
5.5 Check and Adjustment of Maximum Amplitude 15
5.6 Check and Adjustment of Frequency Calibration 16
5.7 Check and Adjustment of Range of Pulse 16
5.8 Check and Adjustment of Range of Pulse 17
5.9 Check of Single Pulse Function 17
5.10 Compare Waveforms on 2K $\Omega 50$ W Resistors18
6.0 Parts List.
Oscilloscope Plots, Illustrations and Images
Oscilloscope Plots
Figure 1 - Pulse Shape with 5Ω Load on Either Series or Parallel Output. 4
Figure 2 - Pulse Shape with 0.5Ω Load on Either Series or Parallel Output. 5
Figure 9 - Waveform at output of Q5, Amplitude at zero. 13
Figure 10 - Waveform at output of Q5, Amplitude at maximum 14
Illustrations
Figure 3 - Parallel Injection on DC Line 7
Figure 4 - Series Injection on AC Line 8
Figure 5 - Series Injection on DC Line, Measuring 7054-1 Spike Only 8
Figure 6 - Setup for Pulse Position Test on 400 Hz Line. 9
Images
Figure 7 - Printed Circuit Board Reference Designators. 12
Figure 8 - Adjustment Sliders and Measurement Point 12
Figure 11 - $2 \mathrm{~K} \Omega 50 \mathrm{~W}$ Resistors. 17

1.0 Application

The model 7054-1 Spike Generator was specifically designed for screen room use in making conducted transient susceptibility tests as required by MIL-STD-826A, MIL-STD461A/462 and other RFI/EMI specifications.

2.0 Description

The model 7054-1 Spike Generator provides a transient pulse (spike) with amplitude adjustable up to 600 V peak. Using parallel injection into a resistive load, the output transient closely follows an idealized curve with less than $1 \mu \mathrm{~s}$ rise time and falling to 10% of full voltage in approximately $10 \mu \mathrm{~s}$. See Figure 1 and 2 . The repetition rate is adjustable from 0.8 pulses per second (pps) to 10 pps .

Figure 1 - Pulse shape with 5Ω load on either series or parallel output

Figure 2 - Pulse shape with 0.5Ω load on either series or parallel output

A FUNCTION switch allows either recurring spikes at a selected rate or provides for single spikes by a panel-mounted push button. The FUNCTION switch also provides for synchronization with $60 \mathrm{~Hz}^{*}$ or 400 Hz lines.

When synchronizing with AC lines, the PULSE POSITION knob allows for phase adjustment of the spike to position it anywhere on the AC sine wave.

The PARALLEL output terminals provide for injection of the spike in parallel with the load. The SERIES output terminals provide connections for series injection. The output terminals are isolated from the chassis and the AC line.

3.0 Specifications

Spike Repetition Rate
Continuously adjustable from 0.8 pps to 10 pps
Spike Amplitude
Continuously adjustable from 5 V to 600 V peak
Spike Duration
Output falls to 10% of full voltage in approximately $10 \mu \mathrm{~s}$ with a 5Ω load on the SERIES output terminals

Rise Time
Less than 1μ s into 5Ω resistive load
Spike Shape
Ringing characteristic as per Figure 1 and Figure 2
Phase Adjustment
Adjustable from 0° to 360° on $60 \mathrm{~Hz}^{*}$ or 400 Hz lines
Internal Impedance
Approximately 0.5Ω

Power Line Current in Series Injection Mode
Handles 25 A RMS at power frequencies or DC
Power Requirement
115 V 60-400 Hz, 1.6 A**
Size
19 " rack panel, 7 " high $\times 12-3 / 4$ " deep, less projections
Weight
US: $36 \mathrm{lb} . ;$ Metric: 16.3 kg.

