i-meter[®] EVCMC USER MANUAL

Ver.2.61

Contents

Warning		3	
Disclaimer	•	3	
Customer S	Support	3	
Statement	of Calibration	3	
Electrical C	Code	3	
1. Intr	oduction	4	
2. Des	cription	4	
2.1. Me	etering device	9	
2.2. Co	ontrol device	9	
3. Con	itrol Logic	9	
3.1. G€	eneral	9	
3.2. Co	ontrol Specification	11	
3.3. Co	ontrol Threshold	11	
4. Con	trol & Measurement Software	11	
4.1. EV	/CMC Station Online Mode	11	
4.2. EV	/CMC Station Setup	12	
4.2.1.	Setup Parameters		.12
4.2.2.	Setup parameter are saved below		.14
4.2.3.	[Remote Online] mode		. 15
4.2.4.	Parameters to Setup Charger List		.16
4.3. Flo	owcharts	18	
4.3.1.	Main procedure of EVCMC		. 18
4.3.2.	Control Cycle Procedure		, 19
4.4. Co	ontrol charger by schedule	20	
4.4.1.	Single One-Time schedule:		. 20
4.4.2.	Repeat Schedule:		, 21
4.5. Di	stributed Time Mode	22	
4.6. Ot	her functions on portal	23	
5. Inst	allation Instructions:	25	
6. Тур	ical Drawings and Technical Information	28	
Appendix	1 EVCMC-12 Drawings	29	
Appendix	2 EVCMC-18 Drawings	36	
Appendix	3 EVCMC-24 Drawings	48	

Page Left Intentionally Blank

Warning

Field electrical installers must follow proper safety precautions and all local electrical code requirements during the EVCMC installation. During normal operation of this device, hazardous voltages are present which can cause severe injury or death. It is strongly recommended that only qualified, properly trained personnel should perform installation and servicing.

Disclaimer

The information presented in this publication has been carefully reviewed and verified; however, Intellimeter assumes no responsibility for inaccuracies and reserves the right to modify, alter and change the information provided in this document without notice Intellimeter does not accept any responsibility and will not be liable for any loss or damage or expense of any kind whatsoever and howsoever caused by improper installation of its products, be it indirect, special, incidental or consequential damages (including but not limited to damages for loss of business, loss of profits, interruption or the like). Please refer to Intellimeter Terms and Conditions of Sale available at https://intellimeter.com/pages/terms-of-service-privacy-statement

Customer Support

To report any issues, please contact Intellimeter at 905-839-9199 or email service@intellimeter.com. Please note that prior to returning any merchandise to Intellimeter, a return material authorization (RMA) number must be obtained.

Statement of Calibration

The accuracy and calibration of our meters are traceable to Measurement Canada, a division of Industry Canada.

Electrical Code

The installer is responsible for ensuring that all safety and local electrical codes are followed.

1. Introduction

The i-meter[®]EVCMC (Electric Vehicle Charger Meter and demand Controller) manages EVSE (Electric Vehicle Supply Equipment also known as EV Chargers) two-way power flow to optimize grid assets and maintain grid power operational limits. The metering device is a self-contained meter and includes a controlling device mounted in NEMA 1 enclosure suitable for indoor operation. EVCMC consists of a distribution panel with adequate thermomagnetic circuit breakers, a revenue grade meter module and mechanically latched switching relays (see Fig.1 below), which can be added from 1 to N metering and switching modules. The typical system has one 3-phase main meter¹ with twelve, eighteen or twenty-four 2-phase meters coupled to 2-phase relays (contactors).

2. Description

EVCMC is an integrated EVEMS (Electric Vehicle Energy Management System) with switching control that utilizes a measuring system, designed for Level II EV Chargers, that includes 100:0.1A current transformers for submetering modules (or branch modules) and a set of either three of 200:0.1A, 400:0.1A or 600:0.1A current transformers for measuring the main² feed of the distribution panel equivalent to the total load and 40A mechanically magnetic latching relays.

