# LANGOLF COMPANY, LLC ## TRAINING MANUAL FOR SHAVING IMITED LIABILITY COMPANY "A COMMITMENT TO QUALITY" ### Welcome to the Langolf Company, LLC Training Manual For Shaving The Langolf Company's commitment to quality has prompted the development of this manual. We would like to share with you over 30 years of design, engineering, and development. A major consideration was taking suggestions from screw machine operators from all over the country. The Langolf Company's Training Manual will help increase the operator's perception and education with shave tool holders. This training manual will decrease downtime and set up time, while increasing the operator's ability to foresee, prevent, and solve problems while on the job. The chapters in this manual detail: - \* Common chatter problems (Page 3) - \* Rough surface finish (Page 12) - \* Tapered diameters (Page 16) - \* Size problems (Page 19) Each section was precisely written to take the machinist through the problem solving steps. At The Langolf Company, LLC our customers always come first! Should you have any questions or need further assistance please visit our web site at http://www.langolfco.com or email us at info@langolfco.com, or call (810)364-4008. ### The Langolf Company, LLC We Have Solutions! Premier Manufacturer of Screw Machine Tooling We Sell: Shave Tool Holders — Form Tool Holder — Recess Attachments — Cut-Off Holders — Bridges Cut-Off Blades, Shave Tool Blanks, Form Tool Blanks # **Common Problems** ### Identification Shaving is a process that controls the size and finish of machined parts. The four most common shave tool problems that you will experience as an operator are: - 1. Chatter (Figure 1) - 2. Rough surface finish (Figure 2) - 3. Tapered diameter (Figure 3) - 4. Size problems (Figure 4) ### Identification Now that you know what chatter is, the next thing you need to know is how to identify it. Chatter will appear as lines or ridges running parallel on the machine surface To determine if the part has chatter, position it under a bright light, and rotate it while observing the machine surface (Figure 5). Lead for light as a said to a street of the light, and rotate it while observing the machine surface (Figure 5). Look for lines or ridges that appear in the reflection of the light #### Causes #### **Shave Tool Holders** Some of the chatter problems that you will encounter when using a shave tool may be related to the holder you are using Two type of shave holders are used on automatic screw machines. They are Slitters (pin type) and Langolf Company Auto/Shave Tool Holders. These holder are different enough in their design and construction that the chatter causes and corrective action of each will be described - 1. **Chatter** causes when using a Slitters Holder (Figure 6): - a. Worn pilot pins and pilot pin holes. - b. Spring tension. - 2. **Chatter** causes when using a Langolf Holder (Figure 7): - a. Gibs not properly adjusted. - b. Spring tension. #### Causes #### Slitters Holder - Worn Pilot Pins, or Pilot Pin Holes On a Slitters shave tool holder, chatter may be the result of worn pilot pins or pilot pin holes. The pilot pins fit through the pilot pin holes in the shave head and the holes in the shank (Figure 8). The pins are positioned in place in the shank and secured by a set screw. The shave tool head slides up and down on the pins when in use. The constant movement may cause wear on either the pins or the pin holes. To check for wear: - Grasp the shave head with your hand and fee for movement. - 2) Use an indicator to check for the amount of movement. If you can see or feel movement, this may be the cause of chatter. To correct this condition: - 1. Remove the pins from the holder. - 2. Use a vernier caliper or micrometer and measure the diameter of the pins at each end and the middle. The difference should not be more than .002 at the end than at the center. If the ends are more than .002 less than the center, change the pins. 3. Use a vernier caliper and measure the diameter of the holes in the holder. Be sure to check the hold for out of round, taper, and size. The size should not be more than . 003 lager than the pin. If the holes are too large, obtain another shave head from the tool crib. ### Causes #### Slitter Holder - Spring Tension and Height Adjustment A shave tool holder spring that does not have the proper tension may cause a part to have chatter. In a Slitters shave tool holder the spring fits into a recessed hole in the shank. The body fits over the top of the spring. The adjusting screw fits through the hole at the top of the body, through the print and the shank, and screws into the hole at the bottom of the body (Figure 9) The screw is used to adjust the shave head to the proper height. It should be adjusted to allow from .020 to .030 down pull after the roller meets the material. To check for spring compression, pull or push down on the shave head. The head should move, but you should feel resistance, and it should return fully to its original position when pressure is removed. If the spring is loose or does not feel stiff enough, replace it with a longer spring or one that has more resistance. ### Causes #### Langolf Shave Holder - Gibs Not Properly Adjustted A gib that is not properly adjusted may cause a shave tool to chatter. A loose gib may allow the