4.0 Operation

4.1 General

Parallel Injection is most often used for DC lines. Series injection is always used on AC lines. CAUTION! DO NOT CONNECT OUTPUT OF SPIKE GENERATOR IN PARALLEL WITH AC LINES. ALTHOUGH SERIES INJECTION CAN BE USED ON EITHER AC OR DC LINES, PARALLEL INJECTION MUST NOT BE USED ON AC LINES SINCE SEVERE DAMAGE TO THE SPIKE GENERATOR WILL RESULT.

4.2 Interconnections for Parallel Injection

As shown in Figure 3, connect the oscilloscope to the terminals marked PARALLEL. Also connect these terminals to the DC input power leads of the equipment under test. Take precautions to prevent grounding the load through the case of the oscilloscope. Use a Solar type 7032-1 Isolation Transformer or equivalent at the power input to the oscilloscope. All output terminals on the Spike Generator are isolated from the case of the unit.

When parallel injecting the spike into a DC line, it is desirable to use an inductor in series with the power source so that the spike is applied to the test sample without the R.F. shunting effect of the power source impedance. The secondary of Solar Type 6220-1A Audio Isolation Transformer is well suited for this application and is capable of carrying 50 A of test sample current.

FIGURE 3 - PARALLEL INJECTION ON D.C. LINE

4.3 Interconnections for Series Injection

For series injection, connect the output terminals marked SERIES in series between the power source and the test sample as shown in Figure 4. It is recommended that the injection be in series with the ungrounded side of the power line.

FIGURE 4 - SERIERS INJECTION ON A.C. LINE
The series connection is capable of handling 25 A RMS or DC This connection inserts approximately $75 \mu \mathrm{H}$ in series with the test sample. The power frequency voltage drop across this reactance is 4.75 V at $25 \mathrm{~A}, 400 \mathrm{~Hz}$.

The oscilloscope should be connected across the SERIES output terminals to indicate the shape and magnitude of the spike being injected into the circuit. See Figure 5. However, the spike as it appears on the AC waveform into the test sample is best seen by connecting the oscilloscope across the power input leads to the test sample, as shown in Figure 4. Precautions must be taken to avoid grounding the hot side of the power line through the case of the oscilloscope.

Solar Electronics Company

4.4 FUNCTION Switch

This control enables the operator to select from three functions. In the extreme left, SINGLE PULSE position, it provides for pushbutton operation of single transients. The FREQUENCY P.P.S. position selects the variable repetition rate function. The last two FUNCTION switch positions select pulse positioning on 60 Hz and 400 Hz AC power signals respectively.

4.5 Pulse Positioning

With the equipment connected for series injection on AC lines, as shown in Figure 4, place the FUNCTION switch in $60 \mathrm{~Hz}^{*}$ or 400 Hz SYNC position as required. The power cord of the Spike Generator must be connected to the same power source as the test sample.

However, when operating on a 400 Hz power line for the pulse position test, it is necessary to connect the blower fan to the standard $60 \mathrm{~Hz}^{*}$ line. See figure 6. This is accomplished by removing the parallel blade connector, P1, from its socket (adjacent to the fuses on the rear panel) and connecting it to a primary power source of 115 V 60 Hz .

Connect the oscilloscope across the power input to the test sample. Avoid grounding the hot side of the line through the case of the oscilloscope. A power line isolation transformer such as Solar type 7032-1 is suggested at the power input to the scope, as shown in figures 4 and 6 .

FIGURE 6 - SETUP FOR PULSE POSITION TEST ON 400 Hz LINE

The PULSE POSITION control in conjunction with the polarity reversing switch will enable phase shift of the injected spike through 360° as observed on the oscilloscope. The phase reversing switch at the bottom of the panel will allow adjustment of the spike position to the positive half cycle or the negative half cycle of the power line sine wave. Due to the phase difference existing, the knob position corresponding to the voltage zero crossover will differ from one test sample to another.