Fig. 1 Overview i-meter®EVCMC applications

¹The i-meter®EVCMC can be set up to more than one main meters. Total load of all main meters can be used to prevent whole system from over load or exceeded peak kW demand.

² This main feed is for a single local panel. EVCMC can have multiple main meters.

Fig.2 Typical i-meter®EVCMC-12 system

The EVCMC can be ordered by one of the series (model number) below.

- EVCMC-12 For 8- to 12 Level II chargers
- EVCMC-18 For 13- to 18 Level II chargers

• Figure 1Typical EVCMC-18

• EVCMC-24 – For 19- to 24 Level II chargers

• Figure 2Typical EVCMC-24

• EVCMC-30 – For 25- to 30 Level II chargers

2.1.Metering device

The metering device is Intellimeter's i-meter[®]45 meter. The i-meter[®] 45 provides critical kWh as well as the ability to monitor Volts, Amps, KiloWatts, Power Factor, Frequency and Harmonics (*V*, *I*, *kW*, *kVA*, *PF*, *Hz*, *THD* (*V*/*I*)).

Model No.	i-meter [®] 45 meter 1 configuration	i-meter [®] 45 meter 2 configuration
EVCMC-12	2x6 branch meters: 2φ, 3W 1 main meter: 3φ, 4W	n/a
EVCMC-18	2x9 branch meters: 2φ, 3W 1 main meter: 3φ, 4W	n/a
EVCMC-24	12 branch meters: 2φ, 3W	12 branch meters: 2φ, 3W 1 main meter: 3φ, 4W
EVCMC-30	15 branch meters: 2φ, 3W	15 branch meters: 2φ, 3W 1 main meter: 3φ, 4W
Note:		

Table 1 EVCMC metering device configuration

2.2.Control device

The EVCMC is to optimize grid assets and maintain grid power operational limits for three typical EVSE that they are Level 1, Level 2 and Level 3 EVSE.

- Level 1 EVSE: 120VAC, 15-20A, 1Φ2W, Output 1.4 kW;
- Level 2 EVSE: 208/240VAC, 20 to 80A, 1Φ3W or 2Φ3W, Output 3.3 19.2kW;
- Level 3 EVSE: 277/480VAC 347/600VAC, 3Φ3W (this option requires adder potential transformers), 3Φ4W or DC Fast Charging, Output –50kW and up.

Note: For Level 3 EVSE, the service type shall be a custom design.

3. Control Logic

3.1.General

There is an option to have the metering device measures the active power W_{main} of the total incoming power to the building prior to the installation of the EVSE, and the active power

 W_{EVSE} of all EVSE installed (all the chargers in the building or facility). The controlling device shall maintain the equation (1) true by switching ON or switching OFF individual EVSE. In a similar way, EVCMC shall maintain the equation (2).

$$W_{peak} \ge W_{main}.....(1)$$

Where W_{EVSE} is the active power of all EVSE in the facility, installed after the W_{main} . W_{peak} is the limitation kW or Maximum Peak kW demand of incoming power to the facility.

$$I_{max} \ge I_{main} \qquad (2)$$

$$I_{main} = I_{all \ other \ loads} + I_{EVSE} \qquad (2a)$$

Where I_{EVSE} is the total current of all EVSE installed (all the chargers in the building or facility), I_{max} is the limitation of total incoming current at the main point of connection to the building.

3.2. Control Specification

EVCMC power on – All relay switches shall be OFF. The EVCMC control software turns off all relay switches one at a time, one by one, the delay time should be > 50ms (Depending on the type of relay switches.).

