
### NTPEP Report REGEO-2011-01-001



LABORATORY EVALUATION OF GEOSYNTHETIC REINFORCEMENT

FINAL PRODUCT QUALIFICATION REPORT FOR MIRAGRID XT GEOGRID PRODUCT LINE



Report Issued: January 2012 Report Expiration Date: January 2018 Next Quality Assurance Update Report: 2015

American Association of State Highway and Transportation Officials (AASHTO)

Executive Office: 444 North Capitol Street, NW, Suite 249 • Washington, DC • 20001 (t) 202.624.5800 • (f) 202.624.5469 • <u>www.NTPEP.ORG</u>

DOWNLOAD DATA FILES FOR THIS NTPEP REPORT @ NTPEP.org

# **2011 NTPEP Report Series**

National Transportation Product Evaluation Program (NTPEP)

NTPEP Report REGEO-2011-01-001

## LABORATORY EVALUATION OF GEOSYNTHETIC REINFORCEMENT

### 2011 PRODUCT SUBMISSIONS SAMPLED JUNE 2011

Laboratory Evaluation by:

### TRI/Environmental, Inc.

9063 Bee Caves Road Austin, TX 78733-6201

Product Line Manufactured by:

### **TenCate Geosynthetics**

365 South Holland Drive Pendergrass, GA 30567



© Copyright 2011, by the American Association of State Highway and Transportation Officials (AASHTO). *All Rights Reserved.* Printed in the United States of America. This book or parts thereof, may not be reproduced without express written permission of the publisher. The report does not constitute an endorsement by AASHTO of the products contained herein. This report provides an original source of technical information to facilitate development of acceptability standards and is primarily intended for use by state and local transportation agencies.

#### DOWNLOAD DATA FILES FOR THIS NTPEP REPORT @ NTPEP.org

### PROLOGUE

#### General Facts about NTPEP Reports:

- NTPEP Reports contain data collected according to laboratory testing and field evaluation protocols developed through consensus-based decision by the AASHTO's NTPEP Oversight Committee. These test and evaluation protocols are described in the *Project Work Plan* (see NTPEP website).
- Products are voluntarily submitted by manufacturers for testing by NTPEP. Testing fees are assessed from manufacturers to reimburse AASHTO member departments for conducting testing and to report results. AASHTO member departments provide a voluntary yearly contribution to support the administrative functions of NTPEP.
- ✤ AASHTO/NTPEP does not endorse any manufacturer's product over another. Use of certain proprietary products as "primary products" does not constitute endorsement of those products.
- ✤ AASHTO/NTPEP does not issue product approval or disapproval; rather, test data are furnished for the User to make judgment for product prequalification or approval for their transportation agency.

#### Guidelines for Proper Use of NTPEP Results:

- The User is urged to carefully read any introductory notes at the beginning of this Report, and also to consider any special clauses, footnotes or conditions which may apply to any test reported herein.
   Any of these notes may be relevant to the proper use of NTPEP test data.
- The User of this Report must be sufficiently familiar with the product performance requirements and/or (standard) specification of their agency in order to determine which test data are relevant to meeting those qualifying factors.
- NTPEP test data is intended to be predictive of actual product performance. Where a transportation agency has successful historical experience with a given product, it is suggested to factor that precedence in granting or withholding product approval or prequalification.

#### NTPEP Report Special Advisory for Geosynthetic Reinforcement (REGEO):

- This report contains product data that are intended to be applied to a product line, based on the test results obtained for specific products that are used to represent the product line for the purposes of NTPEP testing. It is expected that the User will estimate the properties of specific products in the line not specifically tested through interpolation or a lower or upper bound approach.
- It is intended that this data be used by the User to add products to their Qualified Products or Approved Products List, and/or to develop geosynthetic reinforcement strength design parameters in accordance with AASHTO, FHWA, or other widely accepted design specifications/guidelines. It is also intended that the User will conduct further, but limited, evaluation and testing of the products identified in this report for product acceptance purposes to verify product quality.
- Products included in this report must be resubmitted to NTPEP every three (3) years for a quality assurance evaluation and every six (6) years for a full qualification evaluation in accordance with the work plan. Hence, all product test results included in this Report supersede data provided in previous Editions of this report.
- The User is guided to read the document entitled "Use and Application of NTPEP Geosynthetic Reinforcement Test Results" (see NTPEP website) for instructions and background on how to apply the results of the data contained in this report.

### Tony Allen (Washington State DOT)

Chairman, Geosynthetics Technical Committee *Jim Curtis* (New York State DOT) Vice Chairman, Geosynthetics Technical Committee

# **Table of Contents**

| Executive Summary                                                                              | 4            |
|------------------------------------------------------------------------------------------------|--------------|
| 1.0 Product Line Description and Testing Strategy                                              | 7            |
| 1.1 Product Description                                                                        | 7            |
| 1.2 Product Line Testing Approach                                                              | 7            |
| 2.0 Product Polymer, Geometry, and Manufacturing Information                                   | .13          |
| 2.1 Product/Polymer Descriptors                                                                | 13           |
| 2.2 Geometric Properties of Geogrids                                                           | 13           |
| 2.3 Product Production Data and Manufacturing Quality Control                                  | 13           |
| 3.0 Wide Width Tensile Strength Data                                                           |              |
| 4.0 Installation Damage Data (RF <sub>ID</sub> )                                               | 15           |
| 4.1 Installation Damage Test Program                                                           | 15           |
| 4.2 Installation Damage Full Scale Field Exposure Procedures and Materials Used                | 16           |
| 4.3 Summary of Installation Damage Full Scale Field Exposure Test Results                      | 19           |
| 4.4 Estimating RF <sub>ID</sub> for Specific Soils or for Products not Tested                  | 20           |
| 4.5 Laboratory Installation Damage Test Results per ISO/EN 10722                               | 23           |
| 5.0 Creep Rupture Data (RF <sub>CR</sub> )                                                     | 25           |
| 5.1 Creep Rupture Test Program                                                                 | 25           |
| 5.2 Baseline Tensile Strength Test Results                                                     | 26           |
| 5.3 Creep Rupture Test Results                                                                 | 27           |
| 5.3.1 Statistical Validation to Allow the Use of SIM Data to Establish Rupture Envelope        | 28           |
| 5.3.2 Statistical Validation to Allow the Use of Composite Rupture Envelope for Product Line . | 28           |
| 5.4 Creep Rupture Envelope Development and Determination of RF <sub>CR</sub>                   |              |
| 6.0 Long-Term Durability Data (RF <sub>D</sub> )                                               |              |
| 6.1 Durability Test Program                                                                    | 31           |
| 6.2 Durability Test Results                                                                    | 32           |
| 7.0 Low Strain Creep Stiffness Data                                                            | 34           |
| 7.1 Low Strain Creep Stiffness Test Program                                                    | 34           |
| 7.2 Ultimate Tensile Test Results for Creep Stiffness Test Program                             | 34           |
| 7.3 Creep Stiffness Test Results                                                               | 34           |
| Appendix A: NTPEP Oversight Committee                                                          | A-1          |
| Appendix B: Product Geometric and Production Details                                           | <b>B-1</b>   |
| B.1 Product Geometric Information                                                              | <b>B-2</b>   |
| B.2 Product Production Information E                                                           | <b>3-</b> 13 |
| B.3 Product Manufacturing Quality Control Program H                                            | <b>3-</b> 13 |
| Appendix C: Tensile Strength Detailed Test Results                                             | C-1          |
| Appendix D: Installation Damage Detailed Test Results                                          | D-1          |
| Appendix E: ISO/EN Laboratory Installation Damage Detailed Test Results                        | .E-1         |
| E.1 ISO/EN Laboratory Installation Damage Test Program                                         | .E-2         |
| Appendix F: Creep Rupture Detailed Test Results                                                |              |
| Appendix G: Durability Detailed Test Results                                                   |              |
| Appendix H: Creep Stiffness Detailed Test Results                                              | H-1          |

## Tables

| Table 1-1. Product designations included in product line                                            | . 7 |
|-----------------------------------------------------------------------------------------------------|-----|
| Table 3-1. Wide width tensile strength, T <sub>ult</sub> , for the Miragrid Geogrid XT product line | 14  |
| Table 4-1. Independent installation damage testing required for NTPEP qualification.                | 15  |
| Table 4-2. Summary of installation damage tensile test results                                      | 19  |
| Table 4-3. Measured RF <sub>ID</sub>                                                                | 19  |
| Table 4-4. Summary of laboratory (ISO procedure) installation damage test results                   | 24  |
| Table 5-1. Independent creep rupture testing required for NTPEP qualification                       | 26  |
| Table 5-2. Ultimate tensile strength (UTS) and associated strain                                    | 27  |
| Table 5-3. Creep rupture test results for all tests conducted                                       | 27  |
| Table 5-4. RF <sub>CR</sub> value for Miragrid XT series geogrids for a 75 yr period of loading/use | 29  |
| Table 6-1. Independent durability testing required for NTPEP qualification                          | 31  |
| Table 6-2. NTPEP durability test results for the Miragrid XT geogrid product line and criteria t    | o   |
| allow use of a default value for RF <sub>D</sub>                                                    | 33  |
| Table 7-1. Ultimate tensile strength (UTS) & associated strain.                                     | 34  |
| Table 7-2. Summary of creep stiffness test results.                                                 | 35  |

# Figures

| Figure 1-1. Photo of Miragrid 2XT (machine direction is perpendicular to ruler shown)               |  |
|-----------------------------------------------------------------------------------------------------|--|
| Figure 1-2. Photo of Miragrid 3XT (machine direction is perpendicular to ruler shown)               |  |
| Figure 1-3. Photo of Miragrid 5XT (machine direction is perpendicular to ruler shown)               |  |
| Figure 1-4. Photo of Miragrid 7XT (machine direction is perpendicular to ruler shown)               |  |
| Figure 1-5. Photo of Miragrid 8XT (machine direction is perpendicular to ruler shown) 10            |  |
| Figure 1-6. Photo of Miragrid 10XT (machine direction is perpendicular to ruler shown) 10           |  |
| Figure 1-7. Photo of Miragrid 20XT (machine direction is perpendicular to ruler shown) 11           |  |
| Figure 1-8. Photo of Miragrid 22XT (machine direction is perpendicular to ruler shown) 11           |  |
| Figure 1-9. Photo of Miragrid 24XT (machine direction is perpendicular to ruler shown) 12           |  |
| Figure 4-1. Test soil grain size distribution 17                                                    |  |
| Figure 4-2. Installation damage Type 1 test aggregate17                                             |  |
| Figure 4-3. Installation damage Type 2 test aggregate                                               |  |
| Figure 4-4. Installation damage Type 3 test aggregate18                                             |  |
| Figure 4-5. Miragrid XT product line installation damage as a function of soil d <sub>50</sub> size |  |
| Figure 4-6. Miragrid XT product line installation damage as a function of product unit weight       |  |
| for type 1 soil (coarse gravel - GP) 21                                                             |  |
| Figure 4-7. Miragrid XT product line installation damage as a function of product unit weight       |  |
| for type 2 soil (sandy gravel - GP) 22                                                              |  |
| Figure 4-8. Miragrid XT product line installation damage as a function of product unit weight       |  |
| for type 3 soil (silty sand – SM) 22                                                                |  |
| Figure 5-1. Composite creep rupture data/envelope for the Miragrid XT geogrid product line 30       |  |
| Figure 7-1. Miragrid XT creep stiffness for 2 % strain @ 1000 hours                                 |  |

# **Executive Summary**

This test report provides data that can be used to characterize the short-term and long-term tensile strength the Miragrid polyester, PVC coated geogrid reinforcement XT product line using testing conducted on representative products within the product line. The purpose of this report is to provide data for product qualification purposes.

The test results contained herein were obtained in accordance with WSDOT Standard Practice T925 and the NTPEP work plan (see www.NTPEP.org) and can be used to determine the long-term strength of the geosynthetic reinforcement, including the long-term strength reduction factors RF<sub>ID</sub>, RF<sub>CR</sub>, and RF<sub>D</sub>, and also used to determine low strain creep stiffness values. All testing reported herein was performed on the materials tested in the direction of manufacture, i.e., the machine direction.

**Product Line Description:** The product line evaluated includes the following specific polyester, PVC coated geogrid reinforcement products:

Miragrid 2XT, 3XT, 5XT, 7XT, 8XT, 10XT, 20XT, 22XT, and 24XT.

This product line was evaluated through detailed testing of three representative products in the Miragrid XT product line, and very limited testing of the other remaining products in the product line. Miragrid 8XT was used as the primary product for product line characterization purposes (i.e., the baseline to which the other products were compared), and Miragrid 2XT and 24XT were used as secondary products to evaluate the properties of the range of products in the Miragrid XT product line. Samples of these products were taken by an independent sampler on behalf of NTPEP on June 8, 2011, at the Miragrid manufacturing plant located in Pendergrass, GA.

An on-site audit to verify the consistency of the Miragrid XT product line was conducted at the Miragrid manufacturing plant on June 8, 2011, in accordance with the REGEO work plan. The audit verified that the materials and processing used to manufacture each product in the line are consistent and meet the definition of a product line in the NTPEP work plan and WSDOT T925. The audit report is available separately upon request to those who are authorized to have access to the audit report (i.e., members of state departments of transportation, NTPEP staff, and the manufacture of the product line).

<u>Statistical Validation of Use of SIM and Validation of Product Line:</u> The creep rupture test results obtained were evaluated in accordance with T925 to assess the validity of using SIM to extend the creep rupture data and to assess the validity of treating the products submitted as a single product line. The following was verified:

*i.* Validation of the use of SIM to extend the creep rupture data was conducted previously as reported in the 2008 NTPEP report for this product line. The results of that validation from this previous testing are summarized in Figure F-21 in Appendix F. Revalidation of the use of SIM for this product line was considered unnecessary in accordance with the NTPEP work plan and WSDOT T925, since it was determined that the product line has not significantly changed in its

creep tests were conducted to make a quantitative statistical analysis), the new SIM data continued to be consistent with the real time creep data obtained.

*ii.* Based on the available creep data for all the products tested, the product line submitted by the manufacturer statistically qualifies to be a product line and can therefore be represented using test results from representative products in the product line (see Figure F-23 in Appendix F for details). Recommendations on application of the representative product data to the rest of the product line for installation damage, durability and creep stiffness are provided in their respective report sections and summarized below in this executive summary.

<u>**Test Results for T**ult</u>: All wide width test results (ASTM D6637) obtained for this product line through the NTPEP testing were greater than the minimum average roll values (MARV's) provided by the manufacturer (see Table 3-1).

Test Results for  $RF_{ID}$ : Installation damage testing on this product line resulted in values of  $RF_{ID}$  that ranged as follows:

$$RF_{ID} = 1.04$$
 to 1.61

The highest values of RF<sub>ID</sub> occurred when the coarse gravel gradation was used.

The values of  $RF_{ID}$  for all of the products tested did demonstrate a trend of decreasing  $RF_{ID}$  as product unit weight/tensile strength increases, at least for the coarse gravel gradation, that would allow interpolation of  $RF_{ID}$  to products not tested. Therefore, interpolation of these test results to products in the line not tested is feasible. This trend was not as clear for the other, less coarse, gradations. In general, as the test material gradation becomes more coarse, the value of  $RF_{ID}$  increased. Therefore, interpolation of this data to intermediate gradations appears to be feasible. See Table 4-3 and Figures 4-5 through 4-8 for details. Laboratory installation damage test data in accordance with ISO/EN 10722 are also provided for future use in comparison to quality assurance testing (see Table 4-6).

It should be noted that the installation damage testing conducted represents an increase in compaction and spreading equipment size (i.e., a 15,000 lb wheeled front end loader – Caterpillar 416E, and a 25,000 lb single drum vibratory roller) and a reduced aggregate lift thickness over the geogrid of 6 inches relative to the installation damage testing reported in previous NTPEP test reports. Therefore, the decrease in strength retained values relative to previous NTPEP test reports for this product line does not represent a change in the products, but instead is the result of the more severe installation damage conditions which represent a likely upper bound installation condition for geosynthetic reinforced soil structures. Actual RFID values could be lower if installation conditions are less severe (e.g., greater initial lift thickness over the geogrid, use of lighter weight equipment, etc.). Actual RFID values could be higher if the spreading or compacting equipment tires or tracks are allowed to be in direct contact with the geosynthetic before or during fill placement and compaction, if the thickness of the fill material between the

equipment tires or tracks is inadequate (especially for high tire pressure equipment such as dump trucks), or if excessive rutting of the first lift of soil over the geosynthetic (e.g., due to soft subgrade soil) is allowed to occur.

<u>**Test Results for RF\_{CR}:</u>** The creep rupture testing conducted indicates that the following value of  $RF_{CR}$  may be used:</u>

#### $RF_{CR} = 1.45$

This value of  $RF_{CR}$  is applicable to a 75 year life at 68° F (20° C), and may be used to characterize the full product line as defined herein. See Figure 5-1 for detailed creep rupture envelope or to obtain values for other design lives.

<u>**Test Results for RF**<sub>D</sub></u>: The chemical durability index testing results meet the requirements in WSDOT T925 to allow use of a default reduction factor for RF<sub>D</sub>. See Table 6-2 for specific test results, and see WSDOT T925 or the document entitled "Use and Application of NTPEP Geosynthetic Reinforcement Test Results" (www.NTPEP.org) for recommended default reduction factors for RF<sub>D</sub>. The UV test results (ASTM D4355) for this product line, as represented by the lightest weight product in the line, indicate a strength retained at 500 hours in the weatherometer of 85%. This value of UV strength retained should be considered to be a lower bound value for the product line.

<u>**Test Results for Creep Stiffness:**</u> The 1000 hr, 2% strain secant stiffness  $(J_{2\%,1000hr})$  test results ranged from 17,000 lb/ft for the lowest strength style to 170,000 lb/ft for the highest strength style. There exists a strong linear relationship between creep stiffness and the short-term tensile strength ( $T_{lot}$ ), therefore the 1000 hr, 2% strain secant stiffness can be reasonably expressed for any product in the product line as:

$$J_{2\%,1000\ hr} = 5.501(T_{lot}) - 57.378$$

Where,  $T_{lot}$  is the roll/lot specific single rib tensile strength per ASTM D6637. See Table 7-2 and Figure 7-1 for details. Note that once the stiffness is determined from this equation, an equivalent MARV for this property can be determined by multiplying the stiffness by the ratio of  $T_{MARV}/T_{lot}$ .

## **1.0 Product Line Description and Testing Strategy**

### **1.1 Product Description**

The **Miragrid XT Series** family of geogrids are high-strength woven, PVC coated geogrids. The product line evaluated consists of the products as manufactured by TenCate Geosynthetics listed in Table 1-1.

| Miragrid Reinforcement Product Designations (i.e., Styles) |                                            |  |  |  |  |  |
|------------------------------------------------------------|--------------------------------------------|--|--|--|--|--|
| Miragrid® 2XT Miragrid® 7XT Miragrid® 20XT                 |                                            |  |  |  |  |  |
| Miragrid® 3XT                                              | Miragrid® 3XT Miragrid® 8XT Miragrid® 22XT |  |  |  |  |  |
| Miragrid® 5XT Miragrid® 10XT Miragrid® 24XT                |                                            |  |  |  |  |  |

 Table 1-1. Product designations included in product line.

The scope of the evaluation is limited to the strength in the machine direction (MD). The crossmachine direction (XD) was not specifically evaluated.

An on-site audit to verify the consistency of the Miragrid XT product line was conducted at the Miragrid manufacturing plant on June 8, 2011, in accordance with the REGEO work plan. The audit verified that the materials and processing used to manufacture each product in the line are consistent and meet the definition of a product line in the NTPEP work plan and WSDOT T925. The audit report is available separately upon request to those who are authorized to have access to the audit report (i.e., members of state departments of transportation, NTPEP staff, and the manufacture of the product line).

### **1.2 Product Line Testing Approach**

This product line was evaluated through detailed testing of three representative products in the Miragrid XT product line, and very limited testing of the other remaining products in the product line. Miragrid 8XT was used as the primary product for product line characterization purposes (i.e., the baseline to which the other products were compared), and Miragrid 2XT and 24XT were used as secondary products to evaluate the properties of the range of products in the Miragrid XT product line. Samples of these products were taken by an independent sampler on behalf of NTPEP on June 8, 11 at the Miragrid manufacturing plant located in Pendergrass, GA.

Photographs of all the products tested are provided in figures 1-1 through 1-9

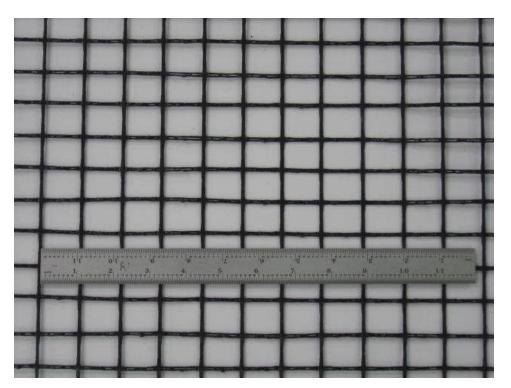



Figure 1-1. Photo of Miragrid 2XT (machine direction is perpendicular to ruler shown).




Figure 1-2. Photo of Miragrid 3XT (machine direction is perpendicular to ruler shown).

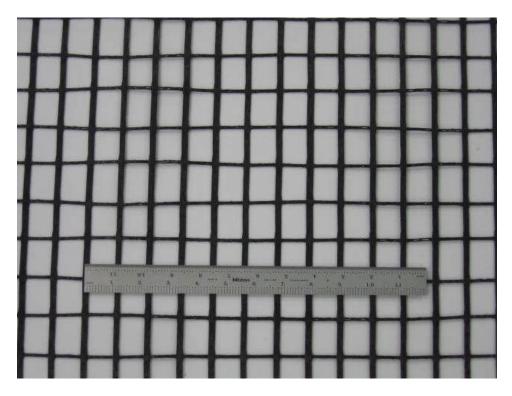



Figure 1-3. Photo of Miragrid 5XT (machine direction is perpendicular to ruler shown).

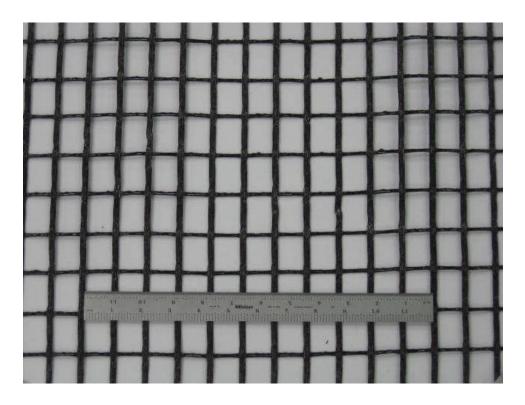



Figure 1-4. Photo of Miragrid 7XT (machine direction is perpendicular to ruler shown).