When synchronizing on a $60 \mathrm{~Hz}^{*}$ line, the spike appears on every $8^{\text {th }}$ sine wave of the power frequency. On a 400 Hz line, the spike appears on every $64^{\text {th }}$ sine wave. The spike position, however, is the same on each sine wave on which the spike appears. This periodic injection of the spike is due to the $7.5^{* *} \mathrm{pps}$ rate on $60 \mathrm{~Hz}^{*}$ lines and a rate of 6.2 pps on 400 Hz lines. (In this equipment, the repetition rate must be kept below 10 pps to allow time for the charging of the capacitors which provide the energy for the spike.)

CAUTION: WHEN OPERATING ON A 400 HZ POWER LINE, DO NOT LEAVE THE FUNCTION SWITCH IN THE 60 HZ POSITION FOR PROLONGED PERIODS SINCE IT MAY CAUSE OVERHEATING OF THE POWER SUPPLY.

Upon completion of the 400 Hz pulse positioning test, reinsert the parallel blade connector into the mating socket. This connector should remain in this position for all other uses of the Spike Generator.

4.6 Repetition Rate

The calibration of the knob in pps is reasonably accurate (approximately $\pm 10 \%$) at all panel markings. For applications where the exact rate is important, it may be measured on the time base scale of the associated oscilloscope. The rate is independent of load conditions.

4.7 Spike Amplitude

The amplitude of the spike is adjustable from approximately 5 V to 600 V peak by means of the AMPLITUDE knob. The calibration of this scale is most accurate at 100 V with a resistive load greater than 5Ω and with a repetition rate of 10 pps . For adjustment of amplitude into unknown loads, the knob must be adjusted while watching the spike amplitude on an oscilloscope with calibrated vertical amplitude.

4.8 Amplitude with Low Impedance Loads

Since the internal impedance of the Spike Generator is of the order of 0.25-1.0 Ω, the amplitude into a matched load will be one half that of the open circuit amplitude. This characteristic enables the operator to estimate the load impedance when it is approaching the internal impedance of the generator.

4.9 Pulse Shape

When unloaded or connected to a purely resistive load, the spike shape is approximately that of Figure 1. For low impedance or reactive loads, the shape is modified in terms of load. Figure 2 indicates the spike shape when connected to a 0.5Ω resistive load.

5.0 Maintenance and Calibration

Periodically make the following tests to verify the performance of the Spike Generator. Make any adjustments required to bring the performance within the specified limits.

5.1 Equipment Required

The following equipment is required for the tests and adjustments described below:

1. Variac, $105-135 \mathrm{~V}, 60$ to 400 Hz , ${ }^{*}$ capable of handling 2 A
2. $A C$ voltmeter, range suitable for measuring line voltage at 60 ** and 400 Hz
3. Calibrated oscilloscope
4. DC voltmeter
5. Single phase 400 Hz power source, capable of supplying 2 A
6. 5Ω resistor, $\pm 10 \%, \geq 20 \mathrm{~W}$
7. $6 \mathrm{~V}, 400 \mathrm{~Hz}$ transformer

5.2 Preliminary Procedure

Be sure the line cord of the Spike Generator is disconnected from the primary source. Remove screws in top cover and in bottom cover.

Connect the variac to a $115 \mathrm{~V} 60 \mathrm{~Hz}^{*}$ power source. Plug the Spike Generator into output of variac. Connect the voltmeter across the variac output and maintain $115 \mathrm{~V}^{* * *}$ input to Spike Generator throughout the test.

5.3 Voltage Check

DC voltage across the $500 \mu \mathrm{~F}$ capacitor C 6 , should be $4 \mathrm{~V} \pm 10 \%$ for older 7054 - 1 's or 7 $\mathrm{V} \pm 10 \%$ for more recent $7054-1$'s. Voltage across the $500 \mu \mathrm{~F}$ capacitor C 12 should be $18 \mathrm{~V} \mathrm{DC} \pm 10 \%$. See Figure 7. If necessary, adjust the sliders on R8 shown in Figure 8 to obtain these voltages.