- Energize an EVSE After turning off all relay switches, energize EVSE by turning on the relay-switch 1 to N;
- Measuring/controlling period shall be 1min to 5min;
- Switch ON EVSE, which has the least load, W_{min}(m);
- Switch OFF EVSE, which has the least load, $W_{min}(m)$ and $T_{on}(m)>30min$.
- Note: Ton(m)>30min can be ignored if there is no EVSE to meet the criteria;
- Switch ON the EVSE, which has been OFF for 4 hours. Switch OFF other EVSE if equation 1 is not true.
- Logged parameters for each EVSE with time stamp
 - \circ Total energy consumption (kWh): E_m
 - Time OFF (min): Toff(m)
 - Time ON (min): Ton(m)
- Other options (additional costs may apply)
 - $\circ~$ Voltage, Current and Wattage per phase: V_a(m), V_b(m), V_c(m), I_a(m), I_b(m), I_c(m), W_a(m), W_b(m), W_c(m);
 - Voltage & Current THD per phase: V_a-THD(m), V_b-THD(m), V_c-THD(m), I_a-THD(m), I_b-THD(m), I_c-THD(m)
 - EVSE ID (Reserved for future use): 20 characters

Where the m is the EVSE number, 1 to N.

3.3.Control Threshold

EVCMC prevents relay switches from hunting (vibration) by using a threshold of $\pm 5\%$ of the maximum limitation. For an example, the W_{peak} 90kW, so W_{peak-top} is 9.45kW, W_{peak-bottom} is 85.5kW. In this case, the W_{peak-top} shall be used in equation 1 while in switching OFF control process and the W_{peak-bottom} shall be used in equation 1 while in switching ON control process. The threshold can be setup to other value depending on the system requirements, but W_{peak-top} must be less than or equal to the absolute maximum W_{peak} or I_{max}.

4. Control & Measurement Software

4.1.EVCMC Station Online Mode

EVCMC Panel supports three types of Online Mode. The station will detect the internet connection and the connection with the database and then decide which mode it is going to run at when the software is executed.

Online Mode	Priority	Description
[Remote Online]	1	The EVCMC station is connecting to the Internet.
*1		It can successfully connect into the Remote
		Database (Intellimeter Cloud Database) by SSH.
[Local Online]	2	The EVCMC station is NOT connected to the
*1		Internet. But it can successfully into Local MySQL
		Database.
[Offline]	3	The EVCMC station can neither connect to the
*2		Internet nor Local MySQL Database.

Note:

*1: On [Remote Online] or [Local Online] mode, the ON/OFF control of the relays can be based on the historical average reading of each meter.

*2: On [Offline] mode, the ON/OFF control of the relays is based on a first-on-first-off and first-off-first-on sequence.

4.2.EVCMC Station Setup

4.2.1. Setup Parameters

EVCMC has the following setup parameters that can be configured into Database or Local Setup File.

No.	Parameter	Data Type	Description
1	station_id	Integer	The Unique Identifier (number) of each EVCMC Station.
2	mac_address	String	MAC address of the station device. To decide if the station will take a new station_id or use an existing station_id of the same MAC address.
3	station_desc	String	Description of the station.
4	station_timezone	String	
5	time_offset	Integer	The time difference between station time zone and UTC time.
6	comm_method	String	Ex) Modbus-RTU
7	relay_make	String	Relay Device Make Ex) <u>Channel Relay</u>
8	relay_device	String	Relay Device Type Ex) <u>Channel</u>
9	relay_com_port	String	The COM port of the relay Ex) <u>/dev/ttyUSB0</u> for Linux OS or <u>COM1</u>