shave head to vibrate and cause chatter. A gib that is too tight may cause the shave head to bind and move in a jerky motion. The gib on a Langolf Holder fits between the shave head and the frame of the holder mount (Figure 10). the sides of the give are flat (Figure 11) To check for a loose gib, wiggle the head sideways and feel for movement. If you can feel movement, the gib is too loose. To check for a gib that is too tight, push the head up and down to feel for drag. If it has too much drag or binds, the gib is too tight or could have a burr. To adjust a loose or a tight gib: - If you need to remove the gib you must remove the Head/Mount assembly. By taking the pressure off the taper adjustment screws, remove the head bolt from the back end. While on your bench, remove the rail that holds the head to the mount (gib side) and loosen the gib screws/nuts. - 2. Remove the big and visually check for burrs. If burrs are present remove then with a file. - 3. Replace the gib into the holder, and line up the notch (Figure 11) with the small pin on the mount plate. Reassemble the holder. - 4. Set gib pressure create a defined drag noticable on the head/gib while floating it by hand. One way of doing that is by putting the holder in a vice, push down on the head and tighten one screw. Loosen that screw slowly until head retracts fully. Repeat this procedure for each gib screw/lock nut. One set, tighten nuts. (Figure 10) - 5. Run a part to see if condition has been corrected. ### Causes #### **Langolf Shave Holder - Spring Tension & Float** A Langolf Shave Holder spring that does not have the proper tension may cause a part to have chatter. On a Langolf Shave Holder, the spring is located inside the head with a guide pin to guide the spring up and down. To set spring stabilizing pressure, turn the set screw on top of the head. When turning clockwise adds more pressure, counter clockwise releases pressure. Adjust until proper tension is reached. Stabilizing spring screw is shown in Figure 10. The pre-set float block numbered 1, 2 and 3 controls the amount of float. You can pre-determine how much float you need for shaving. Small Size Heads - #1 = 010", #2 = .020", #3 = .030" Medium Size Heads - #1 = .015", #2 = .045", #3 = .125" Large Size Heads - #1 = .063", #2 = .125", #3 = .187" Note: Pre-set float selection is determined by the tool height of the dovetail block. Check Tool Height - The formula for tool height is half the smallest diameter to be shaved minus the tool chart constant +/- .005" (Specifications in Shave Tool Holder catalog or Step-By-Step User's Manual) #### Causes Now you have learned to identify and solve causes of chatter that are related to the two types of shave tool holders. This section will show you how to identify and solve other chatter causes that are common to all types of shave tool holders. The other causes of chatter are: - A. Worn shave roller or pin - B. Narrow roller - C. Incorrect grind angle or sharp cutting edge - D. Cutting edge behind centerline of roller - E. Holder float set too high - F. Chatter from previous work operation - G. Short tool - H. Worn or cracked clamp - I. End tool slide supports - J. Feed and speed incorrect - K. Amount of stock for removal #### Causes #### Worn Shave Roller, or Worn Shave Roller Pin A shave roller or shave roll pin that is worn may cause the shave tool to chatter. A good roller and pin should have a tight fit, but must be able to turn freely To check for the condition of a worn roller or pin, try to move the roller to fee if it is loose. If it feels loose: - 1. Remove the pin and roller - 2. Check the diameter of the pin with a micrometer or a vernier caliper for both size and taper - 3. Check the diameter of the roller hole with a vernier caliper for size and taper The pin size and the hole size should be within .001 of each other. If the size difference is greater than .001, or if there is taper, replace the item that has the wear. #### Narrow Shave Roller A narrow shave roller will slid back and forth between the side of the roller support. A narrow shave roller may cause a shave tool to chatter. The shave roller supports that are used are the straddle type (Figure 12) and the offset type (Figure 13). To check for a narrow shave roller, try to move it back and forth on the pin. If you can move it, the roller is too narrow and may be the cause of chatter The roller should fit between the side of the support with just enough clearance to allow it to turn. When using an offset roller and support, be sure that the shoulder of the pin is tight to the side of the support, and the roller has enough clearance to turn. The portion of the pin between the shoulder and the head should be .002 to .005 longer than the hole to provide clearance. If the roller is too loose, or too tight, change the roller. Figure 12 Figure 13 #### Causes #### **Incorrect Grind Angle or Sharp Cutting Edge** An incorrect grind angle or a cutting edge that is too sharp may cause chatter. The degree of angle for a tool will be marked at the bottom of the tool. Most shave tools are ground to one degree. To check for correct grind angle on a shave tool, remove the tool and measure the angle with a protractor (Figure 14). If the tool you are to use does not have the angle that is noted on the base of the tool, replace tool. A