FIGURE 7- PRINTED CIRCUIT BOARD REFERENCE DESIGNATORS
The DC voltage out of rectifier CR1 should be at least 350 V for rightmost rotation of the knob. See Figure 8 for CR1 measurement point.

FIGURE 8- ADJUSTMENT SLIDERS AND MEASUREMENT POINT

5.4 Trigger Waveform

Connect the oscilloscope across R37 at the output of Q5 in Figure 7. The common lead of the oscilloscope may be left on the negative end of C 6 or C 12 . With the FUNCTION switch at FREQUENCY P.P.S., the frequency at 10 pps , the AMPLITUDE knob at zero, the waveform should be similar to that of Figure 9.

Microseconds

Vertical: $\quad 2 \mathrm{~V} / \mathrm{div}$
Horizontal: $20 \mu \mathrm{~s} / \mathrm{div}$

FIGURE 9 - Waveform at output of Q5, Amplitude at zero

With the AMPLITUDE knob adjusted for maximum output, the waveform of Figure 9 will be modified due to kickback from the SCR firing and will resemble that of Figure 10.

Microseconds

Vertical: $2 \mathrm{~V} / \mathrm{div}$
Horizontal: $20 \mu \mathrm{~s} / \mathrm{div}$

FIGURE 10 - Waveform at output of Q5, Amplitude at maximum

5.5 Check and Adjustment of Maximum Amplitude

To check and, if required, adjust the maximum amplitude, proceed as follows:
Connect the 5Ω resistor across the SERIES output terminals on the Spike Generator.
Connect oscilloscope input to SERIES output terminals on the Spike Generator.
Adjust oscilloscope controls to display 600 V peak at 10 pps .
Turn Spike Generator on.
Set FUNCTION switch to the FREQUENCY P.P.S. position.
Set FREQUENCY P.P.S. knob to 10.
Rotate AMPLITUDE control to the leftmost position.
Oscilloscope should display peak amplitude of at least 600 V .
On the oscilloscope, verify that the pulse reaches peak amplitude in less than 1μ s and decays to zero in 8-14 $\mu \mathrm{s}$.

Adjust AMPLITUDE control until oscilloscope displays 100 V peak.
Verify that AMPLITUDE knob indicates 100. If it does not, loosen set screws and move knob on shaft to indicate 100 when oscilloscope displays peak amplitude of 100 V .

NOTE: All other tests and adjustments will be made at 100 V amplitude.

5.6 Check and Adjustment of Frequency Calibration

To check and adjust the frequency calibration, proceed as follows:
Place the $5 \Omega 20 \mathrm{~W}$ or greater resistor on the SERIES output terminals and connect the oscilloscope across it.

Set FUNCTION switch to FREQUENCY P.P.S. and the rate to 10.
Set oscilloscope sweep for $20 \mathrm{~ms} /$ div and set vertical amplifier to $5 \mathrm{~V} / \mathrm{div}$.
There should be a pulse on every $5^{\text {th }}$ division on the oscilloscope grid and a total of 3 pulses.

If necessary, adjust 5K potentiometer, R22, in Figure 7, until a pulse appears at each major division on the oscilloscope, with a total of 10 pulses. With the oscilloscope sweep adjusted for $0.1 \mathrm{sec} / \mathrm{div}$, this display corresponds to a frequency of 10 pps .

5.7 Check and Adjustment of Range of Pulse Position Control at 60 Hz

To check and adjust the range of the PULSE POSITION control at $60 \mathrm{~Hz}^{*}$, proceed as follows:

Set FUNCTION switch on Spike Generator to 60~SYNC.
Set oscilloscope sweep for $1 \mathrm{~ms} /$ div, automatic sweep triggered to the positive (+) half of the line cycle.