			for Windows OS.
10	control_method	String	Configure which meter factor EVCMC station will control the relay base on. Option available: <u>Watts</u> or <u>Amperes</u>
11	watts_max	Float	The Maximum Watts that the station can cover if it is controlled by Watts method. (used in Demand Response Programs)
12	watts_critical_threshold	Float	The Percentage of critical warning threshold Ex) watts_max = 100 (W), watts_critical_threshold = 90 (%) -> 100 * 90% = 90 (W) The station will control the relays not to reach to the calculated critical threshold 90 (W).
13	amp_max	Float	The Maximum Ampere that the station can cover if it is controlled by Ampere method.
14	amp_critical_threshold	Float	The Percentage of critical warning threshold Ex) amp_max = 200 (A), amp_critical_threshold = 95 (%) -> 200 * 95% = 190 (A) The station will control the relays not to reach to the calculated critical threshold 190 (A).
15	meter_minimal_current	Float	The minimal Ampere read. Meter Ampere read below this value Ex) <u>3.2</u> (A) will be marked at low power charger and will be switch on at every control cycle.
16	meter_com_port	String	The COM port of the meter Ex) <u>/dev/ttyUSB0</u> for Linux OS or <u>COM1</u> for Windows OS.
17	meter_main_slave_id	Integer	Modbus Slave ID of the main meter. Default) <u>5</u>
18	meter_main_channel	Integer	Channel Number of the main meter. Default) 34
19	station_cruise_sec	Integer	The station will periodically check the reading of main meter every a few seconds of this value. Default) <u>15</u>
20	max_charge_min	Integer	The maximum charge time of a charger. A charger that has charged for over Ex) <u>30</u> minutes will be switch OFF.
21	max_queue_min	Integer	The maximum waiting time of a charger. A charger that has waited for over Ex) <u>5</u>

			minutes will be switch ON.
			The interval time between relay controls.
22	control_relay_interval_s	Float	Ex) <u>0.3</u> second
22	ec	Float	Switch Charger 1 -> Sleep 0.3 second ->
			Switch Charger 2
			The interval time of one control cycle.
23	control_cycle_interval_	Integer	Ex) <u>5</u> minutes
23	min	integer	The station will execute control cycle every
			5 minutes.
			The station executes malfunction check at
			the start of every control cycle. Reading gap
	malfunction_ratio	Integer	over this ratio leads malfunction error and
			the station software will terminate.
24			Ex) <u>10</u> (%) means
			If <u>main meter reading < total sub meter</u>
			<u>reading * 90%</u> OR <u>main meter reading ></u>
			<u>total sub meter reading * 110%</u> will trigger
			malfunction error.
			There needs to be a few seconds to get
			meter reading after a switch operation. This
			parameter defines the waiting time to read
25	post_switch_sleep_sec	Integer	meter readings.
20	post_switch_steep_see	meger	Default) <u>5</u> seconds
			Means when switch on a charger, the
			station will wait for <u>5</u> seconds to read
			meter.

4.2.2. Setup parameter are saved below

Online Mode	
[Remote	If the EVCMC station is at [Remote Online] mode, the
Online]	configuration is saved in station_setup table of Remote
	Database (Intellimeter Cloud Database). As the backup, the
	same setup is saved as file of ./setup/station_setup.json.
[Local Online]	If the EVCMC station is at [Local Online] mode, the
	configuration is saved in station_setup table of Local MySQL
	Database. As the backup, the same setup is saved as file of
	./setup/station_setup.json.
[Offline]	If the EVCMC station is at [Offline] mode, the configuration
	is only saved as file of ./setup/station_setup.json.

4.2.3. [Remote Online] mode

If the EVCMC station is at [Remote Online] mode, the configuration is also available on Intellimeter EVCMC Cloud portal.

Charge Station Basic					
Station MAC Address	00:1e:06:37:05:51				
Station Description	00.10003130331				
Station Timezone	Canada/Eastern	UTC Time	Diff (Hours)	4	
Relay Parameter					
Relay Make	Channel Relay	 Relay Devi 	ce	Channel	
Relay COM Port	/dev/ttyUS80				
Control Method	Ampere				
Max Watts	100	Watts Criti	cal Threshold (%)	90	
Max Ampere	170	Ampere C	ritical Threshold (%)	90	
Meter Parameter					
Meter COM Port	/dev/ttyU580				
Main Meter Slave ID	5	Main Mete	ir Channei	34	
Minimal Current (Ampere)	3.2				
Time Parameter					
Controle Cycle Interval (Minute)	5	Relay Acti	on Interval (Second)	0.3	
Read Meter After Switch ON (Second)	5	Meter Rea	d Check Interval (Second)	15	
Station Malfunction Ratio (5% = 0.05)	0.1				

