ISO 7637-2:2011 ISO 16750-2 And other common pulses

(E1) [1]

(E1) [1]

(E1) [1]

s (q,)

Pulse 1 - A simulation of transients due to supply disconnection from inductive loads; it applies to a DUT if as used in the vehicle, it remains connected directly in parallel with an inductive load () and () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply disconnected directly in parallel with an inductive load () are supply as a supply as a supply as a supply disconnected directly in parallel with an inductive load () are supply as a suppl

Pulse 2a - Simulates transients due to sudden interruption of currents in a device connected in parallel with the DUT due to the inductances of the wiring harness

Pulse 2b - Simulates transients from dc motors acting as generators after the ignition is switched (\mathbf{r}) \mathbf{r}

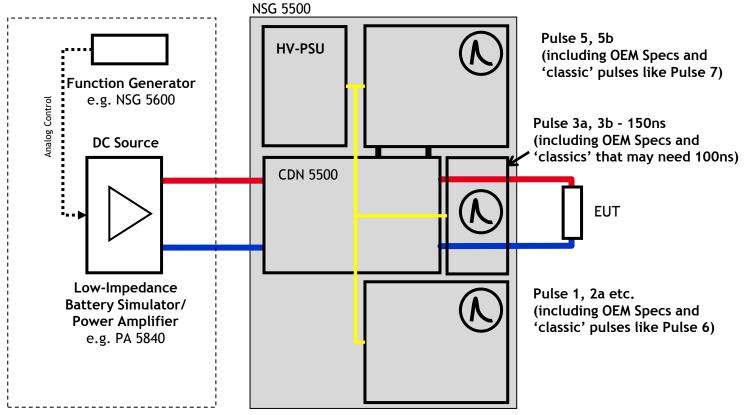
Pulse 3a/3b - Occurs as the result of switching processes. The characteristics of this pulse are influenced by distributed capacitance and inductance of the wiring harness

Pulse 4 - The voltage reduction caused by energizing the starter motor circuits of the internal combustion engines

Pulse 4 Variants – Most manufacturer variations of pulse four are generally much more complicated. For example Ford requires up to four arbitrary generators with four outputs to be perfectly synchronized.

Pulse 5 – Simulation of a load dump transient occurring in the event of a discharged battery being disconnected while the alternator is generating charging current with other loads remaining on the alternator circuit at this moment

Magnetic Field Immunity – Simulates magnetic fields generated by electric motors, daytime running lamps, etc. for DUTs with magnetically sensitive devices.



Transformer Coupled Sine Waves - Sinusoidal noise burst coupled on battery lines

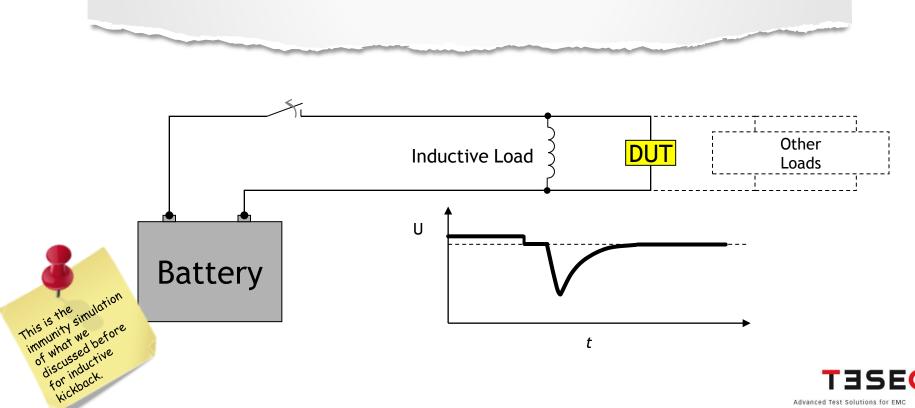
Typical System Setup

All battery events: Pulse 4, Pulse 2b, etc. and Battery Voltage generally

All transients: Pulse 1, Pulse 2a, Pulse 3a and Pulse 3b, 5, 5b etc.)