Figure 1-5. Photo of Miragrid 8XT (machine direction is perpendicular to ruler shown).

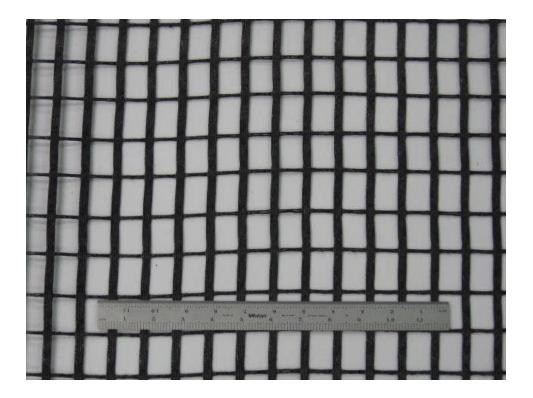



Figure 1-6. Photo of Miragrid 10XT (machine direction is perpendicular to ruler shown).

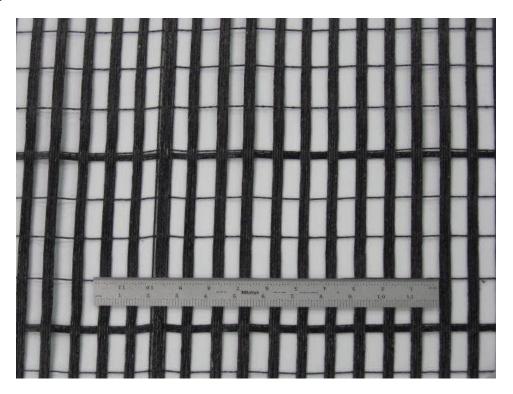



Figure 1-7. Photo of Miragrid 20XT (machine direction is perpendicular to ruler shown).

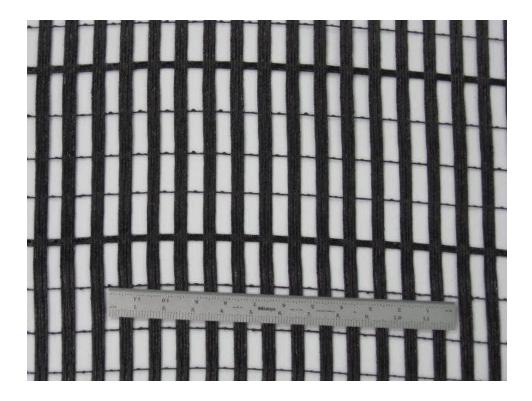



Figure 1-8. Photo of Miragrid 22XT (machine direction is perpendicular to ruler shown).

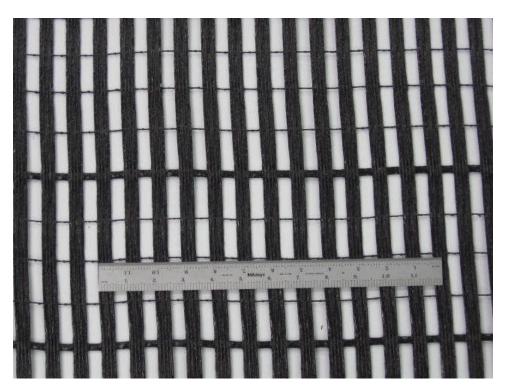



Figure 1-9. Photo of Miragrid 24XT (machine direction is perpendicular to ruler shown).

### 2.0 Product Polymer, Geometry, and Manufacturing Information

#### 2.1 Product/Polymer Descriptors

Yarn used in all **Miragrid XT Series** geogrids is a high molecular weight, low CEG, high tenacity polyester (PET) with UV inhibitors. Source of Yarn – confidential. Coating used in all **Miragrid XT Series** geogrids is a PVC-based coating with no post-consumer recycled materials. The coating target weight per unit area is between 50-57% of the total weight of the finished product. Source of Coating – confidential

For the PET yarns, key descriptors include minimum production number average molecular weight (GRI-GG7 and ASTM D 4603) and maximum carboxyl end group content (GRI-GG8):

- Minimum Molecular Weight > 25,000 (Measured value is 34,855)
- Maximum CEG < 30 (Measured value is 15.2)
- % of regrind used in product: 0%.
- % of post-consumer recycled material by weight: 0%

### **2.2 Geometric Properties of Geogrids**

Rib width, spacing, thickness, and product weight/unit area vary depending on geogrid style. While such data are generally not used for design, it can be useful for identification purposes, and to be able to detect any changes in the product. Measurements of geogrid rib spacing are also used to convert tensile test results (i.e., load at peak strength,  $T_{ult}$ , and load at a specified strain to obtain stiffness, J) to a load per unit width value (i.e., lbs/ft or kN/m). Detailed measurement results, as well as the typical values supplied by the manufacturer for each product, are provided in Appendix B, Section B.1.

#### 2.3 Product Production Data and Manufacturing Quality Control

Geogrid roll sizes and weights, lot sizes, and a summary of the manufacturer's quality control program are provided in Appendix B, Sections B.2 and B.3. Such information can be useful in working with the manufacturer if product quality issues occur.

### 3.0 Wide Width Tensile Strength Data

Minimum average roll values supplied by the manufacturer and test results obtained on all the products in the product line for this NTPEP testing program are provided in Table 3-1. Wide width tensile tests were conducted in accordance with ASTM D6637. The measured geogrid dimensions discussed in Section 2 and provided in Appendix B, Section B.1, were used to convert test loads to load per unit width values. Note that the independently measured  $T_{ult}$  values only indicate that the sampled products have a tensile strength that exceeds the Manufacturer's minimum average roll values (MARV's). As such, these independently measured  $T_{ult}$  values should not be used directly for design purposes. However, these independently measured  $T_{ult}$  test results have been used as roll specific tensile strengths used for developing installation damage and creep reduction factors. Detailed test results are provided in Appendix C.

| Product<br>Style/Type | Test Method | MARV for<br>T <sub>ult</sub> , in<br>MD (lb/ft) | T <sub>ult</sub> ,<br>Independently<br>Measured in<br>MD<br>(lb/ft)* |
|-----------------------|-------------|-------------------------------------------------|----------------------------------------------------------------------|
| 2XT                   | ASTM D 6637 | 2,000                                           | 2,691                                                                |
| 3XT                   | ASTM D 6637 | 3,500                                           |                                                                      |
| 5XT                   | ASTM D 6637 | 4,700                                           |                                                                      |
| 7XT                   | ASTM D 6637 | 5,900                                           |                                                                      |
| 8XT                   | ASTM D 6637 | 7,400                                           | 8,463                                                                |
| 10XT                  | ASTM D 6637 | 9,500                                           |                                                                      |
| 20XT                  | ASTM D 6637 | 13,705                                          |                                                                      |
| 22XT                  | ASTM D 6637 | 20,559                                          |                                                                      |
| 24XT                  | ASTM D 6637 | 27,415                                          | 29,809                                                               |

Table 3-1. Wide width tensile strength, T<sub>ult</sub>, for the Miragrid Geogrid XT product line.

(Conversion: 1 lb/ft = 0.0146 kN/m)

MD = machine direction

\*Average of 5 specimens obtained during NTPEP testing.

## 4.0 Installation Damage Data (RF<sub>ID</sub>)

### 4.1 Installation Damage Test Program

Installation damage testing and interpretation was conducted in accordance with WSDOT Standard Practice T925, Appendix A, except as noted herein. Samples were exposed to three "standard" soils: a coarse gravel, a sandy gravel, and a sand. Additional laboratory installation damage testing in accordance with ISO/EN 10722 was also conducted. The specific installation damage test program is summarized in Table 4-1.

| Manufacturer: TenCate Geosynthetics PRODUCT Line: 2XT to 24XT                                                                                                                                                                |                                                    |       |              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|-------|--------------|--|--|--|
| Qualification (every 6 yrs) / QA (every 3 yrs)                                                                                                                                                                               |                                                    |       |              |  |  |  |
| Tests Conducted                                                                                                                                                                                                              | Products T                                         | ested | # of Tests   |  |  |  |
|                                                                                                                                                                                                                              | Qualification QA                                   |       | (see Note 1) |  |  |  |
| Index tensile tests on undamaged<br>material (ASTM D 6637)                                                                                                                                                                   | 2XT, 8XT, 24XT                                     | NA    | 3            |  |  |  |
| Three field exposures, including<br>soil characterization and<br>compaction measurements<br>(ASTM D5818)                                                                                                                     | 2XT, 8XT, 24XT in Types<br>1, 2, and 3 soils       | NA    | 9            |  |  |  |
| Tensile tests on damaged<br>specimens<br>(ASTM D 6637)                                                                                                                                                                       | 2XT, 8XT, 24XT in Types<br>1, 2, and 3 soils       | NA    | 9            |  |  |  |
| Laboratory installation damage<br>testing –as basis for future QA<br>and to help interpolate full scale<br>field results to products ont full<br>scale field tested (ISO/EN 10722)                                           | 2XT, 3XT, 5XT, 7XT, 8XT,<br>10XT, 20XT, 22XT, 24XT | NA    | 9            |  |  |  |
| Note 1 Each test is performed using the number of specimens required by the test standard. For example, for index tensile testing, a test is defined 5 to 6 specimens. See the specific test procedures for details on this. |                                                    |       |              |  |  |  |

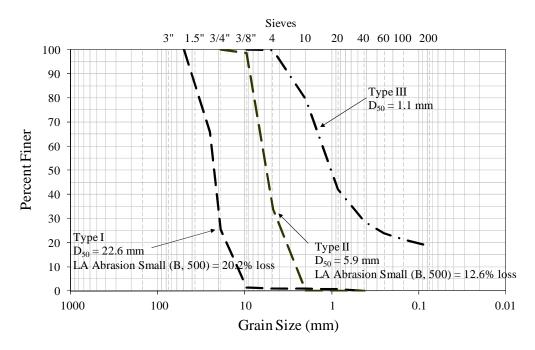
#### Table 4-1. Independent installation damage testing required for NTPEP qualification.

# **4.2 Installation Damage Full Scale Field Exposure Procedures and Materials Used**

Three "standard" soils were used for the field exposure of the geogrid samples to installation damage. Soil gradation curves for each soil are provided in Figure 4-1. Photographs of each soil illustrating particle angularity are provided in figures 4-2 through 4-4. LA Abrasion tests conducted to characterize the backfill materials indicted a maximum loss of 20%, which is well within the requirements stated in T925. Note that the photograph of the Type 2 soil only shows the coarser particles since the percentage of sand in that soil is relatively small, and the sand particles have slipped into the voids in this poorly graded gravel just below the stockpile surface at the time this photograph was taken.

The approach specifically used for applying installation damage to the geosynthetic samples that allows for exhumation of the test samples while avoiding unintended damage was initially developed by Watts and Brady<sup>1</sup> of the Transport Research Laboratory (TRL) in the United Kingdom. The procedure generally conforms to T925 and ASTM D 5818 requirements.

Since compaction typically occurs parallel to the face of retaining walls and the contour lines of slopes, the machine direction was placed perpendicular to the running direction of the compaction equipment. To initiate the exposure procedure, four steel plates each measuring 42-inches x 52-inches (1.07 m x 1.32 m), equipped with lifting chains, were placed on a flat clean surface of hardened limestone rock. The longer side of the plates is parallel to the running direction of the compaction equipment. A layer of soil/aggregate was then placed over the adjacent plates to an approximate compacted thickness of 6 inches (0.15 m). Next, each of four coupons of the tested geosynthetic sample was placed on the compacted soil over an area corresponding to an underlying steel plate. To complete the installation, the second layer of soil was placed over the coupons using spreading equipment and compacted to a thickness of 6 inches (0.15 m) using a vibratory compactor. The spreading equipment used included a wheeled front end loader and a 25,000 lb single drum vibratory roller with pneumatic rear wheels. The front end loader was allowed to spread the aggregate by driving over the geosynthetic with an 6 inch aggregate lift between the wheels and the geosynthetic.


The following construction quality control measures were followed during exposure:

- Proctor and sieve analyses were performed on each soil/aggregate, when possible. (Proctors could not be performed on Gradations 1 and 2.)
- Lift thickness measurements were made after soil/aggregate compaction.
- When possible, moisture and density measurements were made on each lift using a nuclear density gage to confirm that densities >90% of modified Proctor (per ASTM D 1557) were being achieved.

To exhume the geosynthetic, railroad ties were removed and one end of each plate was raised with lifting chains. After raising the plate to about  $45^{\circ}$ , soil located near the bottom of the leaning plate was removed and, if necessary, the plate was struck with a sledgehammer to loosen

<sup>&</sup>lt;sup>1</sup> G.R.A. Watts and K.C. Brady (1990), *Site Damage trials on geotextiles*, Geotextiles, Geomembranes and Related Produts, Balkema Rotterdam.

the fill. The covering soil/aggregate was then carefully removed from the surface while "rolling" the geosynthetic away from the underlying soil/aggregate. This procedure assured a minimum of exhumation stress. Photographs of the installation damage field exposures are provided in Appendix D. A detailed tabulation of each soil gradation is provided in Appendix D, Table D-10.



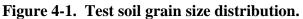





Figure 4-2. Installation damage Type 1 test aggregate.



Figure 4-3. Installation damage Type 2 test aggregate.



Figure 4-4. Installation damage Type 3 test aggregate.

#### 4.3 Summary of Installation Damage Full Scale Field Exposure Test Results

The roll specific ultimate tensile strength (ASTM D6637) test results for the baseline,  $T_{lot}$  (i.e., undamaged tensile strength tested prior to sample installation in the ground) and the ultimate tensile strength of the installation damaged geogrid samples,  $T_{dam}$ , are provided in Table 4-2. RF<sub>ID</sub>, calculated using the results shown in Table 4-2, are summarized in Table 4-3. Strength retained is calculated as the ratio of the average exhumed strength  $T_{dam}$  divided by the average baseline strength  $T_{lot}$  for the product sample. RF<sub>ID</sub> is the inverse of the retained strength (i.e. 1 / 0.779 = 1.28). Detailed test results for each specimen tested are provided in Appendix D, Tables D-1 through D-9.

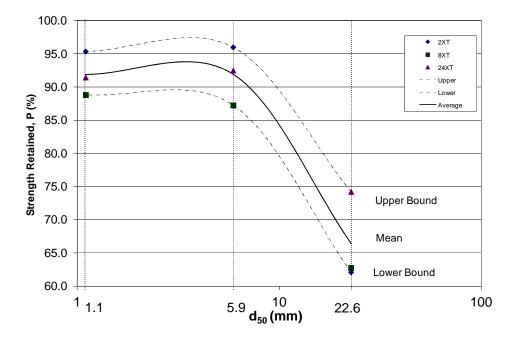
|               |       | Base                                     | line       |                                          | humed      |
|---------------|-------|------------------------------------------|------------|------------------------------------------|------------|
| Backfill Type | Style | <sup>1</sup> T <sub>lot</sub><br>(lb/ft) | COV<br>(%) | <sup>2</sup> T <sub>dam</sub><br>(lb/ft) | COV<br>(%) |
| Type 1        | 2XT   | 2,691                                    | 0.9        | 1,671                                    | 18.4       |
| Coarse Gravel | 8XT   | 8,463                                    | 1.2        | 5,309                                    | 8.9        |
| (GP)          | 24XT  | 29,809                                   | 1.2        | 22,129                                   | 4.3        |
| Type 2        | 2XT   | 2,691                                    | 0.9        | 2,584                                    | 2.2        |
| Sandy Gravel  | 8XT   | 8,463                                    | 1.2        | 7,384                                    | 3.2        |
| (GP)          | 24XT  | 29,809                                   | 1.2        | 27,576                                   | 1.6        |
| Type 3        | 2XT   | 2,691                                    | 0.9        | 2,567                                    | 7.5        |
| Silty Sand    | 8XT   | 8,463                                    | 1.2        | 7,517                                    | 3.5        |
| (SM)          | 24XT  | 29,809                                   | 1.2        | 27,269                                   | 2.9        |

 Table 4-2.
 Summary of installation damage tensile test results.

<sup>1</sup>Average of 5 specimens.

<sup>2</sup>Average of 10 specimens.

(Conversion: 1 lb/ft = 0.0146 kN/m)


| Stulo | Mass /                         | Type 1<br>Coarse Gravel |                  | Type<br>Sandy G |                  | Type<br>Silty Sa |                  |
|-------|--------------------------------|-------------------------|------------------|-----------------|------------------|------------------|------------------|
| Style | Area<br>(oz./yd <sup>2</sup> ) | %<br>Retained           | RF <sub>ID</sub> | %<br>Retained   | RF <sub>ID</sub> | %<br>Retained    | RF <sub>ID</sub> |
| 2XT   | 7.21                           | 62.2                    | 1.61             | 96.0            | 1.04             | 95.4             | 1.05             |
| 8XT   | 11.23                          | 62.7                    | 1.59             | 87.2            | 1.15             | 88.8             | 1.13             |
| 24XT  | 30.27                          | 74.2                    | 1.35             | 92.5            | 1.08             | 91.5             | 1.09             |

### 4.4 Estimating RF<sub>ID</sub> for Specific Soils or for Products not Tested

In general, as the test material gradation becomes more coarse, the value of strength retained decreased (i.e.,  $RF_{ID}$  increased). Trend lines plotted in Figure 4-5 for the mean, upper bound and lower bound for all the installation damage data obtained for the product line illustrate the general trend of the installation damage data with regard to soil d<sub>50</sub> size. Interpolation of this data to intermediate gradations appears to be feasible based on these test results, though the scatter in that trend should be recognized when estimating values of  $RF_{ID}$  for specific soils.

The Miragrid XT product line generally exhibited moderately strong relationships between the weight or the tensile strength of the product and the strength retained after installation damage for the coarsest gradation (gradation 1) but showed no consistent relationship with product weight or tensile strength for the finer gradations. See figures 4-6 through 4-8 for illustrations of those relationships. Therefore, interpolation of these test results to products in the line not tested based on product weight or strength may only be feasible for the coarsest soil tested, though caution should be exercised and appropriate judgment applied to insure a safe estimate of RFID each product.

For coated geogrids, the coating weight/thickness can have a significant influence on the resistance of the geogrid to installation damage as described in WSDOT T925 Appendix A. Since only representative products from the product line were field tested for installation damage, all of the products in the product line were tested using ISO/EN 10722 (see Section 4.5 of this report) to investigate relative resistance to installation damage for all the products. As shown in Section 4.5, installation damage resistance of all of the products in that test was reasonably consistent. Furthermore, the products subjected to full scale field installation conditions also had the lowest installation damage strength retained values in the ISO/EN 10722 test. Therefore, for products in the product line not tested in the full scale installation damage tests, for the two finer soil gradations, use of a lower bound value of strength retained for the products not tested in the full scale installation damage tests (i.e., (P<sub>dmin</sub> in figures 4-7 and 4-8) appears to be appropriate for design.



Note:  $RF_{ID} = 1/P$ ;  $d_{50}$  = sieve size at which 50% of soil passes by weight

Figure 4-5. Miragrid XT product line installation damage as a function of soil d<sub>50</sub> size.

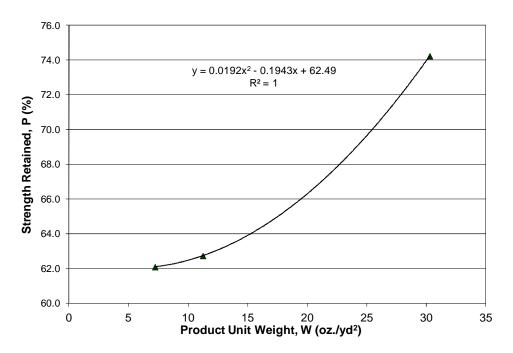



Figure 4-6. Miragrid XT product line installation damage as a function of product unit weight for type 1 soil (coarse gravel - GP).

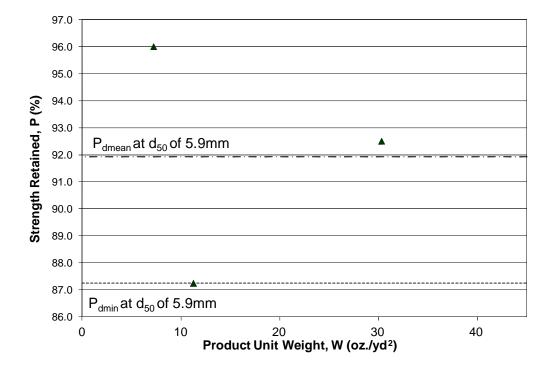



Figure 4-7. Miragrid XT product line installation damage as a function of product unit weight for type 2 soil (sandy gravel - GP).

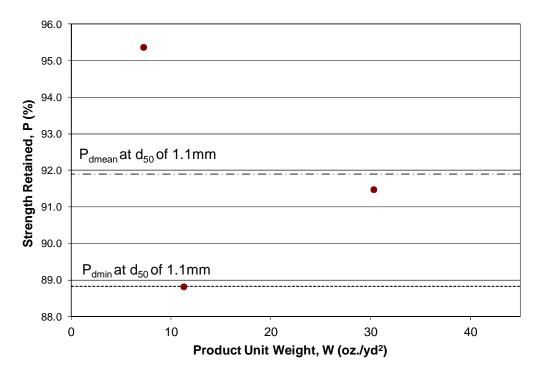



Figure 4-8. Miragrid XT product line installation damage as a function of product unit weight for type 3 soil (silty sand – SM).

It should be noted that the installation damage testing conducted represents an increase in compaction and spreading equipment size (i.e., a 15,000 lb wheeled front end loader - Caterpillar 416E, and a 25,000 lb single drum vibratory roller – a 10,000 lb roller was used in past testing) and a reduced aggregate lift thickness over the geogrid of 6 inches (an 8 inch lift thickness was used in past testing) relative to the installation damage testing reported in previous NTPEP test reports. Therefore, the decrease in strength retained values relative to previous NTPEP test reports for this product line does not represent a change in the products, but instead is the result of the more severe installation damage conditions which represent a likely upper bound installation condition for geosynthetic reinforced soil structures. Actual RFID values could be lower if installation conditions are less severe (e.g., greater initial lift thickness over the geogrid, use of lighter weight equipment, etc.). Actual RFID values could be higher if the spreading or compacting equipment tires or tracks are allowed to be in direct contact with the geosynthetic before or during fill placement and compaction, if the thickness of the fill material between the equipment tires or tracks is inadequate (especially for high tire pressure equipment such as dump trucks), or if excessive rutting of the first lift of soil over the geosynthetic (e.g., due to soft subgrade soil) is allowed to occur.