new sharpened cutting edge that is too sharp and is causing the tool to chatter may be corrected by lightly wiping the cutting edge with a piece of brass. #### Causes ### Figure 14 #### **Cutting Edge Behind Centerline of Roller** When a shave tool cutting edge is set behind the centerline may cause the tool to chatter. The centerline is a line from the face of the shave tool head to the centerline of the roller. To provide accurate control between the cutting edge and the roller, the cutting edge of the tool must be positioned in line with the centerline of the roller. On the Langolf Shave Tool Holder ou can set the pre-set tool stop. To check if cutting edge is behind the centerline: Place the edge of a steel rule in line with the face of the head to the centerline of the roller, and look for clearance between the cutting edge and the rule (Figure 15). If there is clearance, the tool is behind the centerline. Loosen the clamp and relocate the tool Note: Check clamp and tool for tightness. Make sure the dovetail portion of the clamp is secured on the tool and that the flat part of the clamp is secured on the head. ### Causes #### **Short Tool** A short tool is a tool that has been reduced in length through usage and resharpening. As the tool become shorter, the clamping area is reduced (Figure 16). This may be the cause of the tool to vibrate and chatter. To correct this condition, replace the tool with one that is longer. ### Causes #### **Shave Holder With Too Much Float** A shave tool holder that has too much float may cause a part to have chatter. This may be due to the roller making contact with the material higher up than necessary. The holder will pull down tool rapidly and may cause the tool to hit or dive into the material. As the material revolves, the roller will jump when it passes over this spot and may cause the tool to begin to chatter. To check for this condition, advance the machine until the roller contacts the material. Stop the machine and adjust the float selection. This should be set for the roller to pull downwards from .015" to . 031" (Figure 17). Back the machine off until the tools are clear. Run the machine through a cycle and check to see that float is set properly, and that the holder returns to its original position. If holder is not returning to its original position that could be due to improperly set spring tension as discussed in a section above. ### Causes #### **Worn or Cracked Clamp** A clamp that is worn or cracked may cause a shave tool to chatter. A worn clamp is a clamp whose holding surface is uneven and does not fit the dovetail of the tool firmly. This is usually the result of damage cause by an accident, and the attempt to clean and smooth the surface by filing or grinding. A cracked clamp is one that has been over tightened and has become bent or cracked (Figure 18). These bends or cracks appear at the bolt hole locations, and may be a result of clamping a short tool. To correct the condition of a worn or cracked clamp, change the clamp. ### Causes #### **Chatter from Previous Work Station** A part that is to be shave will be formed to provide the basic design of the shaved part. If there is chatter before the shave tool operation, it may cause the shave tool to chatter. A double deck with a shave tool holder mounted on top (Figure 19) may also result in shave tool chatter. If the form tool in the lower holder is chattering, the vibration will follow through the holder to the shave holder. To check for this condition, look at the part for chatter before it goes to the shave tool To correct this condition, think back to the causes of form tool chatter and make the necessary corrections. ### Causes ### **Incorrect Spindle Speed or Feed Rate** A spindle speed that is too fast or a feed rate that is too slow may cause a shave tool to chatter. To check for these conditions, look at the gears and make sure that they are the same as those listed on the Mechanical Detail Sheet. Check the cross slide cam to make sure that it is the same as the one listed on the Mechanical Detail Sheet (Figure 20). If the gears or cam are no the ones listed, change them to the correct ones. Do no use gears or cams that are not listed on the Mechanical Detail Sheet. #### Causes #### **End Tool Slide Tooling** Long parts, or parts that require shaving a long way from the spindle may be the cause of chatter. This may be cause by the shave holder pushing the material away and causing it to vibrate. When running parts of this type, be sure to check the Mechanical Detail Sheet to see if a support is required. Two types of supports used to control the material when shaving are: - 1. Roller support (Figure 21) - 2. Center support (Figure 22) Install the support that is call for on the Mechanical Detail Sheet. Advance the machine until the shave tool roller touches the material. The rolls on a roller support should be located to a diameter that is not being shaved. The rolls should be set so they will turn with the spindle rotation, and be able to be stopped when finger pressure is applied. A center support is located at the end of the part. The support is set with pressure on the part. Be sure there is enough travel on the spring to accommodate the balance of the cam rise. If you are unable to control the chatter problem after making these