Rotate PULSE POSITION control on Spike Generator. One pulse should appear on oscilloscope. If more than one pulse appears, replace SCR1 in Figure Sissy

When the PULSE POSITION control is rotated over its full range, the pulse should move $81 / 2^{* *}$ divisions on the oscilloscope grid. If necessary, adjust potentiometer R23, in Figure Sissy, until the PULSE POSITION control moves the pulse $81 / 2^{* *}$ oscilloscope divisions over its full range.

5.8 Check and Adjustment of Range of Pulse Position Control at 400 Hz

To check and adjust the range of the PULSE POSITION control at 400 Hz , proceed as follows:

Connect a variac to $115 \mathrm{~V}^{* * *} 400 \mathrm{~Hz}$ power source. Maintain 115 V *** output from the variac throughout the following tests.

Connect a $6 \mathrm{~V}, 400 \mathrm{~Hz}$ transformer to the external trigger input to the oscilloscope. The transformer must use the same power source as the Spike Generator.

Turn on the Spike Generator and set the FUNCTION switch to $400 \sim$ SYNC, and the sync phase switch (marked + and -) to + .

Set the oscilloscope sweep for $0.2 \mathrm{~ms} /$ div, automatic sweep, external trigger. The oscilloscope should display a single pulse.

Rotate PULSE POSITION control clockwise and counterclockwise so pulse travels across the display.

The pulse should travel $61 / 4$ divisions.
If necessary, adjust R24, in Figure Sissy, until the pulse travels $61 / 4$ divisions.

5.9 Check of Single Pulse Function

To check generation of a single pulse, proceed as follows:
Set the FUNCTION switch to the leftmost position to SINGLE PULSE.
Press the pushbutton switch several times. Observe that each time the switch is depressed a pulse appears on the oscilloscope.

When this test is completed, return the Spike Generator to operation from a $60 \mathrm{~Hz}^{*}$ primary source.

5.10 Compare Trigger Waveforms

See Figure 11. Prepare the oscilloscope to measure around 300 volts. Connect a scope probe ground lead to the 7054-1 chassis. Turn the 7054-1 on. Set the AMPLITUDE knob to maximum. Set the FUNCTION knob to FREQUENCY P.P.S.. Set the repetition rate knob to 10 pps . Being careful not to touch any component leads with your hand, probe the top terminal of each of the eight indicated $2 \mathrm{~K} \Omega 50 \mathrm{~W}$ resistors to verify that the waveforms are about the same on each resistor.