Conducted Automotive EMC Example Pulse 1

Advanced Test Solutions for EMC

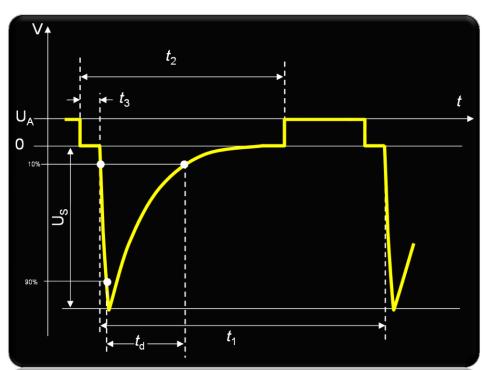

 $s(q_k) =$

INTERNATIONAL STANDARD

ISO 7637-2:2011(E)

5.6.1 Test pulse 1

This test is a simulation of transients due to supply disconnection from inductive loads; it applies to a DUT if, as used in the vehicle, it remains connected directly in parallel with an inductive load (see Figure E.1 in Annex E).



Conducted Automotive EMC Example Pulse 1

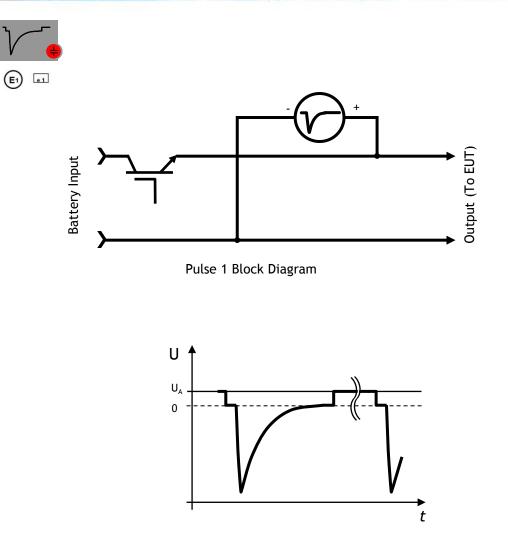
 $s(q_k) =$

INTERNATIONAL STANDARD

ISO 7637-2

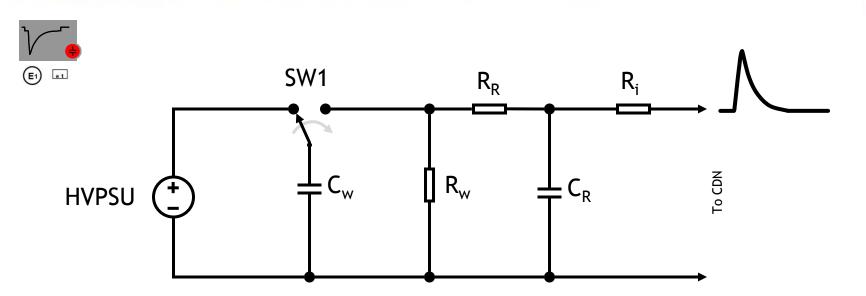
> Third edition 2011-03-01

Table 2 — Parameters for test pulse 1


Parameters	Nominal 12 V system	Nominal 24 V system
U_{s}	–75 V to –150 V	–300 V to –600 V
R _i	1 0 Ω	50 Ω
t _d	2 ms	1 ms
t _r	(1 _0_) µs	(3 _01,5) μs
t ₁ ª	≥0,5 s	
<i>t</i> ₂	200 ms	
t3 ^b	<100 µs	

^a t_1 shall be chosen such that it is the minimum time for the DUT to be correctly initialized before the application of the next pulse and shall be ≥ 0.5 s.

 $^{\rm b}$ $~t_3$ is the smallest possible time necessary between the disconnection of the supply source and the application of the pulse.


Pulse 1 Coupling

Typical Transient Generator Circuit

C_w gets charged before the pulse

s (q_k

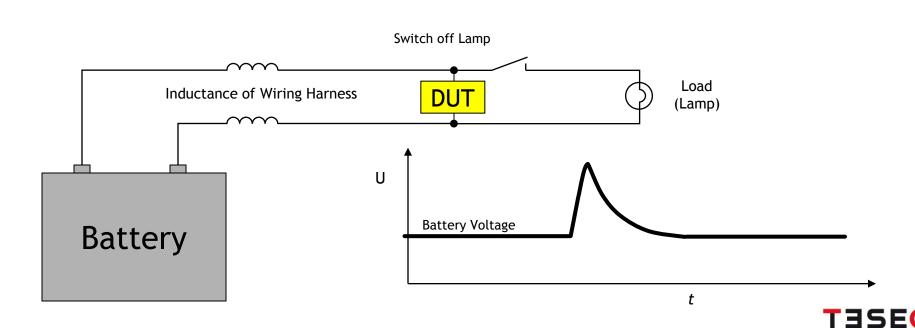
•The 'Fire' signal sets SW1 (a pair of IGBTs) to discharge C_W through the pulse shaping network.