4.2.4. Parameters to Setup Charger List

No.	Parameter	Data Type	Description
1	station_id	Integer	The Unique Identifier of each EVCMC Station.
2	charger_num	Integer	The number of the charger. Must be unique under the same station_id.
3	charger_name	String	Description of the charger. Ex) <u>Charger #1</u>
4	enabled_flag	Integer	The EVCMC station will only control chargers that are defined as enabled_flag = 1.
5	relay_device_id	Integer	The Modbus Relay Slave ID. Ex) <u>1, 2, 3</u>
6	relay_address	Integer	The address of the relay channel. Ex) $1, 2, 3$
7	meter_slave_id	Integer	The Modbus Slave ID of the sub meter. Ex) <u>5</u>
8	meter_channel	Integer	The channel number of the sub meter. Ex) <u>12</u>

The following parameters need to define an active charger

Charger list is saved the same way with station setup:

Online Mode	
[Remote	If the EVCMC station is at [Remote Online] mode, charger
Online]	list is saved in <u>station_charger_list</u> table of Remote Database
	(Intellimeter Cloud Database). As the backup, the same setup
	is saved as file of <i>./setup/charger_list.json</i> .
[Local Online]	If the EVCMC station is at [Local Online] mode, charger list
	is saved in <u>station_charger_list</u> table of Local MySQL
	Database. As the backup, the same setup is saved as file of
	. <u>/setup/charger_list.json</u> .
[Offline]	If the EVCMC station is at [Offline] mode, the charger list is
	only saved as file of <i>./setup/ charger_list.json</i> .

If the EVCMC station is at [Remote Online] mode, the configuration is also available on Intellimeter EVCMC Cloud portal.

et an an an		Enabled	L Dubiu A	Relay Address 1	Meter Slave ID	Meter Channel	
Charger #	Charger Name	Enabled	Relay #	 Relay Address 1 			
1	Charger #01	4	1		5	12	
2	Charger #02	1	1		5	13	
3	Charger #03	1	1		5	14	
4	Charger #04	1	1		5	15	
13	Charger #13	1	2		5	23	
14	Charger #14	1	2		5	24	
15	Charger #15	1	2		5	25	
16	Charger #16	1	2		5	26	

4.3.Flowcharts

4.3.1. Main procedure of EVCMC

4.3.2. Control Cycle Procedure

4.4. Control charger by schedule

If the EVCMC station is at [Remote Online] mode, Intellimeter EVCMC Cloud portal provides functionalities to schedule charger ON/OFF.

4.4.1. Single One-Time schedule:

Charger Number	1			
Priority Level	High			•
Instruction Start	Apr 30, 2021	08:00	ON	¢
Instruction End	Apr 30, 2021	09:30	OFF	\$
Notes	Temporary device in:	spection		1

Every Single schedule has Priority Level of [High] / [Medium] / [Low]. The station will take priority of High > Medium>Low.

In the example below, Charger No. #1 will be:

April 30, 2021	05:00 - 08:00	OFF	(Medium Priority Level)
April 30, 2021	08:00 - 09:00	ON	(High Priority Level)
April 30, 2021	09:00 - 10:00	OFF	(Medium Priority Level)

Wednesday, April	28, 2021				Tuesday, Ju	ily 27, 2021			Refresh	Create New		18-18 <mark>-1</mark> -2-16		
Charger #	\$	Level	¢	Instruction	¢	Start Date	¢	Start Time	End Date	\$ End Time	4	Notes	4	Actions
1		High		ON		2021-04-30		8:00:00	2021-04-30	9:00:00		Temporary device inspection		ľÌ
1		Medium		OFF		2021-04-30		5:00:00	2021-04-30	10:00:00		Daily Maintain		ZÌ