#### 4.5 Laboratory Installation Damage Test Results per ISO/EN 10722

Laboratory Installation damage testing and interpretation was conducted in accordance with ISO/EN 10722. In this procedure, geosynthetic specimens are exposed to simulated installation stresses and abrasion using a standard "backfill" material in a bench scale device. Once exposed, they are tested for tensile strength to determine the retained strength after damage. Five baseline and five exposed specimens from each product were tested. The test results are summarized in Table 4-4. Detailed test results are provided in Appendix E, as well as a photograph of the test set-up and a close up of the standard backfill material used.

This procedure is intended to be a reproducible index test to assess relative susceptibility of the geosynthetic to damage. In this NTPEP testing program, the results from this test are primarily intended to be used for future quality assurance to assess the consistency in the product's susceptibility to installation damage. It is not intended to be used directly in the determination of  $RF_{ID}$  for a given soil backfill gradation.

| Miragrid XT<br>Style | Mean Baseline<br>Tensile Strength<br>(lb/ft) | Coefficient<br>of<br>Variation<br>(%) | Mean Exposed<br>Tensile Strength<br>(lb/ft) | Coefficient<br>of<br>Variation<br>(%) | Strength<br>Retained<br>(%) |
|----------------------|----------------------------------------------|---------------------------------------|---------------------------------------------|---------------------------------------|-----------------------------|
| 2XT                  | 2,744                                        | 1                                     | 1,884                                       | 8                                     | 93                          |
| 3XT                  | 4,089                                        | 1                                     | 4,000                                       | 2                                     | 98                          |
| 5XT                  | 5,214                                        | 1                                     | 4,998                                       | 2                                     | 98                          |
| 7XT                  | 6,393                                        | 2                                     | 5,785                                       | 5                                     | 91                          |
| 8XT                  | 8,426                                        | 2                                     | 7,735                                       | 5                                     | 92                          |
| 10XT                 | 10,623                                       | 3                                     | 9,708                                       | 3                                     | 91                          |
| 20XT                 | 16,680                                       | 2                                     | 15,790                                      | 2                                     | 95                          |
| 22XT                 | 23,794                                       | 4                                     | 15,441                                      | 2                                     | 93                          |
| 24XT                 | 29,796                                       | 4                                     | 26,520                                      | 1                                     | 89                          |

(Conversion: 1 lb/ft = 0.0146 kN/m)

## 5.0 Creep Rupture Data (RF<sub>CR</sub>)

#### 5.1 Creep Rupture Test Program

Creep testing and interpretation has been conducted in accordance with WSDOT Standard Practice T925, Appendices B and C. A baseline (i.e., reference) temperature of  $68^{\circ}$  F ( $20^{\circ}$  C) was used. Miragrid 8XT was used as the primary product to establish the creep rupture envelope, with limited creep testing of the other Miragrid geogrids (i.e., 2XT and 24XT) to verify the ability to interpolate creep rupture behavior to the XT geogrid products not specifically tested (i.e., to treat all the products submitted for evaluation as a product line per T925 and the NTPEP work plan).

The creep rupture testing program is summarized in Figure 5-1. Creep testing was conducted using both ASTM D5262 (termed "conventional" creep testing) and ASTM D6992 (i.e., the Stepped Isothermal Method - SIM). A limited number (6) of tests using ASTM D5262, conducted only at the reference temperature of  $68^{\circ}$  F (20° C) for up to a minimum time of 1,000 hrs were used for comparison purposes to verify the accuracy of the SIM creep tests. Since single rib tensile tests were used for SIM (ASTM D6992) and conventional creep tests (ASTM D5262), only single rib short-term tensile tests were conducted for each product. This was done to ensure that the correct index tensile strength is used, since the creep load is expressed as a percent of  $T_{ult}$ .

| Manufacturer: TenCate Geosynthetics PRODUCT Line: 2XT to 24XT                                                                                                                                                                 |                                 |                 |         |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-----------------|---------|--|--|--|
| Qualification (every 6 yrs) / QA (every 3 yrs)                                                                                                                                                                                |                                 |                 |         |  |  |  |
| <b>Tests Conducted</b>                                                                                                                                                                                                        | Products Tested                 | # of Tests (see |         |  |  |  |
|                                                                                                                                                                                                                               | Qualification                   | QA              | Note 1) |  |  |  |
| Index single rib tensile tests on lot specific<br>material<br>(ASTM D 6637)                                                                                                                                                   | 2XT, 8XT, 24XT                  | NA              | 3       |  |  |  |
| Index wide width tensile tests on lot specific<br>material<br>(ASTM D 6637)                                                                                                                                                   | NA                              | NA              | 0       |  |  |  |
| PRIMARY PRODUCT 6 Rupture Points –<br><u>Conventional Creep testing</u> up to 1000 hrs<br>(ASTM D5262)                                                                                                                        | 8XT @ 6 load levels             | NA              | 6       |  |  |  |
| PRIMARY PRODUCT 6 Rupture Points –<br><u>Accelerated Creep rupture testing (SIM)</u> .<br>(ASTM D6992)                                                                                                                        | 8XT @ 6 load levels             | NA              | 6       |  |  |  |
| SECONDARY PRODUCT(S)<br><u>Conventional Creep Testing</u><br>(ASTM D5262)                                                                                                                                                     | None                            | NA              | 0       |  |  |  |
| SECONDARY PRODUCT(S)<br>Accelerated Creep rupture testing (SIM).<br>(ASTM D6992)                                                                                                                                              | 2XT and 24XT @ 4 load<br>levels | NA              | 8       |  |  |  |
| Note 1: Each test is performed using the number of specimens required by the test standard. For example, for index tensile testing, a test is defined 5 to 6 specimens. See the specific test procedures for details on this. |                                 |                 |         |  |  |  |

#### Table 5-1. Independent creep rupture testing required for NTPEP qualification.

### 5.2 Baseline Tensile Strength Test Results

All creep testing using SIM (ASTM D6992) and conventional (ASTM D5262) creep tests were performed on single rib specimens. To facilitate use of both single rib to wide width specimens for the creep testing, rapid loading tensile and creep tests were conducted, in accordance with T925. Sample specific geogrid dimensions were used to convert tensile test loads to load per unit width values. Data from testing conducted previously and reported in NTPEP Report 8505.3 indicated that single rib and multi-rib tensile tests provide adequately similar results, therefore additional conventional creep testing using multi-rib specimens was not required. The tensile test specimens tested were taken from the same rolls of material that were used for the creep testing. The measured geogrid dimensions discussed in Section 2 and provided in Appendix B, Section B.1, were used to convert tensile test loads to load per unit width values.

| Product | Single Rib UTS per<br>ASTM D6637, T <sub>lot</sub><br>(lb/ft @ % Strain) |  |  |
|---------|--------------------------------------------------------------------------|--|--|
| 2XT     | 2,678 @ 10.8%                                                            |  |  |
| 8XT     | 8,714 @ 12.8%                                                            |  |  |
| 24XT    | 30,714 @ 14.8%                                                           |  |  |

| Table 5-2. Ultimate tensile strength (UTS) and associated stra |
|----------------------------------------------------------------|
|----------------------------------------------------------------|

(Conversion: 1 lb/ft = 0.0146 kN/m)

#### **5.3 Creep Rupture Test Results**

A total of 14 Stepped Isothermal Method (SIM) tests and 6 conventional creep tests were run to fulfill the qualification requirements. Table 5-3 summarize the tests performed and their outcomes. Detailed test results, including creep curves for each specimen tested, are provided in Appendix F, Figures F-1 through F-20.

 Table 5-3. Creep rupture test results for all tests conducted.

| Style & Test | Creep Load               | Time to Rupture |
|--------------|--------------------------|-----------------|
| Туре         | (% of T <sub>lot</sub> ) | (log hrs)       |
| 2XT - SIM    | 70.00                    | 5.5711          |
| 2XT - SIM    | 73.99                    | 3.7918          |
| 2XT - SIM    | 76.99                    | 2.7248          |
| 2XT - SIM    | 80.00                    | 1.9786          |
| 8XT - SIM    | 64.35                    | 6.8129          |
| 8XT - SIM    | 69.30                    | 5.8708          |
| 8XT - SIM    | 71.77                    | 4.6272          |
| 8XT - SIM    | 74.25                    | 3.9427          |
| 8XT - SIM    | 76.73                    | 4.1056          |
| 8XT - SIM    | 79.20                    | 2.4988          |
| 8XT - Conv.  | 78.00                    | 3.1714          |
| 8XT - Conv.  | 78.00                    | 2.8178          |
| 8XT - Conv.  | 80.00                    | 2.4203          |
| 8XT - Conv.  | 80.00                    | 2.3436          |
| 8XT - Conv.  | 82.00                    | 2.3395          |
| 8XT - Conv.  | 82.00                    | 1.5999          |
| 24XT - SIM   | 68.00                    | 6.3928          |
| 24XT - SIM   | 71.00                    | 5.4707          |
| 24XT - SIM   | 75.00                    | 4.2798          |
| 24XT - SIM   | 79.00                    | 2.8434          |

# 5.3.1 Statistical Validation to Allow the Use of SIM Data to Establish Rupture Envelope

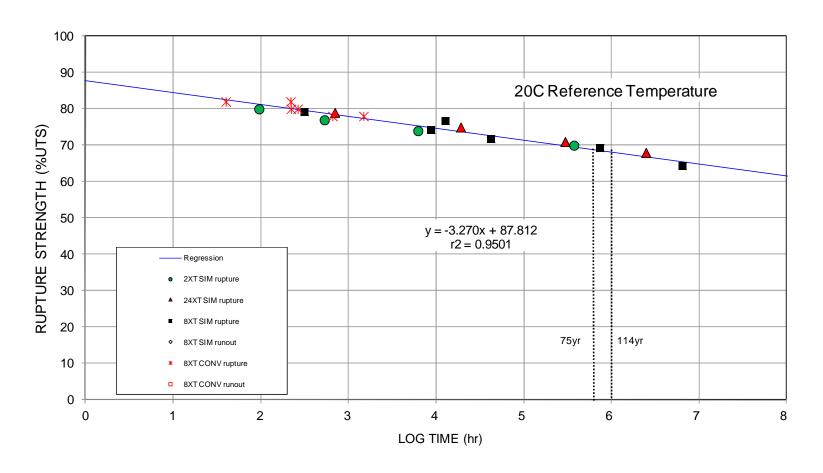
Validation of the use of SIM to extend the creep rupture data was conducted previously as reported in the 2008 NTPEP report for this product line (NTPEP Report 8505.3). For convenience, the results of that validation from this previous testing are summarized in Figure F-21 in Appendix F. Revalidation of the use of SIM for this product line was considered unnecessary in accordance with the NTPEP work plan and WSDOT T925, since it was determined that the product line has not significantly changed in its formulation and processing relative to the product line as previously tested and reported in the 2008 NTPEP report.

Figure F-22 provides a plot of the creep rupture envelope for the conventional creep and SIM creep data performed as part of the current testing program. Visually the conventional and SIM data are reasonably consistent. Thus, the conventional and accelerated (SIM) data may be used together to construct the characteristic creep rupture curve of the primary product, and SIM data may also be used for creep testing of the other two geogrid products to evaluate the potential to construct a composite creep curve for the product line.

# 5.3.2 Statistical Validation to Allow the Use of Composite Rupture Envelope for Product Line

Details of the confidence limits evaluation for the product line conducted in accordance with T925 are contained in Appendix F. Figure F-23 provides a plot of the creep rupture envelope with the confidence limits and the rupture envelopes for the primary product and the other tested products (i.e., 2XT and 24XT), illustrating this statistical test. Detailed calculation results for this statistical analysis are provided in tables F-2 and F-3, and summarized in Table F-5. The results indicate that the rupture envelopes for the 2XT and 24XT products are within the specified 90% confidence limits of the primary product (i.e., 8XT) creep rupture data, meeting T925 requirements. Thus, all the XT products tested (i.e., 2XT, 8XT, and 24XT) can be used to construct a composite creep rupture envelope representing the entire product line. The calculation results for the statistical analysis and regression to create the full composite creep curve are provided in Table F-4.

### 5.4 Creep Rupture Envelope Development and Determination of RF<sub>CR</sub>


In consideration of the statistical validation described in Section 5.3 of this report, a composite creep rupture envelope, using log-linear regression, was constructed as shown in Figure 5-1. The mix of conventional and accelerated (SIM) creep rupture test data points meets T925 requirements. Based on this plot of all data, the regression of the data shows that the  $r^2$  value is 0.95 (see Table F-4 in Appendix F for details). Per T925, this degree of scatter in the data is acceptable for a composite rupture envelope.

The creep rupture envelope in Figure 5-1 should be considered valid for the entire Miragrid XT geogrid product line evaluated in this report. Since the temperature accelerated creep results produced through the SIM testing allowed time shifting of the creep rupture data points to over

1,000,000 hours (i.e., 114 years), no extrapolation uncertainty factor in accordance with T925 need be applied. Table 5-4 provides the estimated value of  $RF_{CR}$  for **Miragrid XT Series** geogrids based on the reported testing for a period of long-term loading of up to 75 years. This rupture envelope can be used to determine  $RF_{CR}$  for times other than 75 years, if desired.

### Table 5-4. RF<sub>CR</sub> value for Miragrid XT series geogrids for a 75 yr period of loading/use.

| Period of Use (in years) | <b>RF</b> <sub>CR</sub> for <b>Rupture</b> – All XT Styles |  |  |  |
|--------------------------|------------------------------------------------------------|--|--|--|
| 75                       | 1.45                                                       |  |  |  |



### Miragrid XT Composite Creep Rupture Curve

Figure 5-1. Composite creep rupture data/envelope for the Miragrid XT geogrid product line.

# 6.0 Long-Term Durability Data (RF<sub>D</sub>)

### 6.1 Durability Test Program

Basic molecular properties relating to durability were evaluated, allowing a "default"  $RF_D$  to be used in accordance with WSDOT Standard Practice T925, provided that the long-term environment in which the geosynthetic is to be used is considered to be non-aggressive in accordance with the AASHTO LRFD Bridge Design Specifications and T925. A non-aggressive long-term environment is described in these documents as follows:

- A soil ph of 4.5 to 9.0,
- A maximum particle size of 0.75 inches or less unless installation damage effects are specifically evaluated using full scale installation damage testing in accordance with ASTM D 5818,
- A soil organic content of 1% or less, and
- An effective design temperature at the site of  $86^{\circ}F(30^{\circ}C)$  or less.

Other specific soil/environmental conditions that could be of concern to consider the site environment to be aggressive are discussed in Elias, et al.  $2009^2$ .

The index properties/test results obtained can be related to long-term performance of the polymer through correlation to longer-term laboratory durability performance tests and long-term experience. Note that long-term durability performance testing in accordance with T925 and the NTPEP work plan to allow direct calculation of  $RF_D$  was not available from the manufacturer, nor evaluated as part of the testing program for this product line.

For polyester (PET) geosynthetics, key durability issues to address include hydrolysis and ultraviolet (UV) oxidative degradation. To assess the potential for these types of degradation, index property tests to assess molecular weight, carboxyl end group content, and ultraviolet (UV) oxidative degradation are conducted. Criteria for test results obtained each of these tests are provided in T925 as well as the AASHTO LRFD Bridge Design Specifications.

The UV degradation tests were conducted on the lightest weight product in the product line (Miragrid 2XT) as recommended in T925. Since UV degradation attacks from the surface of the geosynthetic, the heavier the product, the more resistant it will be to UV degradation. Therefore, UV testing the lightest weight product should produce the most conservative result.

<sup>&</sup>lt;sup>2</sup> Elias, V., Fishman, K.L., Christopher, B.R., and Berg, R.R. 2009, *Corrosion/Degradation of Soil Reinforcements for Mechanically Stabilized Earth Walls and Reinforced Soil Slopes, No.* FHWA-NHI-09-087, Federal Highway Administration, 142pp.

The molecular weight and carboxyl end group content tests are conducted on the base yarn for the product series. Since for a product line the base yarn used must be the same for all products in the line, these tests on the base yarn will be applicable to all products in the product line.

| Manufacturer: TenCate Geosynthetics PRODUCT Line: 2XT to 24XT                                                      |                      |                 |         |  |  |
|--------------------------------------------------------------------------------------------------------------------|----------------------|-----------------|---------|--|--|
| Qualification (every 6 yrs) / QA (every 3 yrs)                                                                     |                      |                 |         |  |  |
| <b>Tests Conducted</b>                                                                                             | <b>Products Test</b> | # of Tests (see |         |  |  |
|                                                                                                                    | Qualification        | QA              | Note 1) |  |  |
| All polymers, resistance to weathering @ 500<br>hrs (ASTM D4355), including before/after<br>tensile strength       | 2XT                  | NA              | 1       |  |  |
| For polyesters, molecular weight determination (ASTM D4603 and GRI-GG7) – <b>on yarn/strip</b>                     | 2XT yarn             | NA              | 1       |  |  |
| For polyesters, carboxyl end group content determination (GRI-GG8) – <b>on yarn/strip</b>                          | 2XT yarn             | NA              | 1       |  |  |
| CEG-MW Testing Coating Removal, if necessary                                                                       | 2XT yarn             | NA              | 1       |  |  |
| Brittleness (WSDOT T926)                                                                                           | NA                   | NA              | 0       |  |  |
| For polyolefins, long-term evaluation via<br>Oxidative degradation (ISO/EN 13438:1999)                             | NA                   | NA              | 0       |  |  |
| For polyesters, long-term evaluation via<br>Hydrolytic degradation (WSDOT T925)                                    | None                 | None            | 0       |  |  |
| For polyolefins, long-term evaluation via<br>Oxidative degradation (WSDOT T925)NANA0                               |                      |                 |         |  |  |
| Note 1: Each test is performed using the numbe<br>for index tensile testing, a test is defined<br>details on this. |                      |                 | •       |  |  |

| Table 6-1. | Independent | durability | testing | required | for NTPEP | qualification. |
|------------|-------------|------------|---------|----------|-----------|----------------|
|------------|-------------|------------|---------|----------|-----------|----------------|

### 6.2 Durability Test Results

A summary of the test results is provided in Table 6-2. This table also includes the criteria to allow the use of a default reduction factor for  $RF_D$  provided in T925 and the AASHTO LRFD Bridge Design Specifications. Detailed durability test results are provided in Appendix G.

| Polymer<br>Type | Property                           | Test Method                                                             | Criteria to Allow Use of<br>Default RF*                                                                                                                                 | Test Result<br>Obtained as Part<br>of NTPEP<br>Program |
|-----------------|------------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| PP and<br>HDPE  | UV Oxidation<br>Resistance         | ASTM D4355                                                              | Min. 70% strength retained<br>after 500 hrs in<br>weatherometer                                                                                                         | NA                                                     |
| PET             | UV Oxidation<br>Resistance         | ASTM D4355                                                              | Min. 50% strength retained<br>after 500 hrs in<br>weatherometer if<br>geosynthetic will be buried<br>within one week, 70% if left<br>exposed for more than one<br>week. | 85% strength<br>retained                               |
| PP and<br>HDPE  | Thermo-<br>Oxidation<br>Resistance | ENV ISO 13438:1999,<br>Method A (PP) or B<br>(HDPE)                     | Min. 50% strength retained<br>after 28 days (PP) or 56 days<br>(HDPE)                                                                                                   | NA                                                     |
| PET             | Hydrolysis<br>Resistance           | Inherent Viscosity<br>Method (ASTM D4603<br>and GRI Test Method<br>GG8) | Min. Number Average<br>Molecular Weight of 25,000                                                                                                                       | 34,855                                                 |
| PET             | Hydrolysis<br>Resistance           | GRI Test Method GG7                                                     | Max. Carboxyl End Group<br>Content of 30                                                                                                                                | 15.2                                                   |

# Table 6-2. NTPEP durability test results for the Miragrid XT geogrid product line and criteria to allow use of a default value for RF<sub>D</sub>.

Note: PP = polypropylene, HDPE = high density polyethylene, PET = polyester

Based on these test results, all products in the product line meet the minimum UV requirement shown in Table 6-2. Regarding hydrolysis resistance, these test results shown in Table 6-2 indicate that this product line has adequate long-term resistance to hydrolysis to justify the use of a default value for RF<sub>D</sub>, meeting the requirements in T925.

Note that while no specific tests, other than installation damage, were conducted to evaluate the durability of the PVC coating, because the hydrolysis resistance characterization was determined based on the base polymer, any potential coating degradation should have very little effect on the long-term durability of the geogrid product and the default value of RF<sub>D</sub> selected. Typically, a default value of 1.3 for RF<sub>D</sub> is selected. See WSDOT Standard Practice T925, or the document entitled "Use and Application of NTPEP Geosynthetic Reinforcement Test Results" (www.NTPEP.org), for guidance on the selection of a default value for RF<sub>D</sub>.

# 7.0 Low Strain Creep Stiffness Data

# 7.1 Low Strain Creep Stiffness Test Program

Creep stiffness testing was conducted in accordance with WSDOT Standard Practice T925 and the NTPEP work plan. The creep stiffness determination was targeted to 2% strain at 1,000 hours.

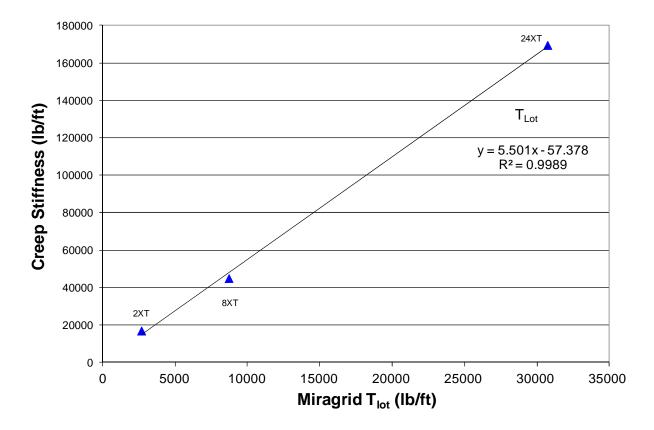
Products selected to represent the XT product line (i.e., 2XT, 8XT, and 24XT) were tested for creep stiffness. Roll specific single rib short-term rapid loading tensile strength tests ( $T_{lot}$ ) were conducted for each product for correlation purposes and to calculate load levels. A total of nine Ramp and Hold (R&H), 1,000 second creep tests, were conducted on each product. Three specimens were R&H tested at each of the following stresses: 5, 10 and 20% of the ultimate tensile strength (UTS). A linear regression based on %UTS and % strain at 0.1 hour was used to normalize strain curves to reduce the variability of the elastic portion of the strain curve. The % UTS required to obtain 2% strain at 1,000 hours was then determined. Three R&H tests and two 1,000 hour conventional creep tests (ASTM D5262, but as modified for low strain in WSDOT Standard Practice T925 and using a single rib specimen) were conducted at this load. All tests were conducted at 68° F (20° C).