 ${}^{\bullet}C_{W}$ and R_{W} combined determine the pulse width.

 \mathbf{R}_{R} and \mathbf{C}_{R} combined determine the rise time.

• R_i is the output impedance, but combines with R_R and the ESR of CW to determine the real R_i .

s (q_k) = 1 Conducted Automotive EMC Example Pulse 2a

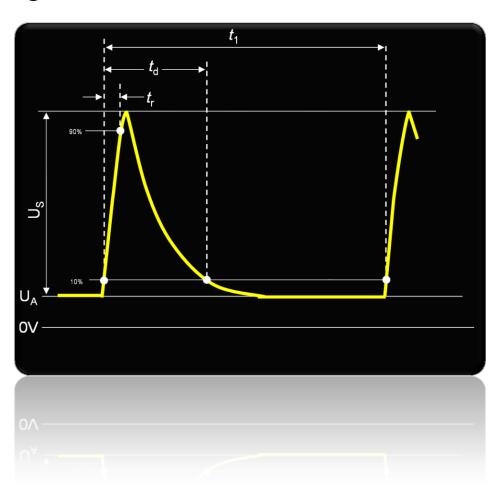

INTERNATIONAL STANDARD

ISO 7637-2:2011(E)

Advanced Test Solutions for EMC

5.6.2 Test pulses 2a and 2b

Pulse 2a simulates transients due to sudden interruption of currents in a device connected in parallel with the DUT due to the inductance of the wiring harness (see Figure E.2 a) in Annex E).

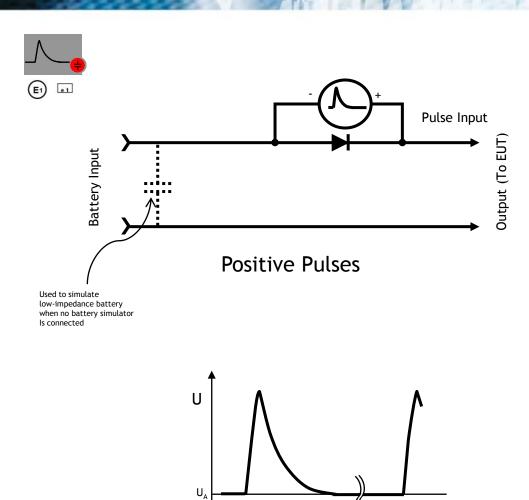


Conducted Automotive EMC Example Pulse 2a

 $s(q_k) =$

INTERNATIONAL STANDARD ISO 7637-2

> Third edition 2011-03-01


Table 3 — Parameters for test pulse 2a

Parameters	Nominal 12 V and 24 V system	
U_{s}	+37 V to +112 V	
R _i	2 Ω	
t _d	0,05 ms	
ťr	(1 ⁰ _{-0,5}) µs	
t ₁ ª	0,2 s to 5 s	
a —		

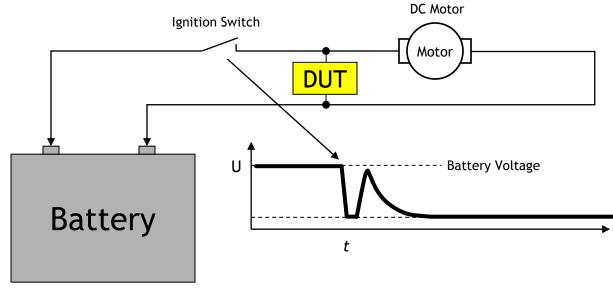
^a The repetition time t_1 can be short depending on the switching. The use of a short repetition time reduces the test time.