4.4.2. Repeat Schedule:

dd Repeat Schedule		
Charger Number	2	
Priority Level	High	¢
Instruction	OFF	\$
Frequency	Every Day	÷
Week Day		\$
Month Day		\$
Start Time	02:30	
End Time	No time selected	
Repeat Effective From	Apr 01, 2021	
Repeat Effective To	🔲 Jul 01, 2021	
Notes	Daily Maintain	
		ve Cancel

Frequency can be set at [Daily] / [Weekly] / [Monthly]

Frequency	Every Day	\$
Week Day		+
Month Day		:
Frequency	Every Week	
Week Day	Sunday	•
Month Day		
Frequency	Every Month	
Week Day		+
Month Day	5	*

Start Time and End Time can be every 5 minutes.

Start Time	02:00	
End Time	02:10	

Repeat Effective From and To is to define the active period. Example: If we define a repeat schedule below, the portal will automatically create three single one time schedule between April 1st, 2021 and July 1st, 2021.

Charger Number	2	
Priority Level	High	+
Instruction	ON	\$
Frequency	Every Month	\$
Week Day		\$
Month Day	5	+
Start Time	() 02:00	
End Time	③ 02:10	
Repeat Effective From	Apr 01, 2021	
Repeat Effective To	🗖 Jul 01, 2021	
Notes		

OneTime Schedule (3)													
Thursday, April 1, 2021				📋 Tuesday	July 27, 2021		Refresh		Create New			-	k s	
Charger #	÷.	Level	÷.	Instruction		Start Date	Start Time	à.	End Date	End Time	×.	Notes	1	Actions
2		High		ON		2021-04-05	2:00:00		2021-04-05	2:10:00				
2		High		ON		2021-05-05	2:00:00		2021-05-05	2:10:00				Z Ó
2		High		ON		2021-06-05	2:00:00		2021-06-05	2:10:00				

4.5.Distributed Time Mode

When the EVCMC is setup to the Distributed Time Mode, a period of time (overnight or low-rate schedule) and an ampacity ratio needs to be setup. In this mode, each EVSE shall be distributed a certain period of time following a sequence of FIFO (First In, First Out). See following equation 3 for time distribution.

Where t_d is the period of charging time that each EVSE shall be provided, T_{total} is the total period of time that it can be distributed to all EVSE equally, R_{load} is the ampacity ratio. The R_{load} definition is equation 4 below.

Where W_{EVSE} is each EVSE rated power, W_{MAX} the Maximum Capacity allowable power, N_{EVCMC} is total number of EVSE in an EVCMC panel.

For instance, the EVCMC sets up $T_{total} = \Delta t = t_2 - t_1 = 12 hrs (t_2 = 7:00PM, t_1 = 7:00AM), W_{MAX} = 45kWW_{EVSE} = 7kW, N_{EVCMC} = 24$, so

$$t_d = T_{total} \times R_{load} = 12 \times \left(\frac{45}{7}\right) \div 24 \approx 12 \times (6) \div 24 = 3 \ (hrs).....(5)$$

In other words, this example means that

- Use Intellimeter EVCMC-24;
- From 7:00PM to 7:00AM;
- First In 6 cars shall be charged for 3 hours;
- Any car (or cars) reaches 3 hours shall be off charging according to FIFO;
- More car (or cars) shall be added in 6 car charging group,
- And so on, every car will be charged at least 3 hour after 12 hours.