# 7.2 Ultimate Tensile Test Results for Creep Stiffness Test Program

The values provided in Table 7-1 represent the baseline, roll specific, ultimate tensile strength used to normalize the load level for the creep stiffness testing. Sample specific geogrid dimensions were used to convert tensile test loads to load per unit width values.

| Product | T <sub>lot</sub> for Single Rib<br>(lb/ft @ % Strain) |
|---------|-------------------------------------------------------|
| 2XT     | 2,678 @ 10.8%                                         |
| 8XT     | 8,714 @ 12.8%                                         |
| 24XT    | 30,714 @ 14.8%                                        |

(Conversion: 1 lb/ft = 0.0146 kN/m)


# 7.3 Creep Stiffness Test Results

Detailed test results are provided in Appendix H. Table 7-2 provides a summary of the creep stiffness values obtained. Note that the creep stiffness values at 1,000 hours and 5% UTS, 10% UTS and 20% UTS represent stiffness values at strains other than 2% strain. See Appendix H for details. Figure 7-1 shows the relationship between the measured tensile strength and the creep stiffness. Considering the strong linear relationship between the creep stiffness and the product tensile strength, interpolation to other products in the product line not tested to determine creep stiffness values for those products is acceptable.

| Miragrid<br>XT Series<br>Style | Average Creep<br>Stiffness @ 1000<br>hours for 5%<br>UTS Ramp &<br>Hold (lb/ft) | Average Creep<br>Stiffness @ 1000<br>hours for 10%<br>UTS Ramp &<br>Hold (lb/ft) | Average Creep<br>Stiffness @ 1000<br>hours for 20%<br>UTS Ramp &<br>Hold (lb/ft) | Average Creep<br>Stiffness for<br>2% strain @<br>1000 hrs<br>(lb/ft) |
|--------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 2XT                            | 22,193                                                                          | 18,272                                                                           | 14,875                                                                           | 16,951                                                               |
| 8XT                            | 46,030                                                                          | 45,708                                                                           | 43,576                                                                           | 44,977                                                               |
| 24XT                           | 297960                                                                          | 185,768                                                                          | 109,909                                                                          | 169,525                                                              |

| Table 7-2. | Summary of | creep stiffness | test results. |
|------------|------------|-----------------|---------------|
|------------|------------|-----------------|---------------|

<sup>(</sup>Conversion: 1 lb/ft = 0.0146 kN/m)





To obtain the minimum likely stiffness value for each product in consideration of the MARV tensile strength, multiply the stiffness value from the plot by the ratio of  $T_{MARV}/T_{lot}$ .  $T_{MARV}$  is the minimum tensile strength, as provided by the manufacturer, for each product in the product line.  $T_{lot}$  is the actual roll specific tensile strength for the sample used in the creep stiffness testing.

# **APPENDICES**

# Appendix A: NTPEP Oversight Committee

# National Transportation Product Evaluation Program (NTPEP)

Chair: Christine Reed, Illinois

Vice Chair: Thomas E. Baker, Washington

AASHTO Staff: Greta Smith, Katheryn Malusky, Evan Rothblatt and Dan Stegmaier

# **NTPEP Committee**

| Member Department    | Member/Delegate           | Phone Number   | Email Address                       | Voting Member   |
|----------------------|---------------------------|----------------|-------------------------------------|-----------------|
| Alabama              |                           |                |                                     |                 |
|                      | Michelle Owens            | (334) 353-6940 | owensm@dot.state.al.us              | Voting Member   |
| Alaska               |                           |                |                                     |                 |
|                      | Michael San Angelo        | (907) 269-6234 | michael.sanangelo@alaska.gov        | Voting Member   |
| Arizona              |                           |                |                                     |                 |
|                      | Paul Sullivan             |                | psullivan@azdot.gov                 | Voting Member   |
| Arkansas             |                           |                |                                     |                 |
|                      | Mark Bradley              | (501) 569-2380 | mark.bradley@arkansashighways.com   | Voting Member   |
|                      | Michael Benson            | (501) 569-2185 | michael.benson@arkansashighways.com | ✓ Voting Member |
|                      | Tony Sullivan             | (501) 569-2661 | tony.sullivan@arkansashighways.com  | Voting Member   |
| California           |                           |                |                                     |                 |
|                      | L. Janie Spencer          |                | New_Products@dot.ca.gov             | Voting Member   |
|                      | Lawerence Orcutt          | (916) 654-8877 | larry_orcutt@dot.ca.gov             | Voting Member   |
| Colorado             |                           |                |                                     |                 |
|                      | David Kotzer              | (303) 398-6566 | david.kotzer@dot.state.co.us        | ✓ Voting Member |
|                      | Jim Zufall                |                | jim.zufall@dot.state.co.us          | Voting Member   |
|                      | K.C. Matthews             | (303) 757-9543 | K.C.Matthews@dot.state.co.us        | Voting Member   |
| Connecticut          |                           |                |                                     |                 |
|                      | Andrew J. Mroczkowksi     | (860) 258-0304 | andrew.mroczkowski@ct.gov           | Voting Member   |
|                      | James M. Sime, P.E.       | (860) 258-0309 | james.sime@ct.gov                   | Voting Member   |
| Delaware             |                           |                |                                     |                 |
|                      | James T. Pappas III, P.E. | (302) 760-2400 | jpappas@mail.dot.state.de.us        | Voting Member   |
| District of Columbia |                           |                |                                     |                 |
|                      | Wasi U. Khan              | (202) 671-2316 | wasi.khan@dc.gov                    | ✓ Voting Member |
|                      | William P. Carr           | (202) 671-1371 | williamp.carr@dc.gov                | Voting Member   |
| Florida              |                           |                |                                     |                 |
|                      | Karen Byram               | (850) 414-4353 | karen.byram@dot.state.fl.us         | ✓ Voting Member |
|                      | Paul Vinik                | (352) 955-6649 | Paul.Vinik@dot.state.fl.us          | Voting Member   |
|                      |                           |                |                                     |                 |

# **NTPEP Committee**

| Member Departmen | t Member/Delegate  | Phone Number   | Email Address                   | Voting Member   |
|------------------|--------------------|----------------|---------------------------------|-----------------|
| Georgia          |                    |                |                                 |                 |
|                  | Brad Young         | (404) 363-7560 | byoung@dot.ga.gov               | Voting Member   |
|                  | Don Wishon         | (404) 363-7632 | dwishon@dot.ga.gov              | Voting Member   |
|                  | Richard Douds      | (404) 362-2545 | Rdouds@dot.ga.gov               | ✓ Voting Member |
| Hawaii           |                    |                |                                 |                 |
|                  | JoAnne Nakamura    |                | joanne.nakamura@hawaii.gov      | Voting Member   |
| Idaho            |                    |                |                                 |                 |
|                  | Bryan Martin       |                | bryan.martin@itd.idaho.gov      | Voting Member   |
| Illinois         |                    |                |                                 |                 |
|                  | David Lippert      |                | david.lippert@illinois.gov      | ✓ Voting Member |
|                  | Matt Mueller       |                | matthew.mueller@illinois.gov    | Voting Member   |
| Indiana          |                    |                |                                 |                 |
|                  | Kenny Anderson     | (317) 610-7251 | kbanderson@indot.in.gov         | Voting Member   |
|                  | Ronald P. Walker   | (317) 610-7251 | rwalker@indot.in.gov            | Voting Member   |
| Iowa             |                    |                |                                 |                 |
|                  | Joseph Putherickal | (515) 239-1259 | Joseph.putherickal@dot.iowa.gov | ✓ Voting Member |
|                  | Kurtis Younkin     | (515) 239-1184 | kurtis.younkin@dot.iowa.gov     | Voting Member   |
| Kansas           |                    |                |                                 |                 |
|                  | David Meggers, PE  | (785) 291-3845 | dmeggers@ksdot.org              | Voting Member   |
|                  | Stacey Lowe        | (785) 296-3899 | curt@ksdot.org                  | Voting Member   |
| Kentucky         |                    |                |                                 |                 |
|                  | Derrick Castle     | (502) 564-3160 | derrick.castle@ky.gov           | ✓ Voting Member |
|                  | Ross Mills         | (502) 564-3160 | ross.mills@ky.gov               | Voting Member   |
|                  | Trevor Booker      |                | trevor.booker@ky.gov            | Voting Member   |
| Louisiana        |                    |                |                                 |                 |
|                  | Chris Abadie       |                | chris.abadie@la.gov             | ✓ Voting Member |
|                  | Jason Davis        | (225) 248-4131 | jason.davis@la.gov              | Voting Member   |
|                  | Richie Charoenpap  |                | Richie.Charoenpap@LA.GOV        | Voting Member   |
| Maine            |                    |                |                                 |                 |
|                  | Doug Gayne         | (207) 624-3268 | doug.gayne@maine.gov            | Voting Member   |
| Maryland         |                    |                |                                 |                 |
|                  | Dan Sajedi         | (443) 572-5162 | dsajedi@sha.state.md.us         | ✓ Voting Member |
|                  | Russell A. Yurek   | (410) 582-5505 | ryurek@sha.state.md.us          | Voting Member   |
| Massachusetts    |                    |                |                                 |                 |
|                  | Clement Fung       | (617) 951-1372 | Clement.Fung@MHD.state.ma.us    | Voting Member   |
|                  | John Grieco        | (617) 951-0596 | John.Grieco@state.ma.us         | ✓ Voting Member |

(updates found at www.ntpep.org)

| Member Departmer | nt Member/Delegate  | Phone Number   | Email Address                       | Voting Member   |
|------------------|---------------------|----------------|-------------------------------------|-----------------|
| Michigan         |                     |                |                                     |                 |
| _                | John Staton, P.E.   | (517) 322-5701 | statonj@michigan.gov                | Voting Member   |
| Minnesota        |                     |                |                                     |                 |
|                  | David Iverson       | (651) 366-5550 | david.iverson@state.mn.us           | Voting Member   |
|                  | James McGraw        | (651) 366-5548 | jim.mcgraw@state.mn.us              | Voting Member   |
| Mississippi      |                     |                |                                     |                 |
|                  | Alan Kegley         | (601) 359-1666 | akegley@mdot.state.ms.us            | Voting Member   |
|                  | Celina Sumrall      | (601) 359-7001 | csumrall@mdot.state.ms.us           | ✓ Voting Member |
|                  | James S. Sullivan   | (601) 359-1454 | jssulivan@mdot.state.ms.us          | Voting Member   |
| Aissouri         |                     |                |                                     |                 |
|                  | Julie Lamberson     | (573) 751-2847 | julie.lamberson@modot.mo.gov        | Voting Member   |
|                  | Todd Bennett        | (573) 751-1045 | todd.bennett@modot.mo.gov           | ✓ Voting Member |
| Montana          |                     |                |                                     |                 |
|                  | Anson Moffett, P.E. | (406) 444-5407 | amoffett@mt.gov                     | Voting Member   |
|                  | Craig Abernathy     | (406) 444-6269 | cabernathy@state.mt.us              | Voting Member   |
|                  | Ross Metcalfe, P.E. | (406) 444-9201 | rmetcalfe@mt.gov                    | Voting Member   |
| Nebraska         |                     |                |                                     |                 |
|                  | Mostafa Jamshidi    | (402) 479-4750 | Moe.Jamshidi@nebraska.gov           | ✓ Voting Member |
| Nevada           |                     |                |                                     |                 |
|                  | Roma Clewell        | (775) 888-7894 | RClewell@dot.state.nv.us            | Voting Member   |
| New Hampshire    |                     |                |                                     |                 |
| -                | Alan D. Rawson      | (603) 271-3151 | arawson@dot.state.nh.us             | Voting Member   |
|                  | William Real        | (603) 271-3151 | wreal@dot.state.nh.us               | ✓ Voting Member |
| New Jersey       |                     |                |                                     |                 |
| ·                | Eileen Sheehy       |                | eileen.sheehy@dot.state.nj.us       | ✓ Voting Member |
|                  | Richard Jaffe       | (609) 530-5463 | richard.jaffe@dot.state.nj.us       | Voting Member   |
| New Mexico       |                     |                |                                     |                 |
|                  | Ernest D. Archuleta | (505) 827-5525 | ernest.archuleta@nmshtd.state.nm.us | ✓ Voting Member |
| New York         |                     |                |                                     |                 |
|                  | Jim Curtis          | (518) 457-4735 | Jcurtis@dot.state.ny.us             | ✓ Voting Member |
|                  | Michael Stelzer     | (518) 457-4595 | mstelzer@dot.state.ny.us            | Voting Member   |
|                  | Patrick Galarza     | (518) 457-4599 | pgalarza@dot.state.ny.us            | Voting Member   |
| North Carolina   |                     |                |                                     |                 |
|                  | Chris Peoples       | (919) 733-3532 | cpeoples@ncdot.gov                  | ✓ Voting Member |
|                  | Jack E. Cowsert     | (919) 733-7088 | jcowsert@ncdot.gov                  | Voting Member   |
|                  | Randy Pace          |                | rpace@ncdot.gov                     | Voting Member   |

# **NTPEP Committee**

(updates found at www.ntpep.org)

#### Member Department Member/Delegate Phone Number Email Address **Voting Member** North Dakota rhorner@nd.us ✓ Voting Member Ron Horner (701) 328-6904 Scott Wutzke swwutzke@nd.gov Voting Member Ohio brad.young2@dot.state.oh.us ✓ Voting Member Brad Young (614) 351-2882 Lloyd M. Welker Jr. (614) 275-1351 Voting Member lloyd.welker@dot.state.oh.us Oklahoma Kenny R. Seward (405) 522-4999 kseward@odot.org ✓ Voting Member Voting Member Reynolds H. Toney (405) 521-2677 rtoney@odot.org Oregon Ivan Silbernagel, PE (503) 986-6213 Voting Member Ivan.p.silbernagel@odot.state.or.us Mike Dunning (503) 986-3059 mike.d.dunning@odot.state.or.us ✓ Voting Member Pennsylvania ✓ Voting Member David H. Kuniega (717) 787-3966 dkuniega@state.pa.us Tim Ramirez (717) 783-6714 tramirez@state.pa.us Voting Member **Puerto Rico** Orlando Diaz-Quirindong (787) 729-1592 oquirindongo@act.dtop.gov.pr ✓ Voting Member Rhode Island ✓ Voting Member Colin A. Franco, P.E. cfranco@dot.ri.gov (401) 222-3030 Voting Member Mark F. Felag, P.E. (401) 222-2524 mfelag@dot.ri.gov South Carolina Merrill Zwanka, P.E. (803) 737-6681 ZwankaME@scdot.org ✓ Voting Member South Dakota David L. Huft dave.huft@state.sd.us Voting Member (605) 773-3292 jason.humphrey@state.sd.us Voting Member Jason Humphrey (605) 773-3704 Joe J. Feller (605) 773-3401 joe.feller@state.sd.us ✓ Voting Member Tennessee Danny Lane (615) 350-4175 danny.lane@tn.gov ✓ Voting Member Heather Hall (615) 350-4150 heather.purdy.hall@tn.gov Voting Member Texas Robert Sarcinella RSARCIN@dot.state.tx.us ✓ Voting Member (512) 506-5933 Scott Koczman (512) 416-2073 skoczman@dot.state.tx.us Voting Member **USDOT - FHWA** Voting Member Michael Rafalowski (202) 366-1571 michael.rafalowski@dot.gov

# **NTPEP Committee**

#### Member Department Member/Delegate Phone Number Email Address **Voting Member** Utah Ahmad Jaber ajaber@utah.gov Voting Member Ken Berg, P.E. (801) 965-4321 kenberg@utah.gov Voting Member Michael Fazio mfazio@utah.gov ✓ Voting Member Vermont William Ahearn ✓ Voting Member (802) 828-2561 bill.ahearn@state.vt.us Virginia C. Wayne Fleming cw.fleming@virginiadot.org Voting Member James R. Swisher (804) 328-3121 james.swisher@virginiadot.org ✓ Voting Member William R. Bailey III (804) 328-3106 bill.bailey@virginiadot.org Voting Member Washington Thomas Baker (360) 709-5401 bakert@wsdot.wa.gov ✓ Voting Member Tony Allen Voting Member (360) 709-5450 allent@wsdot.wa.gov West Virginia Aaron Gillispie aaron.c.gillispie@wv.gov ✓ Voting Member Bruce E. Kenney III, P.E. (304) 558-3044 Bruce.E.Kenney@wv.gov Voting Member Larry.R.Barker@wv.gov Voting Member Larry Barker (304) 558-3160 Wisconsin Peter J. Kemp ✓ Voting Member (608) 246-7953 peter.kemp@dot.wi.gov Wyoming ✓ Voting Member Louis Maillet (307) 777-4075 louis.maillet@dot.state.wy.us

# **NTPEP Committee**

# **Appendix B: Product Geometric and Production Details**

# **B.1** Product Geometric Information

| Machine Direction (MD) Ribs |                   |                 |                   |                 |                   |                     |                   |                 |  |
|-----------------------------|-------------------|-----------------|-------------------|-----------------|-------------------|---------------------|-------------------|-----------------|--|
| Style                       | Wie               | dth (in)        | Spac              | cing (in)       | Apertur           | e Size (in)         | Rib Th            | ickness (in)    |  |
|                             | Typical<br>Values | As<br>Measured* | Typical<br>Values | As<br>Measured* | Typical<br>Values | As<br>Measured<br>* | Typical<br>Values | As<br>Measured* |  |
| 2XT                         | N/A               | 0.095           | N/A               | 1.118           | 0.875             | 0.830               | N/A               | 0.057           |  |
| 3XT                         | N/A               | 0.144           | N/A               | 1.113           | 1.0               | 1.260               | N/A               | 0.060           |  |
| 5XT                         | N/A               | 0.196           | N/A               | 1.127           | 1.2               | 1.245               | N/A               | 0.059           |  |
| 7XT                         | N/A               | 0.223           | N/A               | 1.121           | 1.3               | 1.214               | N/A               | 0.057           |  |
| 8XT                         | N/A               | 0.285           | N/A               | 1.237           | 1.3               | 1.148               | N/A               | 0.057           |  |
| 10XT                        | N/A               | 0.297           | N/A               | 1.096           | 1.3               | 1.315               | N/A               | 0.072           |  |
| 20XT                        | N/A               | 0.373           | N/A               | 1.001           | 1.5               | 5.806               | N/A               | 0.084           |  |
| 22XT                        | N/A               | 0.471           | N/A               | 1.003           | 1.4               | 5.796               | N/A               | 0.101           |  |
| 24XT                        | N/A               | 0.519           | N/A               | 1.006           | 1.4               | 5.740               | N/A               | 0.094           |  |

Table B-1. Typical and measured MD geogrid geometry for the Miragrid XT product line.

(Conversions: 1 in = 25.4 mm)

\*Average of 5 readings obtained during NTPEP testing. Full test results in tables B-5 through B-13.

| Cross-Machine Direction (XD) Ribs |                   |                 |                   |                 |                   |                 |                   |                 |
|-----------------------------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|-------------------|-----------------|
| Style                             | Wie               | dth (in)        | Spac              | cing (in)       | Apertu            | re Size (in)    | Rib Th            | ickness (in)    |
|                                   | Typical<br>Values | As<br>Measured* | Typical<br>Values | As<br>Measured* | Typical<br>Values | As<br>Measured* | Typical<br>Values | As<br>Measured* |
| 2XT                               | N/A               | 0.114           | N/A               | 0.944           | 1.0               | 1.023           | N/A               | 0.061           |
| 3XT                               | N/A               | 0.126           | N/A               | 1.385           | 1.0               | 0.969           | N/A               | 0.061           |
| 5XT                               | N/A               | 0.108           | N/A               | 1.354           | 1.0               | 0.931           | N/A               | 0.053           |
| 7XT                               | N/A               | 0.115           | N/A               | 1.330           | 0.9               | 0.898           | N/A               | 0.062           |
| 8XT                               | N/A               | 0.117           | N/A               | 1.354           | 0.9               | 0.863           | N/A               | 0.058           |
| 10XT                              | N/A               | 0.116           | N/A               | 1.431           | 0.8               | 0.799           | N/A               | 0.062           |
| 20XT                              | N/A               | 0.265           | N/A               | 6.071           | 0.6               | 0.628           | N/A               | 0.059           |
| 22XT                              | N/A               | 0.256           | N/A               | 6.053           | 0.6               | 0.532           | N/A               | 0.073           |
| 24XT                              | N/A               | 0.258           | N/A               | 5.998           | 0.5               | 0.487           | N/A               | 0.067           |

| Table B-2. | Typical and | measured XD | geogrid | geometry f | or the Miragrid | XT product line. |
|------------|-------------|-------------|---------|------------|-----------------|------------------|
|            |             |             |         |            |                 |                  |

(Conversions: 1 in = 25.4 mm)

\*Average of 5 readings obtained during NTPEP testing. Full test results in tables B-5 through B-13.

| Style | Junction Thickness (in) |              |  |  |  |
|-------|-------------------------|--------------|--|--|--|
| Style | Typical Values          | As Measured* |  |  |  |
| 2XT   | Not tested              | 0.058        |  |  |  |
| 3XT   | Not tested              | 0.066        |  |  |  |
| 5XT   | Not tested              | 0.060        |  |  |  |
| 7XT   | Not tested              | 0.065        |  |  |  |
| 8XT   | Not tested              | 0.069        |  |  |  |
| 10XT  | Not tested              | 0.078        |  |  |  |
| 20XT  | Not tested              | 0.101        |  |  |  |
| 22XT  | Not tested              | 0.115        |  |  |  |
| 24XT  | Not tested              | 0.119        |  |  |  |

# Table B-3. Typical and measured geogrid junction thickness for the Miragrid XT product line.

(Conversions: 1 in = 25.4 mm)

\*Average of 5 readings obtained during NTPEP testing. Full test results in tables B-5 through B-13.

| Table B-4. | Typical and me | asured geogrid uni | t weight for the | Miragrid XT | product line. |
|------------|----------------|--------------------|------------------|-------------|---------------|
|            |                |                    |                  |             |               |

| Geogrid Style/Type | Typical Weight<br>(oz/yd <sup>2</sup> ) | Measured Weight*,<br>per ASTM D5261<br>(oz/yd <sup>2</sup> ) |
|--------------------|-----------------------------------------|--------------------------------------------------------------|
| 2XT                | 7.50                                    | 7.21                                                         |
| 3XT                | 8.17                                    | 7.98                                                         |
| 5XT                | 9.00                                    | 8.85                                                         |
| 7XT                | 10.21                                   | 9.09                                                         |
| 8XT                | 11.42                                   | 11.23                                                        |
| 10XT               | 14.31                                   | 13.26                                                        |
| 20XT               | 22.12                                   | 18.45                                                        |
| 22XT               | 30.50                                   | 24.79                                                        |
| 24XT               | 38.02                                   | 30.27                                                        |

(Conversion: 1 oz/  $yd^2 = 33.9 \text{ g/m}^2$ )

\*Average of 5 readings obtained during NTPEP testing. Full test results in tables B-5 through B-13.

