TECHNICAL INFORMATION

UNDERSTANDING AN THREAD SIZES Use the figures below to determine the aN thread
size before ordering. The chart at the right shows the corresponding metal tube outer diameter and thread size for each size.

UNDERSTANDING NPT THREAD SIZES uset he foumes bobuvt dodeemmine the NPT
thread size before ordering. The chart at the right shows the corresponding thread size, threads per inch, outer diameter and closest AN fitting size for each.
$1^{\prime \prime}$
$\mathbf{n}^{\prime \prime}$

TECHNICAL INFORMATION

STANDARD TORQUE LIMITS FOR
HOSE AND TUBE COUPLING NUTS \because nen pouns shown

TUBE	HOSE	NUT		A	B
$0 . D$.	HEX	$9 / 16^{\prime \prime}$	$50-65$	$135-150$	C
$1 / 4^{\prime \prime}$	-4	$11 / 16^{\prime \prime}$	$110-125$	$270-300$	$210-250$
$3 / 8^{\prime \prime}$	-6	$7 / 8^{\prime \prime}$	$210-250$	$400-500$	$340-420$
$1 / 2^{\prime \prime}$	-8	$1 "$	$300-350$	$650-700$	$400-480$
$5 / 8^{\prime \prime}$	-10	$1-1 / 4^{\prime \prime}$	$425-500$	$900-1000$	$725-850$
$3 / 4^{\prime \prime}$	-12	$1-1 / 2^{\prime \prime}$	$600-700$	$1200-1400$	$900-1150$
$1 "$	-16	$2 "$	$680-800$	$1200-1400$	$900-1150$
$1-1 / 4^{\prime \prime}$	-20				

$\frac{{ }^{*} \text { Inch Pounds }}{12}=$ Foot Pounds
Over tightening of hose and tube coupling nuts will cause thread and seal damage and can result in leakage. Torque values are for threads lubricated with hydraulic fluid, 30 weight motor oil or antiseize compound.

KEY

A - Steel or aluminum flared fitting nuts and tube sleeves, AN818 and AN819: used on aluminum tube.
B - Steel or aluminum flared fitting nuts and tube sleeves, AN818 and AN819: used on steel tube.
C - Steel or aluminum flared fitting hose coupling nuts.

Where use of a torque wrench is not feasible, use a conventional wrench to tighten the coupling nuts. Tighten until a distinct increase in the torque is noted. Continue tightening an additional $1 / 6$ of a turn. Back off the nut. Again, tighten until a distinct increase in the torque is noted. Continue tightening an additional $1 / 6$ to $1 / 3$ of a turn.

NOTE: One hex flat $=1 / 6$ of a turn