adjustments, contact your supervisor. ### Causes #### **Amunt of Material for Removal** The amount of material that is to be shaved on a part may be the cause of chatter. The proper amount of material that should be left for the shave tool to remove is .010/.012". If there is not enough stock for removal the tool cannot pull a chip and may result in chatter. If there is too much stock for removal, it may cause chatter due to the increased pressure on the tool. To check for the condition of too much or too little stock for the shave tool to remove, use a micrometer or a vernier caliper and measure the diameter of the part before it reaches the shave tool. To correct these conditions, reset the tool that is preparing the stock to allow .010/.012" for the shave tool. #### **Definition** Another common shave tool problem that you may experience as an operator is rough surface finish Surface finish is defined as the roughness of the surface resulting from the machining process. If a part if found during inspection that has a rougher surface finish than is indicated on the part print a hold tag (Figure 23) will be placed on the part. ### Causes When you are sure that the part produced has a rough surface finish, your next step is to identify the cause of the surface finish problem. Six causes of a poor finish are: - A dull cutting edge - Cutting edge going past center - Amount of material to be shaved - Roller that does not turn - Incorrect feed or speed rate - Inadequate cooling ### Cause 1: Dull Cutting Edge The cutting edge of a shave tool must be sharp and clean to produce a good surface finish. During normal use, the cutting edge will wear and become dull. A dull cutting edge will push or rub the material instead of cutting clean. To check for a dull cutting edge, remove the tool and feel the edge. If the edge appears shiny or feels smooth (Figure 24) it may be dull. To correct this condition, change the tool. Figure 24 Do Not Hand Grind Shave Tools! ### Cause 2: Cutting Edge Going Past Center A shave tool cutting edge that moves past the centerline of the part may cause a rough surface finish. This causes the profile of the tool face to rub on the material surface. Two conditions that may cause this are: - 1. Holder set up too far forward (Figure 25) - Cutting edge of the tool in front of the centerline of the roller (Figure 26). To check for and correct these conditions: - 1. Use a steel rule to check to see that the cutting edge is in line with the face of the shave tool head and the center line of the shave roller. - 2. Back off the holder - Run the machine to the high point of the cam and stop the machine. With the feed off, job the spindle and slowly advance the holder until the tool cutting edge stop removing material. Tighten the holder in place and run a piece to check it. Note: The use of positive stops should be avoided when shaving unless the shave holder is mounted on a double deck block whose cutting depth requires a control. ### Cause 3: Amount of Material to be Shaved The amount of material to be removed by the shave tool may be the cause of a poor surface finish. If there is not an adequate amount of material for the shave tool to remove, any surface marks or irregularities created by the form tool may not be removed by the shave tool. Excessive stock will cause the shave tool to dull more rapidly affecting surface finish. The recommended amount of material for a shave tool to remove is .010/.012" To check for the proper amount of material for the shave tool to remove, measure the diameter of the material before it is to be shaved. The size should be about .010/.012" larger than the finish size the shave tool will produce. It should also be free of any deep ridges or grooves that may not clean up. If the size is more than .010/.012" of the size to be shaved adjust the form tool producing the blank size. Be sure to check the form tool and change it if necessary. ### Cause 4: Roller That Does Not Turn A shave roller that does not turn may cause a rough surface finish. A shave roller that does not turn may be due to: - 1) A flat spot (Figure 27) - 2) A roller or roller pin that has build up (Figure 28) - 3) Side of roller rubbing against a vertical surface (Figure 29) To check for the condition of a flat spot on the roller remove the roller and see if a flat spot exists. If so, change the roller. To check for a roller or roller pin that has build up and will not turn, remove the roller and pin and look for build up on the pin or in the hole of the roller. If build up is round this may cause the roller to stop turning. Replace the roller and/or pin. To check for the side of a roller that is rubbing on a vertical surface, advance the machine to the material. Look for clearance between the roller and the material. Check to see if the roller is the one that is listed on the Mechanical Detail Sheet. If the roller is not the same as listed, obtain the proper roller. If it is the one that is listed and there is no clearance, a new roller should be selected which is more appropriate for the job. Figure 28 Figure 29 ### Cause 5: Inadequate Coolant Lack of adequate coolant may cause a part to have a rough surface finish. Coolant is used to reduce heat and to flush the chip shavings away from the tool and the work piece. The chip shavings produced by a shave tool