#### Table B-5. Geogrid geometric measurements for 2XT

#### TRI Log #: E2280-56-08

| PARAMETER                      | TEST REPL | ICATE NUM | IBER  |       |       | MEAN  | STD.<br>DEV. |
|--------------------------------|-----------|-----------|-------|-------|-------|-------|--------------|
|                                | 1         | 2         | 3     | 4     | 5     |       |              |
| Mass/Unit Area (ASTM D 5261)   |           |           |       |       |       |       |              |
| Specimen Width (in) 9          |           |           |       |       |       |       |              |
| Specimen Length (in) 8.9       |           |           |       |       |       |       |              |
| Mass(g)                        | 12.44     | 12.94     | 12.57 | 12.66 | 12.60 |       |              |
| Mass/unit area (oz/sq.yd)      | 7.09      | 7.38      | 7.17  | 7.22  | 7.18  | 7.21  | 0.11         |
| Mass/unit area (g/sq.meter)    | 240       | 250       | 243   | 245   | 244   | 244   | 4            |
| Aperature Size (Calipers)      |           |           |       |       |       |       |              |
| MD - Aperature Size (in)       | 0.837     | 0.829     | 0.832 | 0.767 | 0.885 | 0.830 | 0.042        |
| MD - Aperature Size (mm)       | 21.3      | 21.1      | 21.1  | 19.5  | 22.5  | 21.1  | 1.1          |
|                                | 4 000     | 4 000     | 4 004 | 4 005 | 4 004 | 4 000 | 0.000        |
| TD - Aperature Size (in)       | 1.028     | 1.020     | 1.021 | 1.025 | 1.021 | 1.023 | 0.003        |
| TD - Aperature Size (mm)       | 26.1      | 25.9      | 25.9  | 26.0  | 25.9  | 26.0  | 0.1          |
| Rib Width (Calipers)           |           |           |       |       |       |       |              |
| MD - Width (in)                | 0.093     | 0.099     | 0.095 | 0.097 | 0.092 | 0.095 | 0.003        |
| MD - Width (mm)                | 2.36      | 2.51      | 2.41  | 2.46  | 2.34  | 2.42  | 0.07         |
| TD - Width (in)                | 0.116     | 0.110     | 0.111 | 0.124 | 0.110 | 0.114 | 0.006        |
| TD - Width (mm)                | 2.95      | 2.79      | 2.82  | 3.15  | 2.79  | 2.90  | 0.15         |
| . ,                            |           |           |       |       |       |       |              |
| Rib Thickness (Calipers)       |           |           |       |       |       |       |              |
| MD - Thickness (in)            | 0.055     | 0.066     | 0.056 | 0.053 | 0.057 | 0.057 | 0.005        |
| MD - Thickness (mm)            | 1.40      | 1.68      | 1.42  | 1.35  | 1.45  | 1.46  | 0.13         |
| TD - Thickness (in)            | 0.063     | 0.068     | 0.052 | 0.065 | 0.055 | 0.061 | 0.007        |
| TD - Thickness (mm)            | 1.60      | 1.73      | 1.32  | 1.65  | 1.40  | 1.54  | 0.17         |
|                                | 1.00      | 1.70      | 1.02  | 1.00  | 1.10  |       | 0.17         |
| Node/Junction Thickness (Calip | pers)     |           |       |       |       |       |              |
| Thickness (in)                 | 0.06      | 0.059     | 0.056 | 0.055 | 0.06  | 0.058 | 0.002        |
| Thickness (mm)                 | 1.52      | 1.50      | 1.42  | 1.40  | 1.52  | 1.47  | 0.06         |
|                                |           |           |       |       |       |       |              |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

#### Table B-6. Geogrid geometric measurements for 3XT

#### TRI Log #: E2280-56-08

| PARAMETER                      | TEST REPL | ICATE NUN | IBER  |       |       | STD<br>MEAN DEV   |
|--------------------------------|-----------|-----------|-------|-------|-------|-------------------|
|                                | 1         | 2         | 3     | 4     | 5     |                   |
| Mass/Unit Area (ASTM D 5261)   |           |           |       |       |       |                   |
| Specimen Width (in) 9.5        |           |           |       |       |       |                   |
| Specimen Length (in) 8.9       |           |           |       |       |       |                   |
| Mass(g)                        | 15.00     | 14.65     | 14.67 | 14.44 | 15.06 |                   |
| Mass/unit area (oz/sq.yd)      | 8.10      | 7.91      | 7.92  | 7.80  | 8.14  | <b>7.98</b> 0.14  |
| Mass/unit area (g/sq.meter)    | 275       | 268       | 269   | 264   | 276   | <b>270</b> 5      |
| Aperature Size (Calipers)      |           |           |       |       |       |                   |
| MD - Aperature Size (in)       | 1.245     | 1.332     | 1.319 | 1.228 | 1.174 | <b>1.260</b> 0.06 |
| MD - Aperature Size (mm)       | 31.6      | 33.8      | 33.5  | 31.2  | 29.8  | <b>32.0</b> 1.7   |
|                                |           |           |       |       |       |                   |
| TD - Aperature Size (in)       | 0.936     | 0.987     | 0.984 | 0.975 | 0.964 | <b>0.969</b> 0.02 |
| TD - Aperature Size (mm)       | 23.8      | 25.1      | 25.0  | 24.8  | 24.5  | <b>24.6</b> 0.5   |
| Rib Width (Calipers)           |           |           |       |       |       |                   |
| MD - Width (in)                | 0.155     | 0.130     | 0.145 | 0.151 | 0.137 | <b>0.144</b> 0.01 |
| MD - Width (mm)                | 3.94      | 3.30      | 3.68  | 3.84  | 3.48  | <b>3.65</b> 0.26  |
| TD - Width (in)                | 0.137     | 0.133     | 0.113 | 0.114 | 0.131 | <b>0.126</b> 0.01 |
| TD - Width (mm)                | 3.48      | 3.38      | 2.87  | 2.90  | 3.33  | <b>3.19</b> 0.29  |
| Rib Thickness (Calipers)       |           |           |       |       |       |                   |
|                                |           |           |       |       |       |                   |
| MD - Thickness (in)            | 0.057     | 0.061     | 0.063 | 0.063 | 0.056 | <b>0.060</b> 0.00 |
| MD - Thickness (mm)            | 1.45      | 1.55      | 1.60  | 1.60  | 1.42  | <b>1.52</b> 0.08  |
| TD - Thickness (in)            | 0.061     | 0.064     | 0.052 | 0.066 | 0.063 | <b>0.061</b> 0.00 |
| TD - Thickness (mm)            | 1.55      | 1.63      | 1.32  | 1.68  | 1.60  | <b>1.55</b> 0.14  |
| Node/Junction Thickness (Calip | ers)      |           |       |       |       |                   |
| Thickness (in)                 | 0.062     | 0.072     | 0.066 | 0.065 | 0.067 | <b>0.066</b> 0.00 |
| Thickness (mm)                 | 1.57      | 1.83      | 1.68  | 1.65  | 1.70  | <b>1.69</b> 0.09  |
|                                |           |           |       |       |       |                   |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

#### Table B-7. Geogrid geometric measurements for 5XT

#### TRI Log #: E2280-56-08

| 1         2         3         4         5           Mass/Unit Area (ASTM D 5261)         1         2         3         4         5           Specimen Length (in)         9.4         Specimen Length (in)         9         Mass(g)         16.15         16.50         16.19         16.46         16.63         8.89         8.98           Mass/unit area (g/sq.meter)         296         302         296         301         304         8.85         0.11           Aperature Size (Calipers)         MD - Aperature Size (in)         1.360         1.197         1.292         1.165         1.213         1.245         0.079           MD - Aperature Size (in)         0.940         0.928         0.929         0.911         0.947         0.931         0.014           TD - Aperature Size (inm)         23.9         23.6         23.6         23.1         24.1         0.931         0.018           MD - Width (in)         0.214         0.198         0.180         0.174         0.196         0.018         0.111           D - Width (in)         0.106         0.108         0.111         0.275         0.055         0.052         0.052         0.055         0.056         0.052         0.055         0.056                                                                                                                                                                                                                                                                                                                                                                       | PARAMETER                      | TEST REPL | ICATE NUN | IBER  |       |       | STD.<br>MEAN DEV.  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|-----------|-------|-------|-------|--------------------|
| Specimen Width (in)       9.4         Specimen Width (in)       9         Mass(g)       16.15       16.50       16.19       16.46       16.63         Mass/unit area (oz/sq.yd)       8.72       8.91       8.74       8.89       8.98         Mass/unit area (g/sq.meter)       296       302       296       301       304       4         Aperature Size (Calipers)         1.292       1.165       1.213       1.245       0.079         MD - Aperature Size (in)       1.360       1.197       1.292       1.165       1.213       1.6       2.0         TD - Aperature Size (in)       0.940       0.928       0.929       0.911       0.947       0.931       0.014         TD - Aperature Size (in)       0.940       0.928       0.223       0.174       0.196       0.18         MD - Width (in)       0.214       0.198       0.180       0.213       0.174       0.47         TD - Width (in)       0.166       0.108       0.190       0.108       0.111       0.106       0.02         TD - Width (in)       0.166       0.108       0.109       0.108       0.111       0.108       0.002       2.75       0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Mass/Unit Area (ASTM D 5261)   | 1         | 2         | 3     | 4     | 5     |                    |
| Specimen Length (in)       9         Mass(g)       16.15       16.50       16.19       16.46       16.63         Mass/unit area (g/sq, yd)       8.72       8.91       8.74       8.89       8.93       304       8.85       0.11         Aperature Size (Calipers)       MD - Aperature Size (Calipers)       1.296       302       296       301       304       1.213       1.245       0.079         MD - Aperature Size (in)       1.360       1.197       1.292       1.165       1.213       1.245       0.079         MD - Aperature Size (in)       0.940       0.928       0.929       0.911       0.947       0.931       0.014         TD - Aperature Size (in)       0.940       0.928       0.329       0.311       0.441       0.33       0.014         Rib Width (Calipers)       MD - Vidth (in)       0.214       0.198       0.180       0.213       0.174       0.196       0.018         MD - Width (in)       0.106       0.108       0.1109       0.108       0.111       0.102       0.022       0.055       0.052       0.051       0.002         TD - Width (in)       0.106       0.108       0.119       0.108       0.111       0.106       0.020       0                                                                                                                                                                                                                                                                                                                                                                                                                           | . ,                            |           |           |       |       |       |                    |
| Mass(g)       16.15       16.50       16.19       16.46       16.63         Mass/unit area (oz/sq.yd)       8.72       8.91       8.74       8.89       8.98         Mass/unit area (oz/sq.yd)       8.72       8.91       8.72       8.91       8.91         Mo - Aperature Size (in)       1.360       1.197       1.292       1.165       1.213       0.079         MD - Aperature Size (in)       0.940       0.928       0.929       0.911       0.947       0.931       0.014         TD - Aperature Size (inm)       2.39       23.6       23.6       23.1       24.1       23.6       0.3         Rib Width (Calipers)       MD - Width (in)       0.214       0.198       0.180       0.174       0.196       0.018         MD - Width (in)       0.106       0.108       0.119       0.108                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                |           |           |       |       |       |                    |
| Mass/unit area (oz/sq.yd)       8.72       8.91       8.74       8.89       8.98       8.98         Mass/unit area (g/sq.meter)       296       302       296       301       304       8.98         Aperature Size (Calipers)       MD - Aperature Size (in)       1.360       1.197       1.292       1.165       1.213       1.245       0.079         MD - Aperature Size (in)       0.940       0.928       0.929       0.911       0.947       0.931       0.014         TD - Aperature Size (in)       0.940       0.928       0.32.6       23.1       24.1       0.33       0.014         TD - Aperature Size (in)       0.940       0.928       0.929       0.911       0.947       0.931       0.014         TD - Aperature Size (mm)       23.9       23.6       23.1       24.1       0.33       0.174         MD - Width (in)       0.214       0.198       0.180       0.213       0.174       0.47       0.47         TD - Width (in)       0.106       0.108       0.109       0.108       0.111       0.108       0.002         TD - Width (in)       0.106       0.108       0.055       0.058       0.062       0.055       0.055       0.055         MD -                                                                                                                                                                                                                                                                                                                                                                                                                                    | • • • •                        | 16.15     | 16.50     | 16.19 | 16.46 | 16.63 |                    |
| Mass/unit area       (g/sq.meter)       296       302       296       301       304       300       4         Aperature Size (Calipers)       MD - Aperature Size (in)       1.360       1.197       1.292       1.165       1.213       1.245       0.079         MD - Aperature Size (in)       34.5       30.4       32.8       29.6       30.8       11.6       2.0         TD - Aperature Size (in)       0.940       0.928       0.929       0.911       0.947       0.931       0.014         TD - Aperature Size (ini)       0.940       0.928       0.32.6       23.1       24.1       0.33       0.014         Rib Width (Calipers)       MD - Width (ini)       0.214       0.198       0.180       0.213       0.174       0.196       0.048         MD - Width (ini)       0.214       0.198       0.108       0.111       0.108       0.47         TD - Width (ini)       0.106       0.108       0.109       0.108       0.111       0.108       0.02         TD - Width (ini)       0.106       0.108       0.109       0.108       0.111       0.108       0.02         MD - Thickness (ini)       0.058       0.063       0.055       0.058       0.062       0.059<                                                                                                                                                                                                                                                                                                                                                                                                                           |                                | 8.72      | 8.91      | 8.74  | 8.89  | 8.98  | <b>8.85</b> 0.11   |
| MD - Aperature Size (in)       1.360       1.197       1.292       1.165       1.213       1.245       0.079         MD - Aperature Size (mm)       34.5       30.4       32.8       29.6       30.8       1.1245       0.079         TD - Aperature Size (in)       0.940       0.928       0.929       0.911       0.947       0.931       0.014         TD - Aperature Size (in)       23.9       23.6       23.6       23.1       24.1       0.33         Rib Width (Calipers)       MD - Width (in)       0.214       0.198       0.180       0.213       0.174       0.196       0.018         MD - Width (in)       0.214       0.198       0.180       0.213       0.174       0.196       0.018         TD - Width (in)       0.106       0.108       0.199       0.108       0.111       0.108       0.002         TD - Width (inm)       2.69       2.74       2.77       2.74       2.82       0.055       0.062         MD - Thickness (in)       0.058       0.063       0.055       0.058       0.062       0.059       0.007         TD - Thickness (mm)       1.47       1.60       1.40       1.47       1.57       0.053       0.077       0.07                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | 296       | 302       | 296   | 301   | 304   | <b>300</b> 4       |
| MD - Aperature Size (mm)       34.5       30.4       32.8       29.6       30.8       31.6       2.0         TD - Aperature Size (in)       0.940       0.928       0.929       0.911       0.947       0.931       0.014         TD - Aperature Size (mm)       23.9       23.6       23.6       23.1       24.1       0.33         Rib Width (Calipers)       MD - Width (in)       0.214       0.198       0.180       0.213       0.174       0.196       0.018         MD - Width (in)       0.214       0.198       0.180       0.213       0.174       0.47       0.47         TD - Width (in)       0.106       0.108       0.109       0.108       0.111       0.108       0.002         TD - Width (im)       0.106       0.108       0.109       0.108       0.111       0.108       0.002         TD - Width (mm)       2.69       2.74       2.77       2.74       2.82       0.05       0.05         MD - Thickness (in)       0.058       0.063       0.055       0.058       0.062       0.059       0.003         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.077         TD - Thickness (mm                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aperature Size (Calipers)      |           |           |       |       |       |                    |
| TD - Aperature Size (in)       0.940       0.928       0.929       0.911       0.947         TD - Aperature Size (mm)       23.9       23.6       23.6       23.1       24.1       23.6       0.33         Rib Width (Calipers)       MD - Width (in)       0.214       0.198       0.180       0.213       0.174       0.196       0.018         MD - Width (in)       0.214       0.198       0.180       0.213       0.174       0.476       0.477         TD - Width (in)       0.106       0.108       0.109       0.108       0.111       0.108       0.002         TD - Width (inm)       2.69       2.74       2.77       2.74       2.82       0.055         Rib Thickness (Calipers)       MD - Thickness (in)       0.058       0.063       0.055       0.058       0.062       0.059       0.003         MD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.007         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.077         TD - Thickness (mm)       1.60       1.32       1.30       1.14       1.42       1.36       0.17         Node/Junction Th                                                                                                                                                                                                                                                                                                                                                                                                                                   | MD - Aperature Size (in)       | 1.360     | 1.197     | 1.292 | 1.165 | 1.213 | <b>1.245</b> 0.079 |
| TD - Aperature Size (mm)       23.9       23.6       23.6       23.1       24.1       23.6       0.3         Rib Width (Calipers)       MD - Width (in)       0.214       0.198       0.180       0.213       0.174       0.196       0.018         MD - Width (in)       0.214       0.198       0.180       0.213       0.174       0.196       0.018         MD - Width (mm)       5.44       5.03       4.57       5.41       4.42       0.477         TD - Width (in)       0.106       0.108       0.109       0.108       0.111       0.108       0.002         TD - Width (mm)       2.69       2.74       2.77       2.74       2.82       0.05       0.05         Rib Thickness (calipers)       MD - Thickness (in)       0.058       0.063       0.055       0.058       0.062       0.059       0.003         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.07         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.17         Node/Junction Thickness (Calipers)       1.60       1.32       1.30       1.14       1.42       1.36       0.17 <td>MD - Aperature Size (mm)</td> <td>34.5</td> <td>30.4</td> <td>32.8</td> <td>29.6</td> <td>30.8</td> <td><b>31.6</b> 2.0</td>                                                                                                                                                                                                                                                                                                        | MD - Aperature Size (mm)       | 34.5      | 30.4      | 32.8  | 29.6  | 30.8  | <b>31.6</b> 2.0    |
| Rib Width (Calipers)           MD - Width (in)         0.214         0.198         0.180         0.213         0.174           MD - Width (im)         5.44         5.03         4.57         5.41         4.42         4.97         0.47           TD - Width (in)         0.106         0.108         0.109         0.108         0.111         0.108         0.002           TD - Width (im)         2.69         2.74         2.77         2.74         2.82         2.75         0.05           Rib Thickness (Calipers)         MD - Thickness (in)         0.058         0.063         0.055         0.058         0.062         0.059         0.003           MD - Thickness (in)         0.063         0.052         0.051         0.045         0.056         0.007         0.07           TD - Thickness (in)         0.063         0.52         0.051         0.045         0.056         0.07         0.17           TD - Thickness (in)         0.061         1.32         1.30         1.14         1.42         1.36         0.17           Node/Junction Thickness (Calipers)         Interview         Interview         Interview         Interview         Interview         Interview         Interview         Interview         Interv                                                                                                                                                                                                                                                                                                                                                    | TD - Aperature Size (in)       | 0.940     | 0.928     | 0.929 | 0.911 | 0.947 | <b>0.931</b> 0.014 |
| MD - Width (in)       0.214       0.198       0.180       0.213       0.174       0.196       0.018         MD - Width (im)       5.44       5.03       4.57       5.41       4.42       0.196       0.47         TD - Width (in)       0.106       0.108       0.109       0.108       0.111       0.108       0.002         TD - Width (mm)       2.69       2.74       2.77       2.74       2.82       0.05         Rib Thickness (Calipers)       0.058       0.063       0.055       0.058       0.062       0.059       0.003         MD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.051       0.056         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.07       0.17         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.07         TD - Thickness (im)       0.063       0.052       0.051       0.045       0.056       0.053       0.07         TD - Thickness (mm)       1.60       1.32       1.30       1.14       1.42       1.36       0.17         Node/Junction Thickness (Calipers)       0.061                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TD - Aperature Size (mm)       | 23.9      | 23.6      | 23.6  | 23.1  | 24.1  | <b>23.6</b> 0.3    |
| MD - Width (mm)       5.44       5.03       4.57       5.41       4.42       4.97       0.47         TD - Width (in)       0.106       0.108       0.109       0.108       0.111       0.108       0.002         TD - Width (mm)       2.69       2.74       2.77       2.74       2.82       2.75       0.05         Rib Thickness (Calipers)       MD - Thickness (in)       0.058       0.063       0.055       0.058       0.062       0.059       0.003         MD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.007         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.007         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.077       0.17         Node/Junction Thickness (Calipers)       Interness (in)       0.061       0.058       0.059       0.063       0.060       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Rib Width (Calipers)           |           |           |       |       |       |                    |
| TD - Width (in)       0.106       0.108       0.109       0.108       0.111         TD - Width (mm)       2.69       2.74       2.77       2.74       2.82       2.75       0.05         Rib Thickness (Calipers)       MD - Thickness (in)       0.058       0.063       0.055       0.058       0.062       0.059       0.003         MD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.07         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.07         TD - Thickness (in)       0.063       0.32       0.051       0.045       0.056       0.07         TD - Thickness (ini)       0.063       0.052       0.051       0.045       0.056       0.17         Node/Junction Thickness (Calipers)       1.60       1.32       1.30       1.14       1.42       1.36       0.17         Thickness (in)       0.061       0.058       0.059       0.063       0.060       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MD - Width (in)                | 0.214     | 0.198     | 0.180 | 0.213 | 0.174 | <b>0.196</b> 0.018 |
| TD - Width (mm)       2.69       2.74       2.77       2.74       2.82       2.75       0.05         Rib Thickness (Calipers)       MD - Thickness (in)       0.058       0.063       0.055       0.058       0.062       0.059       0.003         MD - Thickness (in)       1.47       1.60       1.40       1.47       1.57       1.50       0.08         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.007         TD - Thickness (in)       1.60       1.32       1.30       1.14       1.42       1.36       0.17         Node/Junction Thickness (Calipers)       Indextract the state of the state o | MD - Width (mm)                | 5.44      | 5.03      | 4.57  | 5.41  | 4.42  | <b>4.97</b> 0.47   |
| Rib Thickness (Calipers)         MD - Thickness (in)       0.058       0.063       0.055       0.058       0.062         MD - Thickness (mm)       1.47       1.60       1.40       1.47       1.57       0.053       0.003         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.007         TD - Thickness (mm)       1.60       1.32       1.30       1.14       1.42       1.36       0.17         Node/Junction Thickness (Calipers)         Thickness (in)       0.061       0.058       0.059       0.063       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TD - Width (in)                | 0.106     | 0.108     | 0.109 | 0.108 | 0.111 | <b>0.108</b> 0.002 |
| MD - Thickness (in)       0.058       0.063       0.055       0.058       0.062         MD - Thickness (mm)       1.47       1.60       1.40       1.47       1.57       0.053       0.08         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.007         TD - Thickness (in)       1.60       1.32       1.30       1.14       1.42       0.053       0.007         Node/Junction Thickness (Calipers)       0.061       0.058       0.059       0.063       0.060       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TD - Width (mm)                | 2.69      | 2.74      | 2.77  | 2.74  | 2.82  | <b>2.75</b> 0.05   |
| MD - Thickness (mm)       1.47       1.60       1.40       1.47       1.57       1.50       0.08         TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056       0.053       0.007         TD - Thickness (im)       1.60       1.32       1.30       1.14       1.42       1.36       0.17         Node/Junction Thickness (Calipers)         Thickness (in)       0.061       0.058       0.059       0.063       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Rib Thickness (Calipers)       |           |           |       |       |       |                    |
| TD - Thickness (in)       0.063       0.052       0.051       0.045       0.056         TD - Thickness (mm)       1.60       1.32       1.30       1.14       1.42       0.17         Node/Junction Thickness (Calipers)         Thickness (in)       0.061       0.058       0.059       0.063       0.060       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MD - Thickness (in)            | 0.058     | 0.063     | 0.055 | 0.058 | 0.062 | <b>0.059</b> 0.003 |
| TD - Thickness (mm)       1.60       1.32       1.30       1.14       1.42       1.36       0.17         Node/Junction Thickness (Calipers)         Thickness (in)       0.061       0.058       0.059       0.063       0.060       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MD - Thickness (mm)            | 1.47      | 1.60      | 1.40  | 1.47  | 1.57  | <b>1.50</b> 0.08   |
| Node/Junction Thickness (Calipers)           Thickness (in)         0.061         0.058         0.059         0.063         0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TD - Thickness (in)            | 0.063     | 0.052     | 0.051 | 0.045 | 0.056 | <b>0.053</b> 0.007 |
| Thickness (in)         0.061         0.058         0.059         0.063         0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TD - Thickness (mm)            | 1.60      | 1.32      | 1.30  | 1.14  | 1.42  | <b>1.36</b> 0.17   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Node/Junction Thickness (Calip | ers)      |           |       |       |       |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Thickness (in)                 | 0.061     | 0.061     | 0.058 | 0.059 | 0.063 | <b>0.060</b> 0.002 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                |           |           |       |       |       |                    |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