Positive Pulse Coupling Methods

t

0

Conducted Automotive EMC Example Pulse 2b

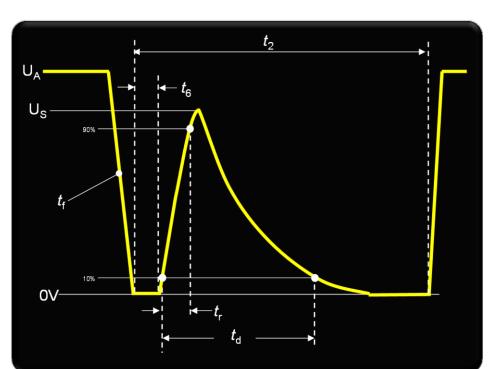

 $s(q_k) =$

INTERNATIONAL STANDARD

ISO 7637-2:2011(E)

5.6.2 Test pulses 2a and 2b

Pulse 2b simulates transients from DC motors acting as generators after the ignition is switched off (see Figure E.2 b) in Annex E).



Conducted Automotive EMC Example Pulse 2b

 $s(q_k) =$

The OEM must tell you what pulse width to test!

INTERNATIONAL STANDARD

ISO 7637-2

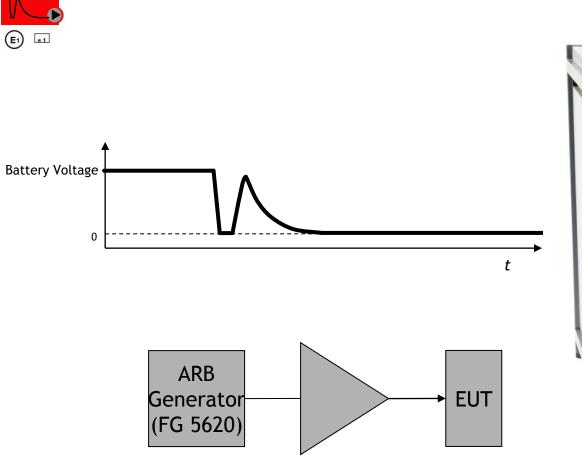
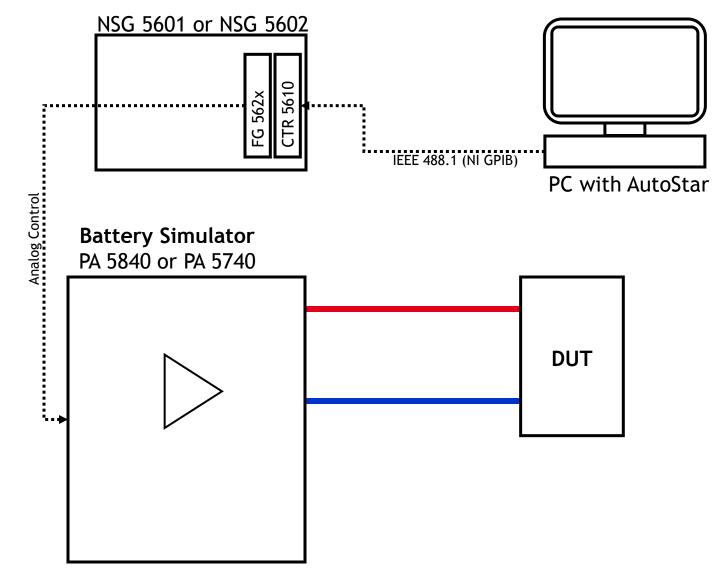

> Third edition 2011-03-01

Table 4 — Parameters for test pulse 2b

Parameters	Nominal 12 V system	Nominal 24 V system
U_{s}	10 V	20 V
R _i	0 Ω to 0,05 Ω	
t _d	0,2 s to 2 s	
t ₁₂	1 ms \pm 0,5 ms	
t _r	1 ms ± 0,5 ms	
t ₆	1 ms \pm 0,5 ms	