are very fine and may cling to the tool or roller and begin to rub on the material. To correct this situation, direct as much coolant at the tool and work piece as possible (Figure 30) The Langolf Shave Tool Holder is manufactured with an oil line going into the back of the roller assembly (Figure 31) to provide lubrication to the roll and pin as well as flushing chips from behind the roller. Introducing a flood of oil to this port will prolong the life of the roller assembly and aid in reducing chatter caused by chips building up behind the roller. Cause 6: Feed Rate and Spindle Speed A spindle speed that is too fast or a feed rate that is too slow may be the cause of a rough surface finish. To check for the condition of an incorrect spindle or feed rate: - 1. Compare the gears on the machine with those lists for the job on the Mechanical Detail Sheet. - 2. Compare the cam number with the one listed on the Mechanical Detail Sheet. If the gears or cam are incorrect, change them. # **Taper Problems** ### **Definition** A common shave tool problem that you will encounter as an operator is taper. A part that has taper is larger on one end and smaller at the other (Figure 32). A part may be tapered and still be within the guage or print limits. If this condition exists you should make immediate corrections before the parts become scrap! # **Taper Problems** ### Causes After you have found that you have a taper condition, your next step is to determine what caused the problem. Four causes of taper are: - 1. Part formed off in previous work station - 2. Chips or dirt between the tool and the tool holder - 3. Shave tool holder not square with the part - 4. End tool slide support not adjusted ### Cause 1: Part Formed Off in Previous Work Station A part that is formed with a taper in an earlier work station may result in taper after it has been shaved. This may cause one end to be too small and not enough material for the shave tool to remove. To check for this condition, measure the diameter of the part before it is shaved. Use a vernier caliper or micrometer and check the part at each end of the machined diameter that is to be shaved. Compare these dimensions with the part size that you are producing. If the part has taper and is smaller than the shave size it must be corrected at the previous work stations. # **Taper Problems** ### Cause 2: Chips or Dirt Between the Tool and the Tool Holder Chips or dirt between the tool and tool holder may cause a part to have taper. If chips or dirt are present the tool will not fit firmly into the holder and may be tipped (Figure 33). To check for this condition, try to slip a feeler gauge between the tool and tool holder. If you can, then there may be dirt or chips present. Remove the tool, clean the tool and the tool holder with a blast of air or clean brush. Visually inspect for chips or build up on the holder. If chips or build up are present, remove the holder and remove the debris with pick or file (figure 34). Replace the tool and make sure it fits properly. Run a part and check for taper. Figure 34 Cause 3: Shave Tool Holder Not Square With the Part A shave tool holder that is not square with the part may be the cause of taper. To check a shave holder for being square with the part place a level across the top of the holder. If the bubble is not centered the holder is not square. To correct this condition with a Slitters Holder (Figure 35): - 1. Loosen the clamping screw on the shave tool block that holds the shank end of the holder. - 2. Adjust the opposing set screws on the tang of the shank until the holder is level. - 3. Tighten the clamp and run a part to check it. To correct this condition with a Langolf Shave Tool Holder (Figure 36): - ! Do not take tension off of the head bolt (this is very important! - Adjust the taper by backing off (loosening) one screw and tightening the opposing screw for the direction of tilt needed until the holder is level. Then re-tighten the screw that was backed off. - 3. Ensure the head bolt is tightened. Run a part and check it. # **Taper Problems** ### Cause 4: End Tool Slide Supports Not Adjusted End tool slide supports that are not adjusted may cause taper. Long parts that are shaved require a support to keep them from pushing away from the tools. If the part pushes away it may be the cause of taper. Two types of end tool slide supports that are used are the roller support and the center support. To check and correct a roller support: - 1. Advance the machine until the shave roller makes contact with the material. - 2. The rollers should be positioned to a surface that does not get shaved (Figure 37). 