#### Table B-8. Geogrid geometric measurements for 7XT

#### TRI Log #: E2280-56-08

| PARAMETER                                                | TEST REPL     | ICATE NUN   | IBER          |               |               | STD<br>MEAN DEV   |
|----------------------------------------------------------|---------------|-------------|---------------|---------------|---------------|-------------------|
|                                                          | 1             | 2           | 3             | 4             | 5             |                   |
| Mass/Unit Area (ASTM D 5261)                             |               |             |               |               |               |                   |
| Specimen Width (in) 9.6                                  |               |             |               |               |               |                   |
| Specimen Length (in) 8.9                                 | 17.00         | 10.05       | 17.00         | 40.00         | 10.00         |                   |
| Mass(g)                                                  | 17.06<br>9.12 | 16.95       | 17.22<br>9.21 | 16.83<br>9.00 | 16.92<br>9.04 | <b>9.09</b> 0.08  |
| Mass/unit area (oz/sq.yd)<br>Mass/unit area (g/sq.meter) | 9.12<br>309   | 9.06<br>307 | 9.21<br>312   | 9.00<br>305   | 9.04<br>307   | <b>308</b> 3      |
|                                                          | 000           | 001         | 012           | 000           | 001           |                   |
| Aperature Size (Calipers)                                |               |             |               |               |               |                   |
| MD - Aperature Size (in)                                 | 1.190         | 1.138       | 1.245         | 1.281         | 1.218         | <b>1.214</b> 0.05 |
| MD - Aperature Size (mm)                                 | 30.2          | 28.9        | 31.6          | 32.5          | 30.9          | <b>30.8</b> 1.4   |
|                                                          |               |             |               |               |               |                   |
| TD - Aperature Size (in)                                 | 0.894         | 0.875       | 0.889         | 0.912         | 0.922         | <b>0.898</b> 0.01 |
| TD - Aperature Size (mm)                                 | 22.7          | 22.2        | 22.6          | 23.2          | 23.4          | <b>22.8</b> 0.5   |
| Rib Width (Calipers)                                     |               |             |               |               |               |                   |
| MD - Width (in)                                          | 0.224         | 0.229       | 0.219         | 0.218         | 0.223         | <b>0.223</b> 0.00 |
| MD - Width (mm)                                          | 5.69          | 5.82        | 5.56          | 5.54          | 5.66          | <b>5.65</b> 0.11  |
| TD - Width (in)                                          | 0.121         | 0.115       | 0.108         | 0.117         | 0.116         | <b>0.115</b> 0.00 |
| TD - Width (mm)                                          | 3.07          | 2.92        | 2.74          | 2.97          | 2.95          | <b>2.93</b> 0.12  |
| Rib Thickness (Calipers)                                 |               |             |               |               |               |                   |
|                                                          |               |             |               |               |               |                   |
| MD - Thickness (in)                                      | 0.055         | 0.054       | 0.062         | 0.057         | 0.056         | <b>0.057</b> 0.00 |
| MD - Thickness (mm)                                      | 1.40          | 1.37        | 1.57          | 1.45          | 1.42          | <b>1.44</b> 0.08  |
| TD - Thickness (in)                                      | 0.064         | 0.064       | 0.065         | 0.058         | 0.059         | <b>0.062</b> 0.00 |
| TD - Thickness (mm)                                      | 1.63          | 1.63        | 1.65          | 1.47          | 1.50          | <b>1.57</b> 0.08  |
| Node/Junction Thickness (Calip                           | ers)          |             |               |               |               |                   |
| Thickness (in)                                           | 0.061         | 0.059       | 0.070         | 0.063         | 0.074         | <b>0.065</b> 0.00 |
| Thickness (mm)                                           | 1.55          | 1.50        | 1.78          | 1.60          | 1.88          | <b>1.66</b> 0.16  |
|                                                          |               |             |               |               |               |                   |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

#### Table B-9. Geogrid geometric measurements for 8XT

#### TRI Log #: E2280-56-08

| 1         2         3         4         5           Mass/Unit Area (ASTM D 5261)         1         2         3         4         5           Specimen Width (in)         9.6         Specimen Length (in)         8.85         11.25         21.05         20.58           Mass/unit area (oz/sq.yd)         11.05         11.45         11.26         11.32         11.06           Mass/unit area (g/sq.meter)         375         388         382         384         375           MD - Aperature Size (Calipers)         1.210         1.271         1.173         1.239         1.292         1.237         0.047           MD - Aperature Size (in)         1.210         1.271         1.173         1.239         1.292         0.047           MD - Aperature Size (in)         0.855         0.866         0.858         0.864         0.870         0.285           D - Aperature Size (in)         0.127         22.0         21.8         21.9         22.1         0.285         0.006           MD - Width (calipers)         MD         0.275         0.292         0.287         0.289         0.284         0.225         0.007           TD - Width (in)         0.136         0.104         0.117         0.110                                                                                                                                                                                                                                                                                                                                                          | PARAMETER                      | TEST REPL | ICATE NUN | IBER  |       |       | STD<br>MEAN DEV   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-----------|-----------|-------|-------|-------|-------------------|
| Specimen Width (in)       9.6         Specimen Length (in)       8.85         Mass(q)       20.55       21.29       20.95       21.05       20.58         Mass/unit area (oz/sq.yd)       11.05       11.45       11.26       11.32       11.06         Mass/unit area (g/sq.meter)       375       388       382       384       375       11.23       0.17         Aperature Size (Calipers)         1.210       1.271       1.173       1.239       1.292       1.237       0.047         MD - Aperature Size (in)       1.210       1.271       1.173       1.239       1.292       1.44       1.2         TD - Aperature Size (in)       0.855       0.866       0.858       0.864       0.870       0.286       0.286       0.281       0.22         Rib Width (Calipers)          7.29       7.34       7.21       7.25       0.17         TD - Width (in)       0.136       0.104       0.117       0.110       0.120       0.117       0.012       0.117       0.012       0.31         Rib Thickness (in)       0.063       0.054       0.058       0.058       0.053       0.006       0.057       0.004                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mass/Unit Area (ASTM D 5261)   | 1         | 2         | 3     | 4     | 5     |                   |
| Specimen Length (in)       8.85         Mass(g)       20.55       21.29       20.95       21.05       20.58         Mass/unit area (g/sq,meter)       375       388       382       384       375         Aperature Size (Calipers)       11.05       11.45       11.23       11.06       11.23       0.17         MD - Aperature Size (In)       1.210       1.271       1.173       1.239       1.292       1.237       0.047         MD - Aperature Size (In)       0.855       0.866       0.858       0.864       0.870       0.663       0.006         TD - Aperature Size (In)       0.855       0.866       0.858       0.864       0.870       0.285       0.007         TD - Aperature Size (Inm)       21.7       22.0       21.8       21.9       22.1       0.285       0.007         Rib Width (Calipers)       MD - Vidth (Inm)       0.275       0.292       0.287       0.289       0.284       0.285       0.017         TD - Width (In)       0.136       0.104       0.117       0.110       0.120       0.117       0.012         TD - Width (Inm)       3.45       2.64       2.97       2.79       3.05       0.051       0.004         D - Thi                                                                                                                                                                                                                                                                                                                                                                                                                        |                                |           |           |       |       |       |                   |
| Mass(g)       20.55       21.29       20.95       21.05       20.58         Mass/unit area (oz/sq.yd)       11.05       11.45       11.26       11.32       11.06         Mass/unit area (g/sq.meter)       375       388       382       384       375       381       6         Aperature Size (Calipers)       MD - Aperature Size (in)       1.210       1.271       1.173       1.239       1.292       1.237       0.047         MD - Aperature Size (in)       0.37       32.3       29.8       31.5       32.8       31.4       1.2         TD - Aperature Size (in)       0.855       0.866       0.858       0.864       0.870       0.863       0.006         TD - Aperature Size (inm)       21.7       22.0       21.8       21.9       22.1       2.285       0.007         MD - Width (in)       0.275       0.292       0.287       0.289       0.284       0.017       0.17         TD - Width (in)       0.136       0.104       0.117       0.110       0.120       0.117       0.012       0.31         TD - Width (inm)       3.45       2.64       2.97       2.79       3.05       0.31       0.012         Rib Thickness (in)       0.063       <                                                                                                                                                                                                                                                                                                                                                                                                                     |                                |           |           |       |       |       |                   |
| Mass/unit area (oz/sq.y d)<br>Mass/unit area (oz/sq.y d)<br>Mass/unit area (g/sq.meter)       11.05       11.45       11.26       11.32       11.06         Mass/unit area (g/sq.meter)       375       388       382       384       375       11.06         Aperature Size (Calipers)       1       1.210       1.271       1.173       1.239       1.292       1.237       0.047         MD - Aperature Size (in)       0.855       0.866       0.858       0.864       0.870       0.863       0.006         TD - Aperature Size (in)       0.855       0.866       0.858       0.864       0.870       0.2863       0.206         TD - Aperature Size (inm)       21.7       22.0       21.8       21.9       22.1       0.21       0.25         Rib Width (Calipers)       MD - Width (inm)       0.275       0.292       0.287       0.289       0.284       0.225       0.07         TD - Width (in)       0.136       0.104       0.117       0.110       0.120       0.117       0.117       0.110       0.120       0.117       0.012         TD - Width (inm)       3.45       2.64       2.97       2.79       3.05       0.051       0.004         MD - Thickness (in)       0.063       0.054                                                                                                                                                                                                                                                                                                                                                                                  |                                | 20.55     | 21.20     | 20.05 | 21.05 | 20.59 |                   |
| Mass/unit area       (g/sq.meter)       375       388       382       384       375       381       6         Aperature Size (Calipers)       MD - Aperature Size ((n)       1.210       1.271       1.173       1.239       1.292       1.237       0.047         MD - Aperature Size ((n)       0.855       0.866       0.858       0.864       0.870       0.863       0.006         TD - Aperature Size (nm)       21.7       22.0       21.8       21.9       22.1       0.2         Rib Width (Calipers)       MD - Width (nn)       0.275       0.292       0.287       0.289       0.284       0.225       0.007         MD - Width (nm)       0.136       0.104       0.117       0.110       0.120       0.117       0.012         TD - Width (nm)       0.136       0.054       0.058       0.058       0.053       0.017         MD - Width (nm)       0.136       0.104       0.117       0.110       0.120       0.117       0.012         TD - Width (nm)       0.136       0.054       0.058       0.053       0.051       0.004         MD - Thickness (in)       0.063       0.054       0.058       0.053       0.051       0.106         TD - Thickness (i                                                                                                                                                                                                                                                                                                                                                                                                                |                                |           |           |       |       |       | <b>11 23</b> 0 17 |
| MD - Aperature Size (in)       1.210       1.271       1.173       1.239       1.292         MD - Aperature Size (mm)       30.7       32.3       29.8       31.5       32.8       31.4       1.2         TD - Aperature Size (in)       0.855       0.866       0.858       0.864       0.870       21.9       0.2         Rib Width (Calipers)       21.7       22.0       21.8       21.9       22.1       21.9       0.2         Rib Width (in)       0.275       0.292       0.287       0.289       0.284       0.007       0.17         TD - Width (in)       0.136       0.104       0.117       0.110       0.120       0.117       0.012         TD - Width (ini)       0.136       0.104       0.117       0.110       0.120       0.117       0.012         TD - Width (ini)       0.136       0.054       0.058       0.053       0.051       0.006       0.053       0.31         Rib Thickness (in)       0.063       0.054       0.058       0.053       0.051       0.060       0.067       0.060       0.058       0.053       0.16         MD - Thickness (in)       1.35       1.30       1.52       1.70       1.52       0.058       0.16                                                                                                                                                                                                                                                                                                                                                                                                                               | · · · · ·                      |           |           |       |       |       |                   |
| MD - Aperature Size (mm)       30.7       32.3       29.8       31.5       32.8       31.4       1.2         TD - Aperature Size (in)       0.855       0.866       0.858       0.864       0.870       0.863       0.006         TD - Aperature Size (mm)       21.7       22.0       21.8       21.9       22.1       0.2         Rib Width (Calipers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Aperature Size (Calipers)      |           |           |       |       |       |                   |
| TD - Aperature Size (in)       0.855       0.866       0.858       0.864       0.870         TD - Aperature Size (mm)       21.7       22.0       21.8       21.9       22.1       0.863       0.20         Rib Width (Calipers)       MD - Width (in)       0.275       0.292       0.287       0.289       0.284       0.285       0.007         MD - Width (in)       0.136       0.104       0.117       0.110       0.120       0.117       0.012         TD - Width (in)       0.136       0.104       0.117       0.110       0.120       0.117       0.012         TD - Width (mm)       3.45       2.64       2.97       2.79       3.05       0.31         Rib Thickness (Calipers)       MD - Thickness (in)       0.063       0.054       0.058       0.053       0.057       0.004         MD - Thickness (in)       1.60       1.37       1.47       1.47       1.35       0.106         TD - Thickness (in)       1.35       1.30       1.52       1.70       1.52       0.068       0.069       0.060         TD - Thickness (mm)       1.35       1.30       1.52       1.70       1.52       0.16       0.16         Node/Junction Thickness (Calipers) <t< td=""><td>MD - Aperature Size (in)</td><td>1.210</td><td>1.271</td><td>1.173</td><td>1.239</td><td>1.292</td><td><b>1.237</b> 0.04</td></t<>                                                                                                                                                                                                                                                                    | MD - Aperature Size (in)       | 1.210     | 1.271     | 1.173 | 1.239 | 1.292 | <b>1.237</b> 0.04 |
| TD - Aperature Size (mm)       21.7       22.0       21.8       21.9       22.1       21.9       0.2         Rib Width (Calipers)       MD - Width (in)       0.275       0.292       0.287       0.289       0.284       0.285       0.007         MD - Width (in)       0.175       0.99       7.42       7.29       7.34       7.21       7.25       0.17         TD - Width (in)       0.136       0.104       0.117       0.110       0.120       0.117       0.012         TD - Width (inm)       0.136       0.044       2.97       2.79       3.05       0.31         Rib Thickness (Calipers)       MD - Thickness (in)       0.063       0.054       0.058       0.053       0.057       0.004         MD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.058       0.16         TD - Thickness (in)       1.35       1.30       1.52       1.70       1.52       0.16         NDe-Thickness (ini)       0.053       0.051       0.060       0.067       0.060       0.058       0.16         TD - Thickness (ini)       0.072       0.068       0.069       0.069       0.002       0.02 <td>MD - Aperature Size (mm)</td> <td>30.7</td> <td>32.3</td> <td>29.8</td> <td>31.5</td> <td>32.8</td> <td><b>31.4</b> 1.2</td>                                                                                                                                                                                                                                                                                                                     | MD - Aperature Size (mm)       | 30.7      | 32.3      | 29.8  | 31.5  | 32.8  | <b>31.4</b> 1.2   |
| Rib Width (Calipers)         MD - Width (in)       0.275       0.292       0.287       0.289       0.284         MD - Width (mm)       6.99       7.42       7.29       7.34       7.21       0.17         TD - Width (in)       0.136       0.104       0.117       0.110       0.120       0.117       0.012         TD - Width (mm)       3.45       2.64       2.97       2.79       3.05       0.31         Rib Thickness (Calipers)       MD - Thickness (in)       0.063       0.054       0.058       0.058       0.053       0.007         MD - Thickness (in)       0.063       0.051       0.060       0.067       0.060       0.058       0.058       0.053         TD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.058       0.16         TD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.058       0.16         MD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.058       0.066       0.16         TD - Thickness (in)       0.072       0.068       0.069       0.069       0.069       0.069       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                              | TD - Aperature Size (in)       | 0.855     | 0.866     | 0.858 | 0.864 | 0.870 | <b>0.863</b> 0.00 |
| MD - Width (in)       0.275       0.292       0.287       0.289       0.284       0.285       0.007         MD - Width (mm)       6.99       7.42       7.29       7.34       7.21       7.25       0.17         TD - Width (in)       0.136       0.104       0.117       0.110       0.120       0.117       0.012         TD - Width (mm)       3.45       2.64       2.97       2.79       3.05       0.051       0.012         Rib Thickness (Calipers)       0.063       0.054       0.058       0.058       0.053       0.057       0.004         MD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.058       0.058       0.058       0.058       0.106         TD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.066       0.066       0.066       0.16         Node/Junction Thickness (Calipers)       1.35       1.30       1.52       1.70       1.52       0.069       0.069       0.069       0.069       0.069       0.069       0.069       0.069       0.069       0.069       0.069       0.069       0.069       0.069       0.069       0.069       0.069       0.069 <td< td=""><td>TD - Aperature Size (mm)</td><td>21.7</td><td>22.0</td><td>21.8</td><td>21.9</td><td>22.1</td><td><b>21.9</b> 0.2</td></td<>                                                                                                                                                                                                                                                                             | TD - Aperature Size (mm)       | 21.7      | 22.0      | 21.8  | 21.9  | 22.1  | <b>21.9</b> 0.2   |
| MD - Width (mm)       6.99       7.42       7.29       7.34       7.21       7.25       0.17         TD - Width (in)       0.136       0.104       0.117       0.110       0.120       0.117       0.012         TD - Width (mm)       3.45       2.64       2.97       2.79       3.05       0.31         Rib Thickness (Calipers)       MD - Thickness (in)       0.063       0.054       0.058       0.058       0.053       0.057       0.004         MD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.058       0.058       0.053       0.10         TD - Thickness (in)       1.35       1.30       1.52       1.70       1.52       0.106         TD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.166       0.166         Node/Junction Thickness (Calipers)       1.35       1.30       1.52       1.70       1.52       0.069       0.069       0.069       0.069       0.069       0.069       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rib Width (Calipers)           |           |           |       |       |       |                   |
| TD - Width (in)       0.136       0.104       0.117       0.110       0.120         TD - Width (mm)       3.45       2.64       2.97       2.79       3.05       0.117       0.012         Rib Thickness (Calipers)       MD - Thickness (in)       0.063       0.054       0.058       0.058       0.053       0.057       0.004         MD - Thickness (in)       0.063       0.054       0.058       0.058       0.053       0.0057       0.004         TD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.058       0.058       0.058         TD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.061       1.45       0.16         TD - Thickness (ini)       0.053       0.051       0.060       0.067       0.060       0.061       1.48       0.16         Node/Junction Thickness (Calipers)       Image: Calipers (Calipers)       Image: Calipers (Calipers)       Image: Calipers (Calipers)       0.069       0.066       0.069       0.069       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MD - Width (in)                | 0.275     | 0.292     | 0.287 | 0.289 | 0.284 | <b>0.285</b> 0.00 |
| TD - Width (mm)       3.45       2.64       2.97       2.79       3.05       2.98       0.31         Rib Thickness (Calipers)       MD - Thickness (in)       0.063       0.054       0.058       0.058       0.053       0.004       0.057       0.004         MD - Thickness (im)       1.60       1.37       1.47       1.47       1.35       0.058       0.060         TD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.058       0.058       0.006         TD - Thickness (in)       1.35       1.30       1.52       1.70       1.52       0.066       0.16         Node/Junction Thickness (Calipers)       Index of the set of | MD - Width (mm)                | 6.99      | 7.42      | 7.29  | 7.34  | 7.21  | <b>7.25</b> 0.17  |
| Rib Thickness (Calipers)         MD - Thickness (in)       0.063       0.054       0.058       0.058       0.053         MD - Thickness (im)       1.60       1.37       1.47       1.35       0.057       0.004         TD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.058       0.058       0.006         TD - Thickness (in)       1.35       1.30       1.52       1.70       1.52       0.006         Node/Junction Thickness (Calipers)       Index       0.068       0.069       0.066       0.069       0.069       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TD - Width (in)                | 0.136     | 0.104     | 0.117 | 0.110 | 0.120 | <b>0.117</b> 0.01 |
| MD - Thickness (in)       0.063       0.054       0.058       0.058       0.053         MD - Thickness (mm)       1.60       1.37       1.47       1.47       1.35       0.007       0.004         TD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.058       0.006         TD - Thickness (in)       1.35       1.30       1.52       1.70       1.52       0.006         Node/Junction Thickness (Calipers)         Thickness (in)       0.072       0.068       0.069       0.069       0.069       0.069       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | TD - Width (mm)                | 3.45      | 2.64      | 2.97  | 2.79  | 3.05  | <b>2.98</b> 0.31  |
| MD - Thickness (mm)       1.60       1.37       1.47       1.35       1.45       0.10         TD - Thickness (in)       0.053       0.051       0.060       0.067       0.060       0.058       0.006         TD - Thickness (in)       1.35       1.30       1.52       1.70       1.52       0.10         Node/Junction Thickness (Calipers)         Thickness (in)       0.072       0.068       0.069       0.069       0.069       0.069                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Rib Thickness (Calipers)       |           |           |       |       |       |                   |
| TD - Thickness (in)       0.053       0.051       0.060       0.067       0.060         TD - Thickness (mm)       1.35       1.30       1.52       1.70       1.52       0.066         Node/Junction Thickness (Calipers)         Thickness (in)       0.072       0.068       0.069       0.066       0.069       0.069       0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MD - Thickness (in)            | 0.063     | 0.054     | 0.058 | 0.058 | 0.053 | <b>0.057</b> 0.00 |
| TD - Thickness (mm)       1.35       1.30       1.52       1.70       1.52       1.48       0.16         Node/Junction Thickness (Calipers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | MD - Thickness (mm)            | 1.60      | 1.37      | 1.47  | 1.47  | 1.35  | <b>1.45</b> 0.10  |
| TD - Thickness (mm)       1.35       1.30       1.52       1.70       1.52       1.48       0.16         Node/Junction Thickness (Calipers)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TD - Thickness (in)            | 0.053     | 0.051     | 0.060 | 0.067 | 0.060 | <b>0.058</b> 0.00 |
| Thickness (in)         0.072         0.068         0.069         0.069         0.002                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TD - Thickness (mm)            | 1.35      | 1.30      | 1.52  | 1.70  | 1.52  | <b>1.48</b> 0.16  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Node/Junction Thickness (Calip | ers)      |           |       |       |       |                   |
| Thickness (mm)         1.83         1.73         1.75         1.68         1.75         0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Thickness (in)                 | 0.072     | 0.068     | 0.069 | 0.066 | 0.069 | <b>0.069</b> 0.00 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Thickness (mm)                 | 1.83      | 1.73      | 1.75  | 1.68  | 1.75  | <b>1.75</b> 0.06  |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