FIGURE 11-2K $\Omega 50$ W RESISTORS

6.0 Parts List

Reference Designator

B1 Filter Muffin Fan, Rotron

C1 Capacitor, $0.1 \mu \mathrm{~F} 400 \mathrm{~V}$ GMV, Mylar Foil, 250B
C2
C3
Capacitor, $500 \mu \mathrm{~F} 50$ V DC, Electrolytic
C4
C5
C6
C7 Capacitor, $.33 \mu \mathrm{~F} 200$ V 5\%, Metalized Mylar, 210B
C8
Capacitor, $500 \mu \mathrm{~F} 50$ V DC, Electrolytic
C9 Capacitor, $.22 \mu \mathrm{~F} 200$ V 5\%, Metalized Mylar, 210B
C10 Capacitor, $15 \mu \mathrm{~F} 200$ V 5\%, Metalized Mylar, 210B
C11 Capacitor, . $033 \mu \mathrm{~F} 200$ V 5\%, Metalized Mylar, 210B
C12 Capacitor, $500 \mu \mathrm{~F} 50 \mathrm{~V}$ DC, Electrolytic
C13 Capacitor, $1 \mu \mathrm{~F} 200 \mathrm{~V}$ 10\%, Metalized Mylar, 210B
C14 Capacitor, $50 \mu \mathrm{~F} 25 \mathrm{~V}$, Sprague TE-1209
C15 Capacitor, $1 \mu \mathrm{~F} 200$ V 10\%, Metalized Mylar, 210B
C16 Capacitor, $.01 \mu \mathrm{~F} 150$ V, Disc
C17 Capacitor, $50 \mu \mathrm{~F} 25 \mathrm{~V}$, Sprague TE-1209
C18 Capacitor, $33 \mu \mathrm{~F} 100$ V GMV, Metalized Mylar, 210B
C19 Capacitor, $33 \mu \mathrm{~F} 100$ V GMV, Metalized Mylar, 210B
C20 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C21 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C22 Capacitor, $.22 \mu \mathrm{~F} 400$ V, GMV, Mylar Foil, 250B
C23 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C24 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C25 Capacitor, $.22 \mu \mathrm{~F} 400$ V, GMV, Mylar Foil, 250B
C26 Capacitor, . $33 \mu \mathrm{~F} 100$ V GMV, Metalized Mylar, 210B
C27 Capacitor, $33 \mu \mathrm{~F} 100$ V GMV, Metalized Mylar, 210B
C28 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C29 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C30 Capacitor, $.22 \mu \mathrm{~F} 400$ V, GMV, Mylar Foil, 250B
C31 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C32 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C33 Capacitor, . $22 \mu \mathrm{~F} 400$ V, GMV, Mylar Foil, 250B
C34 Capacitor, $33 \mu \mathrm{~F} 100$ V GMV, Metalized Mylar, 210B
C35 Capacitor, $33 \mu \mathrm{~F} 100$ V GMV, Metalized Mylar, 210B
C36 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C37 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
Solar Electronics Company

C38 Capacitor, . $22 \mu \mathrm{~F} 400$ V, GMV, Mylar Foil, 250B
C39 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C40 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C41 Capacitor, . $22 \mu \mathrm{~F} 400$ V, GMV, Mylar Foil, 250B
C42 Capacitor, . $33 \mu \mathrm{~F} 100$ V GMV, Metalized Mylar, 210B
C43 Capacitor, $33 \mu \mathrm{~F} 100$ V GMV, Metalized Mylar, 210B
C44 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C45 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C46 Capacitor, . $22 \mu \mathrm{~F} 400$ V, GMV, Mylar Foil, 250B
C47 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C48 Capacitor, $2 \mu \mathrm{~F} 600$ V, Cornell-Dubilier DYR-6200
C49 Capacitor, $.22 \mu \mathrm{~F} 400$ V, GMV, Mylar Foil, 250B
C50 Capacitor, $10 \mu \mathrm{~F} 1000$ V, Cornell-Dubilier, T10100
C51 Capacitor, $10 \mu \mathrm{~F} 1000$ V, Cornell-Dubilier, T10100
CR1 Diode Quad, Motorola MDA-920-7
CR2 Not Used
CR3 Diode, 1 A 200 V, Diodes DI-72
CR4 Diode, 1 A 200 V, Diodes DI-72
CR5 Diode Bridge, 1 A 100 V, Motorola MDA-920-3

DS1 Pilot Light, Eldema EG01-RCB-NE2E 100K
F1 Fuse, $115 \mathrm{~V}: 2 \mathrm{~A}$
F2 Fuse, $115 \mathrm{~V}: 2 \mathrm{~A}$
FL1 Line Filter, Solar

IC1 Integrated Circuit, Motorola MC-890P
IC2 Integrated Circuit, Motorola MC-890P
IC3 Integrated Circuit, Motorola MC-890P
IC4 Integrated Circuit, Motorola MC-890P
IC5 Integrated Circuit, Motorola MC-892P
J1 Jack, 2 wire AC
J2 Jack, Banana Type
J3 Jack, Banana Type