3. Check the rollers for pressure. The rollers should turn with the rotation of the spindle. You should be able to stop the rollers with finger pressure. To check for a center support: - 1. Advance the machine until the shave roller makes contact with the material. - 2. Position the center support to the material with a slight amount of pressure on the spring. There must be enough compression left on the spring to allow for the balance of end slide travel (Figure 38). ### Definition Another common shave tool problem that you will experience as an operator is size. Size problems may be identified as - 1. Oversize diameter - 2. Undersize diameter An oversize diameter is a size that is bigger than the print or gauge size (Figure 39). An undersize diameter is a size that is smaller than the print or gauge size (Figure 40). If an undersize or an oversize part is found during inspection a hold tag will be place on the part. The operation of shaving parts is performed for the following reasons: - Part may be finished complete and must fit a mating part - Part may have addition machining operations that require a specific size blank dimension. Figure 39 Figure 40 # Size Problems #### Causes When you are sure that you have a size problem, your next step is to identify what caused the problem. The five causes of size problems are: - . - · Cutting edge of shave tool is not on center with shave roller - · Dull cutting edge - · Holder not going to center of the part - Roller in wrong location - · Flat roller ### Cause 1 Cutting Edge of Shave Tool Not on Centerline with Roller The cutting edge of a shave tool that is not centered with the shave roller and the face of the shave tool head may cause a size problem. This may cause the shave tool to cut oversize or undersize. To check for this condition, place the edge of a steel rule on the face of the shave tool head to the center line of the roller (Figure 41). If the shave tool is in back of the centerline you will see a gap between the cutting edge and the rule. If the tool is in front of the centerline you will not be able to align the rule from the front of the holder to the center of the roller. To correct this condition reset the tool properly. Note: The Langolf Shave Tool Holder provides a pre-set tool stop that is directly on the centerline of the roller. Figure 41 Cause 2: Dull Cutting Edge A cutting edge that has become dull may cause size problems. This may cause the parts to begin to vary in size. The parts may become larger and cause and oversize part. To check for this condition remove the tool and feel with your finger to see if the edge is smooth. If the cutting edge appears shiny or feels smooth the tool may be dull. To correct this condition change the tool. Do no hand grind shave tools. Tools should be properly ground to sharpen. ## Cause 3 Too Cutting Edge Not Advancing to Center of Part A shave tool that does not go to the center of the part may cause size problems (Figure 42). To produce the required size and have it be consistent, the cutting edge of the tool must advance to the center of the part. The distance between the roller and the tool then becomes the size of the part To check to see if the tool moves to the center of the part: - 1. Advance the machine to the high point of the cam - 2. Look at the roller, tool, and part. They should all be in alignment (Figure 43) - 3. If the tool and roller are behind center, jog the spindle and adjust the tool holder forward until it stops removing material. - 4. If the tool and roller are beyond center, back the holder up until they are in line with each other. - 5. Run a part and check for size. Make adjustments as needed. Positive stop should not be used to control the travel unless the shave holder is mounted on a double deck block. ### Cause 4: Roller in Wrong Direction A shave roller that is not in the proper location may be the cause of size problems. To check for this condition: - 1. Check the roller and roller bracket. Compare them with the number listed on the Mechanical Detail Sheet. If they do not match replace them with the correct items. - 2. Check the position of the roller on the part. Figure 44 The roller should be positioned on a surface that is being shaved to control size (Figure 44). The size of the part is controlled by the distance between the shave tool cutting edge and the roller. To correct the condition of a roller in the wrong location move it to the proper location. The Langolf Shave Tool Holder roller will move sideways for adjustment. Cause 5: A Flat Roller A roller that has a flat spot may be the cause of size problems. A roller that has a flat spot may stop turning when the flat area meets the part (Figure 45). When the roller stops turning it may cause the part to be oversize. To check for a flat spot on the roller: - 1. Remove the roller from the holder - 2. Visually inspect roller for a flat spot. - 3. Use a micrometer to vernier caliper and measure roller diameter. - 4. Check the hole for wear or taper while you have the roller out If the roller has a flat spot, or is otherwise worn, replace it with a new roller. Be sure to recheck the size. Figure 45 ### This Concludes the Training Manual For Shaving We hope this manual will aid the operator of multi-spindle lathes to identify and correct the most common problems encountered with producing high quality parts. We covered the problems encountered while using a Shave Tool Holder, those of Chatter, Surface Finish, Taper, and Size. Review the sections of this manual when a problem is encountered and more likely than not, you will find the solution! Should you have any questions or need further assistance please visit our web site at http://www.langolfco.com or email us at info@langolfco.com, or call (810)364-4008. ### The Langolf Company, LLC We Have Solutions! Premier Manufacturer of Screw Machine Tooling We Sell: Shave Tool Holders — Form Tool Holder — Recess Attachments — Cut-Off Holders — Bridges Cut-Off Blades, Shave Tool Blanks, Form Tool Blanks