#### Table B-10. Geogrid geometric measurements for 10XT

#### TRI Log #: E2280-56-08

|                                     |       |           |       |       |       |       | STD.  |
|-------------------------------------|-------|-----------|-------|-------|-------|-------|-------|
| PARAMETER                           | -     | ICATE NUN |       |       |       | MEAN  | DEV.  |
| Mass/Unit Area (ASTM D 5261)        | 1     | 2         | 3     | 4     | 5     |       |       |
| Specimen Width (in) 9.5             |       |           |       |       |       |       |       |
| Specimen Length (in) 8.8<br>Mass(g) | 24.44 | 24.24     | 24.30 | 24.17 | 24.22 |       |       |
| Mass/unit area (oz/sq.yd)           | 13.35 | 13.24     | 13.28 | 13.21 | 13.23 | 13.26 | 0.06  |
| Mass/unit area (g/sq.meter)         | 453   | 449       | 450   | 448   | 449   | 450   | 2     |
| Aperature Size (Calipers)           |       |           |       |       |       |       |       |
| MD - Aperature Size (in)            | 1.310 | 1.311     | 1.310 | 1.332 | 1.310 | 1.315 | 0.010 |
| MD - Aperature Size (mm)            | 33.3  | 33.3      | 33.3  | 33.8  | 33.3  | 33.4  | 0.2   |
| TD - Aperature Size (in)            | 0.786 | 0.823     | 0.801 | 0.798 | 0.785 | 0.799 | 0.015 |
| TD - Aperature Size (mm)            | 20.0  | 20.9      | 20.3  | 20.3  | 19.9  | 20.3  | 0.4   |
| Rib Width (Calipers)                |       |           |       |       |       |       |       |
| MD - Width (in)                     | 0.296 | 0.307     | 0.296 | 0.301 | 0.285 | 0.297 | 0.008 |
| MD - Width (mm)                     | 7.52  | 7.80      | 7.52  | 7.65  | 7.24  | 7.54  | 0.21  |
| TD - Width (in)                     | 0.115 | 0.117     | 0.107 | 0.113 | 0.128 | 0.116 | 0.008 |
| TD - Width (mm)                     | 2.92  | 2.97      | 2.72  | 2.87  | 3.25  | 2.95  | 0.20  |
| Rib Thickness (Calipers)            |       |           |       |       |       |       |       |
| MD - Thickness (in)                 | 0.075 | 0.071     | 0.073 | 0.073 | 0.067 | 0.072 | 0.003 |
| MD - Thickness (mm)                 | 1.91  | 1.80      | 1.85  | 1.85  | 1.70  | 1.82  | 0.08  |
| TD - Thickness (in)                 | 0.063 | 0.054     | 0.067 | 0.063 | 0.063 | 0.062 | 0.005 |
| TD - Thickness (mm)                 | 1.60  | 1.37      | 1.70  | 1.60  | 1.60  | 1.57  | 0.12  |
| Node/Junction Thickness (Calip      | ers)  |           |       |       |       |       |       |
| Thickness (in)                      | 0.075 | 0.077     | 0.077 | 0.086 | 0.077 | 0.078 | 0.004 |
| Thickness (mm)                      | 1.91  | 1.96      | 1.96  | 2.18  | 1.96  | 1.99  | 0.11  |
|                                     |       |           |       |       |       |       | -     |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

#### Table B-11. Geogrid geometric measurements for 20XT

#### TRI Log #: E2280-56-08

| PARAMETER                      | TEST REPL | ICATE NUN | IBER  |       |       | MEAN  | STD.<br>DEV. |
|--------------------------------|-----------|-----------|-------|-------|-------|-------|--------------|
|                                | 1         | 2         | 3     | 4     | 5     |       |              |
| Mass/Unit Area (ASTM D 5261)   |           |           |       |       |       |       |              |
| Specimen Width (in) 12.2       |           |           |       |       |       |       |              |
| Specimen Length (in) 8.9       |           |           |       |       |       |       |              |
| Mass(g)                        | 43.60     | 44.17     | 44.44 | 43.67 | 43.38 |       | -            |
| Mass/unit area (oz/sq.yd)      | 18.34     | 18.58     | 18.69 | 18.37 | 18.25 | 18.45 | 0.18         |
| Mass/unit area (g/sq.meter)    | 622       | 630       | 634   | 623   | 619   | 625   | 6            |
| Aperature Size (Calipers)      |           |           |       |       |       |       |              |
| MD - Aperature Size (in)       | 5.824     | 5.788     | 5.820 | 5.799 | 5.800 | 5.806 | 0.015        |
| MD - Aperature Size (mm)       | 147.9     | 147.0     | 147.8 | 147.3 | 147.3 | 147.5 | 0.4          |
|                                |           |           |       |       |       |       | -            |
| TD - Aperature Size (in)       | 0.631     | 0.632     | 0.660 | 0.630 | 0.586 | 0.628 | 0.027        |
| TD - Aperature Size (mm)       | 16.0      | 16.1      | 16.8  | 16.0  | 14.9  | 15.9  | 0.7          |
| Rib Width (Calipers)           |           |           |       |       |       |       |              |
| MD - Width (in)                | 0.402     | 0.369     | 0.354 | 0.365 | 0.374 | 0.373 | 0.018        |
| MD - Width (mm)                | 10.21     | 9.37      | 8.99  | 9.27  | 9.50  | 9.47  | 0.45         |
| TD - Width (in)                | 0.258     | 0.264     | 0.274 | 0.270 | 0.260 | 0.265 | 0.007        |
| TD - Width (mm)                | 6.55      | 6.71      | 6.96  | 6.86  | 6.60  | 6.74  | 0.17         |
| Rib Thickness (Calipers)       |           |           |       |       |       |       |              |
|                                |           |           |       |       |       |       | ۰            |
| MD - Thickness (in)            | 0.078     | 0.089     | 0.083 | 0.083 | 0.086 | 0.084 | 0.004        |
| MD - Thickness (mm)            | 1.98      | 2.26      | 2.11  | 2.11  | 2.18  | 2.13  | 0.10         |
| TD - Thickness (in)            | 0.061     | 0.064     | 0.053 | 0.053 | 0.064 | 0.059 | 0.006        |
| TD - Thickness (mm)            | 1.55      | 1.63      | 1.35  | 1.35  | 1.63  | 1.50  | 0.14         |
| Node/Junction Thickness (Calip | ers)      |           |       |       |       |       |              |
| Thickness (in)                 | 0.101     | 0.100     | 0.098 | 0.105 | 0.099 | 0.101 | 0.003        |
| Thickness (mm)                 | 2.57      | 2.54      | 2.49  | 2.67  | 2.51  | 2.56  | 0.07         |
|                                |           |           |       |       |       |       |              |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

#### Table B-12. Geogrid geometric measurements for 22XT

#### TRI Log #: E2280-56-08

|                                                          |              |              |              |              |              |              | STD.       |
|----------------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|------------|
| PARAMETER                                                | -            | ICATE NUN    |              |              |              | MEAN         | DEV.       |
| Mass/Unit Area (ASTM D 5261)                             | 1            | 2            | 3            | 4            | 5            |              |            |
| Specimen Width (in) 12.1                                 |              |              |              |              |              |              |            |
| Specimen Length (in) 8.9                                 |              | 50.05        | 50.40        | 50.00        | 50.00        |              |            |
| Mass(g)                                                  | 57.86        | 59.95        | 58.12        | 58.30        | 58.02        | 04.70        | 0.00       |
| Mass/unit area (oz/sq.yd)<br>Mass/unit area (g/sq.meter) | 24.54<br>832 | 25.43<br>862 | 24.65<br>836 | 24.73<br>838 | 24.61<br>834 | 24.79<br>840 | 0.36<br>12 |
| Aperature Size (Calipers)                                |              |              |              |              |              |              |            |
| MD - Aperature Size (in)                                 | 5.776        | 5.780        | 5.810        | 5.773        | 5.842        | 5.796        | 0.030      |
| MD - Aperature Size (mm)                                 | 146.7        | 146.8        | 147.6        | 146.6        | 148.4        | 147.2        | 0.8        |
| TD - Aperature Size (in)                                 | 0.462        | 0.560        | 0.558        | 0.528        | 0.554        | 0.532        | 0.041      |
| TD - Aperature Size (mm)                                 | 11.7         | 14.2         | 14.2         | 13.4         | 14.1         | 13.5         | 1.1        |
| Rib Width (Calipers)                                     |              |              |              |              |              |              |            |
| MD - Width (in)                                          | 0.456        | 0.469        | 0.488        | 0.487        | 0.455        | 0.471        | 0.016      |
| MD - Width (mm)                                          | 11.58        | 11.91        | 12.40        | 12.37        | 11.56        | 11.96        | 0.41       |
| TD - Width (in)                                          | 0.243        | 0.262        | 0.264        | 0.254        | 0.259        | 0.256        | 0.008      |
| TD - Width (mm)                                          | 6.17         | 6.65         | 6.71         | 6.45         | 6.58         | 6.51         | 0.21       |
| Rib Thickness (Calipers)                                 |              |              |              |              |              |              |            |
| MD - Thickness (in)                                      | 0.100        | 0.094        | 0.097        | 0.107        | 0.108        | 0.101        | 0.006      |
| MD - Thickness (mm)                                      | 2.54         | 2.39         | 2.46         | 2.72         | 2.74         | 2.57         | 0.16       |
| TD - Thickness (in)                                      | 0.073        | 0.075        | 0.073        | 0.074        | 0.072        | 0.073        | 0.001      |
| TD - Thickness (mm)                                      | 1.85         | 1.91         | 1.85         | 1.88         | 1.83         | 1.86         | 0.03       |
| Node/Junction Thickness (Calip                           | ers)         |              |              |              |              |              |            |
| Thickness (in)                                           | 0.113        | 0.115        | 0.118        | 0.114        | 0.115        | 0.115        | 0.002      |
| Thickness (mm)                                           | 2.87         | 2.92         | 3.00         | 2.90         | 2.92         | 2.92         | 0.05       |
|                                                          |              |              |              |              |              |              |            |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

#### Table B-13. Geogrid geometric measurements for 24XT

#### TRI Log #: E2280-56-08

|                                                          |                |               |               |               |               |      | STD.           |
|----------------------------------------------------------|----------------|---------------|---------------|---------------|---------------|------|----------------|
| PARAMETER                                                | 1EST REPL<br>1 | ICATE NUN     | 3             | 4             | 5             | MEA  | N DEV.         |
| Mass/Unit Area (ASTM D 5261)                             | 1              | 2             | 3             | 4             | 5             |      |                |
| Specimen Width (in) 12.2                                 |                |               |               |               |               |      |                |
| Specimen Length (in) 8.85                                | 70.47          |               | 74.00         | 74.00         | 70.04         |      |                |
| Mass(g)                                                  | 72.47          | 71.15         | 71.38         | 71.83         | 70.91         |      | -              |
| Mass/unit area (oz/sq.yd)<br>Mass/unit area (g/sq.meter) | 30.66<br>1039  | 30.10<br>1020 | 30.20<br>1024 | 30.39<br>1030 | 30.00<br>1017 | 30.2 |                |
|                                                          |                | .020          |               | 1000          |               |      | •              |
| Aperature Size (Calipers)                                |                |               |               |               |               |      |                |
| MD - Aperature Size (in)                                 | 5.640          | 5.808         | 5.768         | 5.672         | 5.813         | 5.74 | <b>0</b> 0.080 |
| MD - Aperature Size (mm)                                 | 143.3          | 147.5         | 146.5         | 144.1         | 147.7         | 145. | <b>8</b> 2.0   |
|                                                          |                |               |               |               |               |      |                |
| TD - Aperature Size (in)                                 | 0.493          | 0.510         | 0.485         | 0.476         | 0.473         | 0.48 |                |
| TD - Aperature Size (mm)                                 | 12.5           | 13.0          | 12.3          | 12.1          | 12.0          | 12.4 | <b>1</b> 0.4   |
| Rib Width (Calipers)                                     |                |               |               |               |               |      |                |
| MD - Width (in)                                          | 0.528          | 0.499         | 0.516         | 0.539         | 0.513         | 0.51 | <b>9</b> 0.015 |
| MD - Width (mm)                                          | 13.41          | 12.67         | 13.11         | 13.69         | 13.03         | 13.1 | <b>8</b> 0.39  |
| TD - Width (in)                                          | 0.253          | 0.262         | 0.266         | 0.253         | 0.255         | 0.25 | <b>8</b> 0.006 |
| TD - Width (mm)                                          | 6.43           | 6.65          | 6.76          | 6.43          | 6.48          | 6.55 | <b>5</b> 0.15  |
| Rib Thickness (Calipers)                                 |                |               |               |               |               |      |                |
|                                                          |                |               |               |               |               |      |                |
| MD - Thickness (in)                                      | 0.097          | 0.082         | 0.097         | 0.094         | 0.098         | 0.09 | 4 0.007        |
| MD - Thickness (mm)                                      | 2.46           | 2.08          | 2.46          | 2.39          | 2.49          | 2.38 | <b>3</b> 0.17  |
| TD - Thickness (in)                                      | 0.076          | 0.065         | 0.067         | 0.066         | 0.061         | 0.06 | <b>7</b> 0.006 |
| TD - Thickness (mm)                                      | 1.93           | 1.65          | 1.70          | 1.68          | 1.55          | 1.70 | 0.14           |
| Node/Junction Thickness (Calip                           | ers)           |               |               |               |               |      |                |
| ( <b>u</b> ,                                             |                |               |               |               |               |      |                |
| Thickness (in)                                           | 0.117          | 0.119         | 0.119         | 0.120         | 0.121         | 0.11 | <b>9</b> 0.001 |
| Thickness (mm)                                           | 2.97           | 3.02          | 3.02          | 3.05          | 3.07          | 3.03 | <b>3</b> 0.04  |
|                                                          |                |               |               |               |               |      |                |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

# **B.2** Product Production Information

| Style/Type | Width (ft) | Length<br>(ft) | Area<br>(yd <sup>2</sup> ) | Roll Diameter<br>(ft) | Gross weight<br>(lbs) |
|------------|------------|----------------|----------------------------|-----------------------|-----------------------|
| 2XT        | 12         | 150            | 200                        | 12.0                  | 121                   |
| 3XT        | 6 / 12     | 150            | 100 / 200                  | 12.3 / 11.7           | 152 / 295             |
| 5XT        | 6 / 12     | 150            | 100 / 200                  | 11.8                  | 168 / 333             |
| 7XT        | 12         | 200            | 266                        | 13.2                  | 437                   |
| 8XT        | 6 / 12     | 150 / 200      | 100 / 266                  | 13.6 / 13.2           | 196 / 494             |
| 10XT       | 12         | 200            | 266                        | 14.1                  | 589                   |
| 20XT       | 12         | 200            | 266                        | 14.7                  | 675                   |
| 22XT       | 12         | 200            | 266                        | 15.5                  | 913                   |
| 24XT       | 12         | 200            | 266                        | 16.5                  | 966                   |

Table B-14. Typical geogrid roll dimensions for the Miragrid XT product line.

(Conversions: 1 ft = 0.3048 m; 1 yd<sup>2</sup> = 0.836 m<sup>2</sup>)

# **B.3 Product Manufacturing Quality Control Program**

Testing/sampling is done per the Miragrid Quality Control Plan Document. A summary of the program is provided in Table B-15.

| Table B-15. Typical summary of quality control testing conducted by the manufacturer for |  |
|------------------------------------------------------------------------------------------|--|
| the Miragrid XT product line.                                                            |  |

| Test Method  | Property           | Testing Frequency                     |
|--------------|--------------------|---------------------------------------|
| ASTM D 5261  | Mass / Unit Area   | Per LOT                               |
|              |                    | (every 10,000 SY to 15,000 SY)        |
| ASTM D6637   | Single Rib Tensile | Per LOT                               |
|              |                    | (every 10,000 SY to 15,000 SY)        |
| ASTM D6637   | Multi-Rib Tensile  | Per LOT                               |
|              |                    | (every 10,000 SY to 15,000 SY)        |
| Hand measure | Aperture Size      | Bi-Annually                           |
| Hand measure | Width              | Per LOT                               |
| GRI-GG2      | Junction Strength  | Bi-Annually or change in product knit |
|              |                    | construction                          |
| GRI-GG7      | CEG                | Bi-Annually or change in PET fiber    |
| 014-007      | CEU                | LOT/Merge                             |
| GRI-GG8      | MW                 | Bi-Annually or change in PET fiber    |
| 0101-000     | 101 00             | LOT/Merge                             |

| Style/Type | Lot Size (yd <sup>2</sup> ) | # of rolls per Lot |
|------------|-----------------------------|--------------------|
| 2XT        | 14,040                      | 70                 |
| 3XT        | 14,040                      | 70                 |
| 5XT        | 14,040                      | 70                 |
| 7XT        | 14,040                      | 70                 |
| 8XT        | 14,040                      | 70                 |
| 10XT       | 14,040                      | 70                 |
| 20XT       | 14,040                      | 70                 |
| 22XT       | 14,040                      | 70                 |
| 24XT       | 14,040                      | 70                 |

# Table B-16. Typical production lot size for the Miragrid XT product line.

# **Appendix C: Tensile Strength Detailed Test Results**

# Table C-1. Geogrid single rib tensile test results for 2XT

#### TRI Log #: E2280-56-08

|                               |           |          |       |       |       |  |       | STD. |       |
|-------------------------------|-----------|----------|-------|-------|-------|--|-------|------|-------|
| PARAMETER                     | TEST RE   | PLICAT   | MEAN  | DEV.  | MARV  |  |       |      |       |
|                               | 1         | 2        | 3     | 4     | 5     |  |       |      |       |
| Single Rib Tensile Properties | (ASTM D66 | 37, Meth | od A) |       |       |  |       |      |       |
| MD - Number of Ribs per foot: | 10.84     |          |       |       |       |  |       |      |       |
| MD Maximum Strength (lbs)     | 245.1     | 248.1    | 243.3 | 250.5 | 248.3 |  | 247.1 | 2.8  |       |
| MD Maximum Strength (lbs/ft)  | 2657      | 2689     | 2637  | 2715  | 2691  |  | 2678  | 31   | 2,000 |
| MD Maximum Strength (kN/m)    | 38.8      | 39.3     | 38.5  | 39.6  | 39.3  |  | 39.1  | 0.5  |       |
| MD Break Elongation (%)       | 10.7      | 10.9     | 10.8  | 10.7  | 11.0  |  | 10.8  | 0.1  |       |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

# Table C-2. Geogrid single rib tensile test results for 8XT

#### TRI Log #: E2280-56-08

|                               |           |                |       |       |       |  |       | STD. |      |
|-------------------------------|-----------|----------------|-------|-------|-------|--|-------|------|------|
| PARAMETER                     | TEST RE   | <b>EPLICAT</b> | MEAN  | DEV.  | MAR\  |  |       |      |      |
|                               | 1         | 2              | 3     | 4     | 5     |  |       |      |      |
| Single Rib Tensile Properties | (ASTM D66 | 37, Meth       | od A) |       |       |  |       |      |      |
| MD - Number of Ribs per foot: | 10.84     |                |       |       |       |  |       |      |      |
| MD Maximum Strength (lbs)     | 763.9     | 802.6          | 819.2 | 813.0 | 821.0 |  | 803.9 | 23.5 |      |
| MD Maximum Strength (lbs/ft)  | 8280      | 8699           | 8879  | 8812  | 8899  |  | 8714  | 255  | 7,40 |
| MD Maximum Strength (kN/m)    | 120.9     | 127.0          | 129.6 | 128.7 | 129.9 |  | 127.2 | 3.7  |      |
| MD Break Elongation (%)       | 11.6      | 12.9           | 13.2  | 12.8  | 13.3  |  | 12.8  | 0.7  |      |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

# Table C-3. Geogrid single rib tensile test results for 24XT

#### TRI Log #: E2280-56-08

|                               |            |          |       |       |       |  |       | STD. |        |
|-------------------------------|------------|----------|-------|-------|-------|--|-------|------|--------|
| PARAMETER                     | TEST RE    | PLICAT   | MEAN  | DEV.  | MARV  |  |       |      |        |
|                               | 1          | 2        | 3     | 4     | 5     |  |       |      |        |
| Single Rib Tensile Properties | (ASTM D 66 | 37, Meth | od A) |       |       |  |       |      |        |
| MD - Number of Ribs per foot: | 12.25      |          |       |       |       |  |       |      |        |
| MD Maximum Strength (lbs)     | 2510       | 2484     | 2507  | 2540  | 2495  |  | 2507  | 21   |        |
| MD Maximum Strength (lbs/ft)  | 30752      | 30432    | 30705 | 31113 | 30567 |  | 30714 | 256  | 27,415 |
| MD Maximum Strength (kN/m)    | 449.0      | 444.3    | 448.3 | 454.3 | 446.3 |  | 448.4 | 3.7  |        |
| MD Break Elongation (%)       | 14.6       | 14.8     | 14.3  | 15.6  | 14.9  |  | 14.8  | 0.5  |        |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

.