L1 Toroid, Solar 705408
L2 Toroid, Solar 705408
L3 Toroid, Solar 705408
L4 Toroid, Solar 705408
L5 Toroid, Solar 705408
L6 Toroid, Solar 705408
L7 Toroid, Solar 705408
L8 Toroid, Solar 705408
P1 Plug, 2 Wire AC
P2 Plug, 3 Wire AC
Q1 Transistor, Motorola 2N3904
Q2 Transistor, Motorola 2N3904
Q3 Unijunction Transistor, Motorola 2N2647
Q4 Transistor, Motorola 2N3905
Q5 Transistor, Motorola 2N3773

R1 Resistor, Part of DS1 (Add 150K 1/2 W for 230 V)
R2 Resistor, $100 \Omega 50$ WWW, Ohmite
R3 Resistor, $2 \mathrm{~K} \Omega 50 \mathrm{~W}$ WW, Ohmite
R4 Resistor, Dividohm, $1 \mathrm{~K} \Omega 50 \mathrm{~W}$ WW, Ohmite
R5 Resistor, $4 \mathrm{~K} \Omega 4 \mathrm{~W}$ WW, Ohmite
R6 Resistor, $4.7 \mathrm{~K} \Omega 1 \mathrm{~W} 10 \%$, Ohmite
R7 Resistor, 1.2 K $\Omega 5$ WWW, Ohmite
R8 Resistor, $150 \Omega 25$ W WW, Ohmite, Dividohm
R9 Resistor, $2.2 \mathrm{~K} \Omega$ 1/2 W 10\%
R10 Resistor, 1.2 K Ω 1/2 W 10\%
R11 Resistor, $12 \mathrm{~K} \Omega 1 / 2 \mathrm{~W} 10 \%$
R12 Resistor, 8.2 K Ω 1/2 W 10\%
R13 Resistor, 27 K Ω 1/2 W 10\%
R14 Resistor, $10 \mathrm{~K} \Omega$ 1/2 W 10\%
R15 Resistor, 220Ω 1/2 W 10\%
R16 Resistor, 3.3 K Ω 1/2 W 10\%
R17 Resistor, 1.2 K Ω 1/2 W 10\%
R18 Resistor, 1.2 K Ω 1/2 W 10\%
R19 Resistor, 1.2 K Ω 1/2 W 10\%
R20 Resistor, Variable 50 K Pot
R21 Resistor, Variable 50 K Pot
R22 Resistor, Variable 5 K Trimpot, Bourns 3067P
R23 Resistor, Variable 5 K Trimpot, Bourns 3067P
R24 Resistor, Variable 20 K Trimpot, Bourns 3067P