4.6.Other functions on portal

Charging Charged 2 minutes							
	kWh: 32.020 kWh:	Amp: 0.000 Amp:	Volt: 120.100 Volt:	Watts: 0.000 Watts:	2021-04-28 10:55:19.428	ON OFF	1
Charging Charged 2 minutes	mmm						mm
	kWh: 46.865 kWh:	Amp: 0.000 Amp:	Volt: 119.650 Volt:	Watts: 0.000 Watts:	2021-04-28 10:55:58.524	ON OFF	2
	mmmm						
	kWh: 45.750 kWh:	Amp: 0.000 Amp:	Volt: 120.050 Volt:	Watts: 0.000 Watts:	2021-04-28 10:57:16.576	ON OFF	3
Charging Charged 1 minutes Charging					4-28 10:57:16.576	2021-0	
Charged 1 minutes	kWh: 50.355	Amp: 0.000	Volt: 119.850	Watts: 0.000	2021-04-28 10:56:37.587	ON	anno
	kWh:	Amp:	Volt:	Watts:		OFF	

Charger Status: The status of every single charger

Charger Total: The historical total reading of the station

Monday, April 26, 2021	Thursday, April 29, 2021		Refresh	te or 1 or at	
Timestamp	F	Total Reading	4	Controlled By	Switch ON Charger
2021-04-28 10:57:25		0.260		Ampere	16
2021-04-28 10:52:21		0.260		Ampere	16
2021-04-28 10:47:32		0.260		Ampere	16
2021-04-28 10:42:28		0.250		Ampere	16
2021-04-28 10:37:24		0.250		Ampere	16
2021-04-28 10:32:20		0.270		Ampere	16

Charger History: The historical reading of each charger.

Thursday, April 1, 20	21			Saturday,	April 24	4, 2021		0		Refresh					¢	e 689 690 69	1	4 4				
		Sw	ritch ON Factor	5					Sw	itch OFF F	actors					Charged Minutes				Average		
Charger # 🕴	Time	¢	Watts ‡	Ampere	ţ.	kWh	÷	Time	‡ .	Watts	ŧ.	Ampere	ŧ	kWh	\$	Minute(s)	÷,	Watts	÷.	Ampere 🕴	kWh Usage	
2	2021-04-06 05:11:05		3.585	29.890		645.215		2021-04-06 05:14:08		3.587		29.920		645.395		3		3.560		29.929	0.180	
1	2021-04-06 05:10:44		3.644	30.340		889.700		2021-04-06 05:12:27		3.654		30.400		889.805		2		3.706		30.399	0.105	
3	2021-04-06 05:08:53		3.646	30.270		1105.800		2021-04-06 05:12:21		3.651		30.310		1106.010		3		3.635		30.337	0.210	
16	2021-04-06 05:08:33		3.641	30.250		752.845		2021-04-06 05:10:30		3.633		30.240		752.960		2		3.569		30.237	0.115	
15	2021-04-06 05:06:57		3.642	30.200		806.890		2021-04-06 05:10:24		3.633		30.180		807.100		3		3.652		30.187	0.210	
14	2021-04-06 05:06:37		3.636	30.290		1241.945		2021-04-06 05:10:19		3.647		30.360		1242.170		4		3.649		30.366	0.225	
13	2021-04-06 05:05:06		3.628	30.220		963.890		2021-04-06 05:08:19		3.646		30.320		964.085		3		3.637		30.320	0.195	
2	2021-04-06 05:04:46		3.596	29.950		645.000		2021-04-06 05:08:13		3.590		29.940		645.205		3		3.565		29.942	0.205	
3	2021-04-06 05:02:55		3.650	30.280		1105.580		2021-04-06 05:06:22		3.657		30.320		1105.790		3		3.670		30.349	0.210	

Command Log: The historical command recorded for each charger.

Monday, April 26, 2021		Thursday, April 29, 2021		Refresh	« « <mark>1 2 3 4 »</mark> »		
	Timestamp		÷	Charger Num	\$	Switch ON/OFF	ŧ
	2021-04-28 10:57:16:576			3		ON	
	2021-04-28 10:56:57.040			13		ON	
	2021-04-28 10:56:37.587			4		ON	
	2021-04-28 10:56:17.988			15		ON	
	2021-04-28 10:55:58.524			2		ON	
	2021-04-28 10:55:39.032			14		ON	

5. Installation Instructions:

The EVCMC is shipped on a wooden pallet that is slightly larger than the overall size of the EVCMC. Prior to shipping, Intellimeter makes every reasonable effort to ensure safe and secure transportation. Each EVCMC is fully tested prior to packing, and it is packed with warning cones to avoid stacking of any other loads on top of the EVCMC. Upon receiving the equipment, please inspect the pallet and the packaging to ensure that the panel is not damaged. Intellimeter's terms of sale are EXW, therefore, if the equipment is damaged, please refuse the shipment and file a complaint with the carrier.