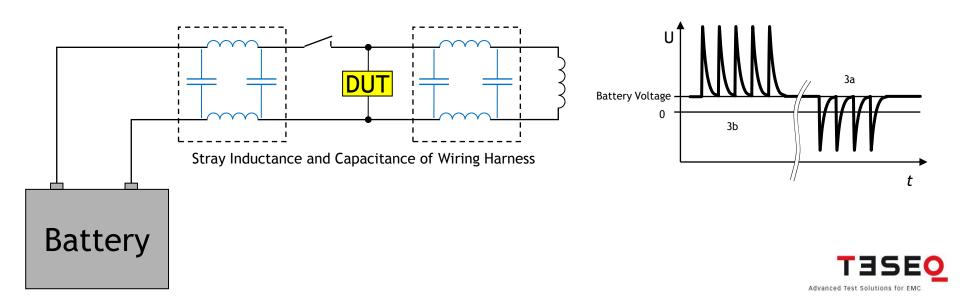

$s(q_k) = \left\{ \begin{array}{c} \frac{1}{1-1} \\ \frac{1}{1-1} \\$

Typical System Setup for Arbitrary Waveforms

 $s(q_k) =$

Conducted Automotive EMC Example Pulse 3a/3b

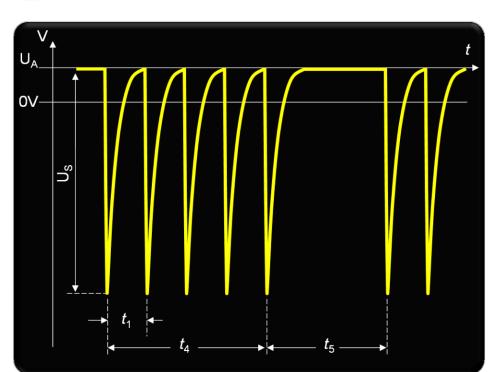
 $s(q_k) =$


INTERNATIONAL STANDARD

ISO 7637-2:2011(E)

5.6.3 Test pulses 3a and 3b

These test pulses are a simulation of transients, which occur as a result of the switching processes. The characteristics of these transients are influenced by distributed capacitance and inductance of the wiring harness (see Figure E.3 in Annex E).

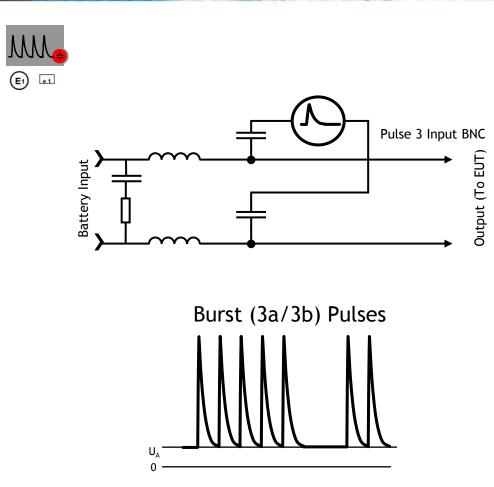


Conducted Automotive EMC Example Pulse 3a/3b

 $s(q_k) =$

INTERNATIONAL STANDARD ISO 7637-2

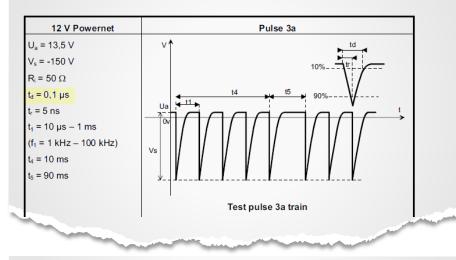
> Third edition 2011-03-01


Table 5 — Parameters for test pulse 3a

Parameters	Nominal 12 V system	Nominal 24 V system
U_{S}	-112 V to -220 V	–150 V to –300 V
R _i	50 Ω	
t _d	150 ns \pm 45 ns	
t _r	5 ns \pm 1,5 ns	
t ₁	100 µs	
t ₄	10 ms	
<i>t</i> 5	90 ms	

Pulse 3 Block Diagram

Pulse 3 (cont.) Two Pulse Widths in Common Use



 $s(q_k) =$

RENAULT

36 - 00 - 808 / - - <u>K</u>

100 ns

Unless otherwise specified, the variables used shall have the following tolerance

- ± 5% for the specified voltages and currents.
- ± 10% for time slots and distances.
- ± 10% for resistors and impedances.
- ± 1 dB for power.
- ± 3 dB for strength of field.

INTERNATIONAL STANDARD

50 ns

ISO 7637-2:2011(E)

Table 5 — Parameters for test pulse 3a

Parameters	Nominal 12 V system	Nominal 24 V system
U_{s}	–112 V to –220 V	–150 V to –300 V
R _i	50 Ω	
t _d	150 ns ± 45 ns	
tr	5 ns ± 1,5 ns	
<i>t</i> ₁	100 µs	
<i>t</i> ₄	10 ms	
t5	90 ms	

200 ns