R25 Resistor, $2.2 \mathrm{~K} \Omega$ 1/2 W 10\%
R26 Resistor, $47 \Omega 1 / 2 \mathrm{~W} 10 \%$
R27 Resistor, $47 \Omega 1 / 2$ W 10\%
R28 Resistor, 1 K 1/2 W 10\%
R29 Resistor, $10 \mathrm{~K} \Omega$ 1/2 W 10\%
R30 Resistor, $22 \mathrm{~K} \Omega$ 1/2 W 10\%
R31 Resistor, 1.2 K Ω 1/2 W 10\%
R32 Resistor, $100 \mathrm{~K} \Omega 1 / 2 \mathrm{~W} 10 \%$
R33 Resistor, 470 K Ω 1/2 W 10\%
R34 Resistor, $150 \mathrm{~K} \Omega$ 1/2 W 10\%
R35 Resistor, $100 \mathrm{~K} \Omega$ 1/2 W 10\%
R36 Resistor, 1.2 K Ω 1/2 W 10\%
R37 Resistor, $47 \Omega 1 / 2 \mathrm{~W} 10 \%$
R38 Resistor, $2 \mathrm{~K} \Omega 50 \mathrm{~W}$ WW, Ohmite
R39 Resistor, $2 \mathrm{~K} \Omega 50 \mathrm{~W}$ WW, Ohmite
R40 Resistor, 51Ω 1/2 W 5\%
R41 Resistor, 51Ω 1/2 W 5%
R42 Resistor, 51Ω 1/2 W 5\%
R43 Resistor, $2 \Omega 3 \mathrm{WWW}$, Ohmite
R44 Resistor, 51Ω 1/2 W 5\%
R45 Resistor, $2 \Omega 3 \mathrm{WWW}$, Ohmite
R46 Resistor, $1 \Omega 25 \mathrm{WWW}$, Ohmite
R47 Resistor, $2 \mathrm{~K} \Omega 50 \mathrm{~W}$ WW, Ohmite
R48 Resistor, $2 \mathrm{~K} \Omega 50 \mathrm{~W} W \mathrm{~W}$, Ohmite
R49 Resistor, 51Ω 1/2 W 5\%
R50 Resistor, 51Ω 1/2 W 5\%
R51 Resistor, 51Ω 1/2 W 5\%
R52 Resistor, $2 \Omega 3$ WWW, Ohmite
R53 Resistor, 51Ω 1/2 W 5\%
R54 Resistor, $2 \Omega 3$ WWW, Ohmite
R55 Resistor, $1 \Omega 25$ WWW, Ohmite
R56 Resistor, 2K $\Omega 50$ W WW, Ohmite
R57 Resistor, $2 \mathrm{~K} \Omega 50 \mathrm{~W} W \mathrm{~W}$, Ohmite
R58 Resistor, 51Ω 1/2 W 5\%
R59 Resistor, 51Ω 1/2 W 5\%
R60 Resistor, 51Ω 1/2 W 5\%
R61 Resistor, $2 \Omega 3 \mathrm{WWW}$, Ohmite
R62 Resistor, 51Ω 1/2 W 5\%
R63 Resistor, $2 \Omega 3 \mathrm{WWW}$, Ohmite
R64 Resistor, $1 \Omega 25$ WWW, Ohmite
R65 Resistor, $2 \mathrm{~K} \Omega 50 \mathrm{~W} W \mathrm{~W}$, Ohmite
R66 Resistor, 2K $\Omega 50$ W WW, Ohmite
R67 Resistor, 51Ω 1/2 W 5\%

R68 Resistor, 51Ω 1/2 W 5\%
R69 Resistor, 51Ω 1/2 W 5\%
R70 Resistor, $2 \Omega 3 \mathrm{WWW}$, Ohmite
R71 Resistor, 51Ω 1/2 W 5\%
R72 Resistor, $2 \Omega 3$ WWW, Ohmite
R73 Resistor, $1 \Omega 25$ WWW, Ohmite
R74 Resistor, $1 \mathrm{~K} \Omega 50 \mathrm{~W}$ WW, Ohmite (230 V only)

S1 Switch, SPST Toggle, Smith 584
S2 Switch, DPDT Toggle, Smith 588
S3 Switch, SPDT Push Button, Switchcraft 103
S4 Switch, Rotary, Centralab PA2023

SCR1 Silicon Controlled Rectifier, Motorola 2N2322
SCR2 Silicon Controlled Rectifier, Motorola MCR-3935-8
SCR3 Silicon Controlled Rectifier, Motorola MCR-3935-8
SCR4 Silicon Controlled Rectifier, Motorola MCR-3935-8
SCR5 Silicon Controlled Rectifier, Motorola MCR-3935-8
SCR6 Silicon Controlled Rectifier, Motorola MCR-3935-8
SCR7 Silicon Controlled Rectifier, Motorola MCR-3935-8
SCR8 Silicon Controlled Rectifier, Motorola MCR-3935-8
SCR9 Silicon Controlled Rectifier, Motorola MCR-3935-8
T1 Variable Transformer, 115 V: Ohmite VTO2; 230 V: Superior 12
T2 Power Transformer, Calemco 6301
T3 Power Transformer, Calemco 6302
T4 Power Transformer, Solar 705407

VR1 Zener Diode, Motorola IN3027B