The EVCMC is wrapped in cardboard and foam and is strapped to the pallet. If the option for the EVCMC mounted on a fire-rated plywood is ordered, the EVCMC is bolted to the plywood/pallet. Please remove the covers from the distribution (breaker panel) to unscrew the panel from the pallet. The relay panels at the bottom of the EVCMC are also bolted to the pallet, however, the bolts/screws are located on the edge lips of the relay panel enclosures.

As the equipment is heavy, it cannot and should not be handled by a single individual. Once the equipment is removed from the pallet, please proceed to affix it to the wall using proper hardware for the weight of the equipment.

The approximate weight of the equipment is listed here:

- EVCMC-12 -Size: 60 x32x 16 Weight: 270 Lbs
- EVCMC-18 -Size: 66 x 44 x 16 Weight: 375 Lbs
- EVCMC-24 -Size: 72 X 44 x 16 Weight: 550 Lbs
- EVCMC-30 -Size: 96 X 44 x 16 Weight:600 Lbs

Please remove all the packaging from inside the panels, ensuring that no debris is left inside the panels.

Electrical:

Once the EVCMC is affixed to the wall, please proceed to pass the feeder cables through the Current Transformers provided for the mains of the panel at the top of the panel;

The EVCMC is already pre-wired, once the electrical connection to the mains of the distribution panel is complete, please proceed to install the panel covers.

Data connection:

The EVCMC can operate as a stand-alone system, the control and the consumption data is stored inside the Data Collection Unit. (typically located in the left meter panel)

It is always recommended to bring a TCP/IP drop with a CAT-5 or CAT-6 cable terminated in an RJ-45 connector to connect the DCU to the Local Area Network (LAN) of the building. This will allow the owner to enjoy the following benefits: Remote access through the Local Area Network to set up the DCU, add, remove, or modify the assignment of specific chargers, and download periodic consumption reports. Additionally, it can provide remote access to individual unit owners, third parties (like existing billing companies), or transfer the system to the Cloud for universal access.

Cloud services can be provided, via subscription through Intellimeter, by sending a request to <u>quotes@intellimeter.com</u>

Once the TCP/IP Connection is completed the meter panels can be closed.

Individual Chargers:

The wiring to the individual chargers takes place from the secondary side of the individual contactors.

Please note that the contactors are labeled and match the meter numbering and the breaker numbering.

The terminal blocks on the contactors allow a maximum wire gauge of #6 AWG Copper or Aluminum cable.

Once all the electrical and data connections are made please proceed to vacuum the interior of all the electrical enclosures prior to energizing the EVCMC.

Initialization:

Upon energization of the breaker or switch feeding the panel the EVCMC, follow a start-up sequence, energizing all contactors, one at a time in sequential order starting from contactor number 1 to the last one.

Once the sequence is completed, your EVCMC is ready to operate.

6. Typical Drawings and Technical Information

Appendix 1 is the EVCMC-12 Appendix 2 is the EVCMC-18 Appendix 3 is the EVCMC-24

For more technical information, please contact Intellimeter:

Address: <u>1125 Squires Beach Road, Pickering, Ontario, Canada L1W 3T9</u>

Website: www.intellimeter.com

Quote Requests: <u>quotes@intellimeter.com</u>

Purchase Orders: orders@intellimeter.com

Service Request: service@intellimeter.com

Appendix 1 EVCMC-12 Drawings

Appendix 3 EVCMC-24 Drawings