# Table C-4. Geogrid wide width tensile test results for 2XT

TRI Log #: E2280-56-08

|                                   |         |          |          |      |      |      | STD. |       |
|-----------------------------------|---------|----------|----------|------|------|------|------|-------|
| PARAMETER                         | TEST RE | PLICAT   | E NUM BE | R    |      | MEAN | DEV. | MARV  |
|                                   | 1       | 2        | 3        | 4    | 5    |      |      |       |
| Wide Width Tensile Properties (   | ASTM D6 | 637, Met | hod B)   |      |      |      |      |       |
| MD Number of Ribs per Specimen:   | 5       |          |          |      |      |      |      |       |
| MD Number of Ribs per foot:       | 10.84   |          |          |      |      |      |      |       |
| MD Ultimate Strength (lbs)        | 1225    | 1236     | 1251     | 1249 | 1246 | 1241 | 11   |       |
| MD Ultimate Strength (lbs/ft)     | 2656    | 2680     | 2712     | 2707 | 2701 | 2691 | 23   | 2,000 |
| MD Ultimate Strength (kN/m)       | 38.8    | 39.1     | 39.6     | 39.5 | 39.4 | 39.3 | 0.3  |       |
| MD Strength @ 2% Strain (lbs)     | 280     | 292      | 300      | 282  | 270  | 285  | 11   |       |
| MD Strength @ 2% Strain (lbs/ft)  | 608     | 632      | 651      | 612  | 586  | 618  | 25   |       |
| MD Strength @ 2% Strain (kN/m)    | 8.9     | 9.2      | 9.5      | 8.9  | 8.6  | 9.0  | 0.4  |       |
| MD Strength @ 5% Strain (lbs)     | 570     | 593      | 607      | 567  | 584  | 584  | 16   |       |
| MD Strength @ 5% Strain (lbs/ft)  | 1236    | 1285     | 1315     | 1230 | 1265 | 1266 | 35   |       |
| MD Strength @ 5% Strain (kN/m)    | 18.0    | 18.8     | 19.2     | 18.0 | 18.5 | 18.5 | 0.5  |       |
| MD Strength @ 10% Strain (lbs)    | 1209    | 1213     | 1250     | 1208 | 1229 | 1222 | 18   |       |
| MD Strength @ 10% Strain (lbs/ft) | 2622    | 2629     | 2710     | 2619 | 2664 | 2649 | 39   |       |
| MD Strength @ 10% Strain (kN/m)   | 38.3    | 38.4     | 39.6     | 38.2 | 38.9 | 38.7 | 0.6  |       |
| MD Break Elongation (%)           | 10.3    | 10.3     | 10.0     | 10.6 | 10.2 | 10.3 | 0.2  |       |
|                                   |         |          |          |      |      |      |      |       |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

.

# Table C-5. Geogrid wide width tensile test results for 8XT

TRI Log #: E2280-56-08

|                                   |          |          |        |       |       |       | STD. |      |
|-----------------------------------|----------|----------|--------|-------|-------|-------|------|------|
| PARAMETER                         | TEST R   | PLICAT   |        |       |       | MEAN  | DEV. | MAR  |
|                                   | 1        | 2        | 3      | 4     | 5     |       |      |      |
| Wide Width Tensile Properties (   | ASTM D 6 | 637, Met | hod B) |       |       |       |      |      |
| MD Number of Ribs per Specimen:   | 5        |          |        |       |       |       |      |      |
| MD Number of Ribs per foot:       | 10.84    |          |        |       |       |       |      |      |
| MD Ultimate Strength (lbs)        | 3985     | 3902     | 3887   | 3856  | 3889  | 3904  | 48   |      |
| MD Ultimate Strength (lbs/ft)     | 8639     | 8459     | 8427   | 8359  | 8431  | 8463  | 105  | 7,40 |
| MD Ultimate Strength (kN/m)       | 126.1    | 123.5    | 123.0  | 122.0 | 123.1 | 123.6 | 1.5  |      |
| MD Strength @ 2% Strain (lbs)     | 870      | 850      | 831    | 786   | 847   | 837   | 32   |      |
| MD Strength @ 2% Strain (lbs/ft)  | 1885     | 1843     | 1802   | 1703  | 1837  | 1814  | 69   |      |
| MD Strength @ 2% Strain (kN/m)    | 27.5     | 26.9     | 26.3   | 24.9  | 26.8  | 26.5  | 1.0  |      |
| MD Strength @ 5% Strain (lbs)     | 1614     | 1553     | 1566   | 1499  | 1531  | 1553  | 43   |      |
| MD Strength @ 5% Strain (lbs/ft)  | 3499     | 3368     | 3394   | 3249  | 3320  | 3366  | 92   |      |
| MD Strength @ 5% Strain (kN/m)    | 51.1     | 49.2     | 49.5   | 47.4  | 48.5  | 49.1  | 1.4  |      |
| MD Strength @ 10% Strain (lbs)    | 3653     | 3572     | 3603   | 3481  | 3574  | 3577  | 62   |      |
| MD Strength @ 10% Strain (lbs/ft) | 7918     | 7742     | 7809   | 7547  | 7749  | 7753  | 135  |      |
| MD Strength @ 10% Strain (kN/m)   | 115.6    | 113.0    | 114.0  | 110.2 | 113.1 | 113.2 | 2.0  |      |
| MD Break Elongation (%)           | 11.6     | 11.7     | 11.6   | 11.8  | 11.6  | 11.7  | 0.1  |      |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

.

# Table C-6. Geogrid wide width tensile test results for 24XT

TRI Log #: E2280-56-08

|                                   |         |          |          | _     |       |       | STD. |        |
|-----------------------------------|---------|----------|----------|-------|-------|-------|------|--------|
| PARAMETER                         | TEST RE |          | E NUM BE |       |       | MEAN  | DEV. | MARV   |
|                                   | 1       | 2        | 3        | 4     | 5     |       |      |        |
| Wide Width Tensile Properties (   | ASTM D6 | 637, Met | hod B)   |       |       |       |      |        |
| MD Number of Ribs per Specimen:   | 5       |          |          |       |       |       |      |        |
| MD Number of Ribs per foot:       | 12.25   |          |          |       |       |       |      |        |
| MD Ultimate Strength (lbs)        | 12257   | 12369    | 11980    | 12136 | 12092 | 12167 | 150  |        |
| MD Ultimate Strength (lbs/ft)     | 30030   | 30305    | 29352    | 29733 | 29626 | 29809 | 368  | 27,415 |
| MD Ultimate Strength (kN/m)       | 438.4   | 442.4    | 428.5    | 434.1 | 432.5 | 435.2 | 5.4  |        |
| MD Strength @ 2% Strain (lbs)     | 2386    | 2273     | 2241     | 2151  | 2301  | 2270  | 86   |        |
| MD Strength @ 2% Strain (lbs/ft)  | 5846    | 5569     | 5491     | 5269  | 5638  | 5563  | 210  |        |
| MD Strength @ 2% Strain (kN/m)    | 85.3    | 81.3     | 80.2     | 76.9  | 82.3  | 81.2  | 3.1  |        |
| MD Strength @ 5% Strain (lbs)     | 3743    | 3725     | 3476     | 3548  | 3780  | 3654  | 134  |        |
| MD Strength @ 5% Strain (lbs/ft)  | 9170    | 9127     | 8515     | 8692  | 9262  | 8953  | 329  |        |
| MD Strength @ 5% Strain (kN/m)    | 133.9   | 133.3    | 124.3    | 126.9 | 135.2 | 130.7 | 4.8  |        |
| MD Strength @ 10% Strain (lbs)    | 9829    | 9470     | 9459     | 9533  | 9489  | 9556  | 155  |        |
| MD Strength @ 10% Strain (lbs/ft) | 24080   | 23202    | 23175    | 23356 | 23247 | 23412 | 380  |        |
| MD Strength @ 10% Strain (kN/m)   | 351.6   | 338.8    | 338.3    | 341.0 | 339.4 | 341.8 | 5.5  |        |
| MD Break Elongation (%)           | 13.3    | 13.7     | 12.8     | 13.8  | 12.9  | 13.3  | 0.4  |        |

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

### NTPEP December 2011 Final Report Report Expiration Date: 2017

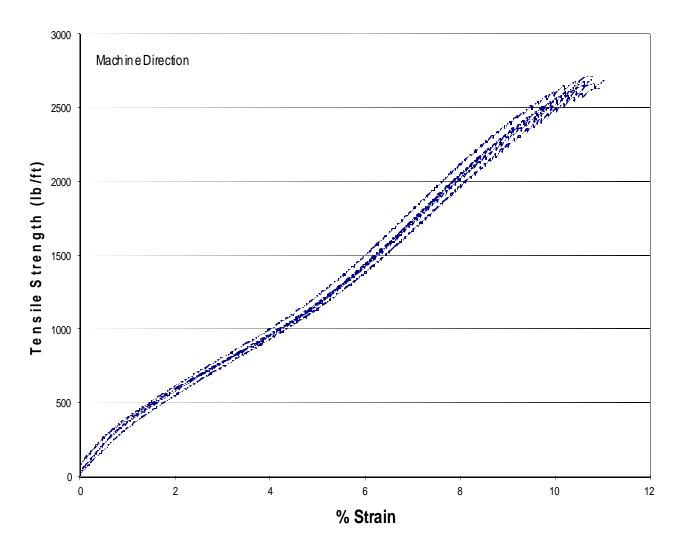



Figure C-1. Geogrid tensile test load-strain curve for 2XT

### NTPEP December 2011 Final Report Report Expiration Date: 2017

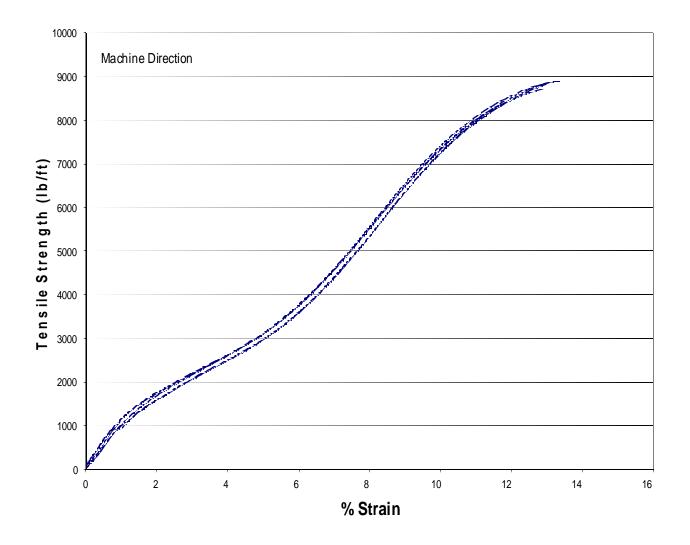



Figure C-2. Geogrid tensile test load-strain curve for 8XT

### NTPEP December 2011 Final Report Report Expiration Date: 2017

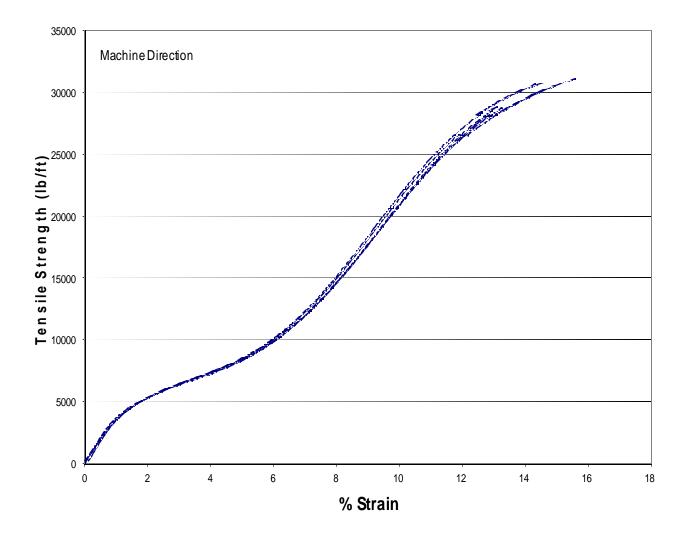



Figure C-3. Geogrid tensile test load-strain curve for 24XT

# **Appendix D: Installation Damage Detailed Test Results**

# Table D-1. Installation damage wide width tensile test results for 2XT geogrid, soil gradation 1. Installation damage testing (ASTM D 5818, as modified in WSDOT T925). Wide wide tensile testing (ASTM D 6637, Method B).

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load | Load     | Load   | Load | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|------|----------|--------|------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2% | @ 2%     | @ 2%   | @ 5% | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs  | (lbs/ft) | (kN/m) | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 10.84    | 5       | 1225    | 2656     | 38.8    | 10.3       | 280  | 608      | 8.87   | 570  | 1236     | 18.0   | 1209  | 2622     | 38.3   |
| 2XT                | 2        | 10.84    | 5       | 1236    | 2680     | 39.1    | 10.3       | 292  | 632      | 9.23   | 593  | 1285     | 18.8   | 1213  | 2629     | 38.4   |
| Baseline           | 3        | 10.84    | 5       | 1251    | 2712     | 39.6    | 10.0       | 300  | 651      | 9.51   | 607  | 1315     | 19.2   | 1250  | 2710     | 39.6   |
|                    | 4        | 10.84    | 5       | 1249    | 2707     | 39.5    | 10.6       | 282  | 612      | 8.93   | 567  | 1230     | 18.0   | 1208  | 2619     | 38.2   |
|                    | 5        | 10.84    | 5       | 1246    | 2701     | 39.4    | 10.2       | 270  | 586      | 8.56   | 584  | 1265     | 18.5   | 1229  | 2664     | 38.9   |
|                    |          |          |         |         |          |         |            |      |          |        |      |          |        |       |          |        |
| Average            |          |          |         | 1241    | 2691     | 39.3    | 10.3       | 285  | 618      | 9.02   | 584  | 1266     | 18.5   | 1222  | 2649     | 38.7   |
| Standard Deviation |          |          |         | 10.7    | 23.2     | 0.34    | 0.23       | 11.5 | 24.8     | 0.36   | 16.4 | 35.4     | 0.52   | 17.8  | 39       | 0.56   |
| % COV              |          |          |         | 0.86    | 0.86     | 0.86    | 2.19       | 4.02 | 4.02     | 4.02   | 2.80 | 2.80     | 2.80   | 1.46  | 1.46     | 1.46   |

#### Machine Direction

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load  | Load     | Load   | Load  | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|-------|----------|--------|-------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2%  | @ 2%     | @ 2%   | @ 5%  | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs   | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 10.84    | 5       | 861     | 1867     | 27.3    | 7.6        | 256   | 554      | 8.09   | 521   | 1130     | 16.5   |       |          |        |
| 2XT                | 2        | 10.84    | 5       | 784     | 1700     | 24.8    | 6.6        | 273   | 591      | 8.63   | 576   | 1249     | 18.2   |       |          |        |
| installed in       | 3        | 10.84    | 5       | 849     | 1840     | 26.9    | 6.9        | 283   | 613      | 8.95   | 581   | 1259     | 18.4   |       |          |        |
| Gradation 1        | 4        | 10.84    | 5       | 881     | 1910     | 27.9    | 7.9        | 265   | 574      | 8.39   | 509   | 1103     | 16.1   |       |          |        |
| (Coarse Gravel)    | 5        | 10.84    | 5       | 809     | 1754     | 25.6    | 6.8        | 282   | 611      | 8.92   | 577   | 1250     | 18.3   |       |          |        |
|                    | 6        | 10.84    | 5       | 764     | 1657     | 24.2    | 7.8        | 275   | 596      | 8.70   | 556   | 1205     | 17.6   |       |          |        |
|                    | 7        | 10.84    | 5       | 611     | 1324     | 19.3    | 5.5        | 269   | 582      | 8.50   | 548   | 1187     | 17.3   |       |          |        |
|                    | 8        | 10.84    | 5       | 909     | 1971     | 28.8    | 6.4        | 374   | 811      | 11.84  | 783   | 1696     | 24.8   |       |          |        |
|                    | 9        | 10.84    | 5       | 442     | 957      | 14.0    | 6.3        | 204   | 443      | 6.46   | 332   | 720      | 10.5   |       |          |        |
|                    | 10       | 10.84    | 5       | 798     | 1731     | 25.3    | 6.5        | 284   | 615      | 8.99   | 594   | 1287     | 18.8   |       |          |        |
|                    |          |          |         |         |          |         |            |       |          |        |       |          |        |       |          |        |
| Average            |          |          |         | 771     | 1671     | 24.4    | 6.8        | 276   | 599      | 8.75   | 558   | 1209     | 17.6   |       |          |        |
| Standard Deviation |          |          |         | 142.2   | 308      | 4.50    | 0.76       | 41.52 | 90.00    | 1.31   | 109.4 | 237.2    | 3.46   |       |          |        |
| % COV              |          |          |         | 18.44   | 18.44    | 18.44   | 11.13      | 15.02 | 15.02    | 15.02  | 19.62 | 19.62    | 19.62  |       |          |        |

| Percent Retained |  | 62.1 | 62.1 | 62.1 | 66.5 | 97.0 | 97.0 | 97.0 | 95.5 | 95.5 | 95.5 |  |  |
|------------------|--|------|------|------|------|------|------|------|------|------|------|--|--|
| RFid             |  | 1.61 | 1.61 | 1.61 |      |      |      |      |      |      |      |  |  |

# Table D-2. Installation damage wide width tensile test results for 2XT geogrid, soil gradation 2.Installation damage testing (ASTM D 5818, as modified in WSDOT T925).Wide wide tensile testing (ASTM D 6637, Method B).

| Machine D | irection |
|-----------|----------|
|-----------|----------|

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load | Load     | Load   | Load | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|------|----------|--------|------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2% | @ 2%     | @ 2%   | @ 5% | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs  | (lbs/ft) | (kN/m) | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 10.84    | 5       | 1225    | 2656     | 38.8    | 10.3       | 280  | 608      | 8.87   | 570  | 1236     | 18.0   | 1209  | 2622     | 38.3   |
| 2XT                | 2        | 10.84    | 5       | 1236    | 2680     | 39.1    | 10.3       | 292  | 632      | 9.23   | 593  | 1285     | 18.8   | 1213  | 2629     | 38.4   |
| Baseline           | 3        | 10.84    | 5       | 1251    | 2712     | 39.6    | 10.0       | 300  | 651      | 9.51   | 607  | 1315     | 19.2   | 1250  | 2710     | 39.6   |
|                    | 4        | 10.84    | 5       | 1249    | 2707     | 39.5    | 10.6       | 282  | 612      | 8.93   | 567  | 1230     | 18.0   | 1208  | 2619     | 38.2   |
|                    | 5        | 10.84    | 5       | 1246    | 2701     | 39.4    | 10.2       | 270  | 586      | 8.56   | 584  | 1265     | 18.5   | 1229  | 2664     | 38.9   |
|                    |          |          |         |         |          |         |            |      |          |        |      |          |        |       |          |        |
| Average            | Э        |          |         | 1241    | 2691     | 39.3    | 10.3       | 285  | 618      | 9.02   | 584  | 1266     | 18.5   | 1222  | 2649     | 38.7   |
| Standard Deviation | ۱        |          |         | 10.7    | 23.2     | 0.34    | 0.23       | 11.5 | 24.8     | 0.36   | 16.4 | 35.4     | 0.52   | 17.8  | 39       | 0.56   |
| % CO\              | /        |          |         | 0.86    | 0.86     | 0.86    | 2.19       | 4.02 | 4.02     | 4.02   | 2.80 | 2.80     | 2.80   | 1.46  | 1.46     | 1.46   |
| % CO\              | /        |          |         | 0.86    | 0.86     | 0.86    | 2.19       | 4.02 | 4.02     | 4.02   | 2.80 | 2.80     | 2.80   | 1.46  | 1.46     | 1.     |

#### Machine Direction

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load | Load     | Load   | Load | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|------|----------|--------|------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2% | @ 2%     | @ 2%   | @ 5% | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs  | (lbs/ft) | (kN/m) | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 10.84    | 5       | 1200    | 2600     | 38.0    | 9.63       | 295  | 640      | 9.35   | 608  | 1317     | 19.2   |       |          |        |
| 2XT                | 2        | 10.84    | 5       | 1198    | 2596     | 37.9    | 9.54       | 285  | 618      | 9.02   | 597  | 1293     | 18.9   |       |          |        |
| installed in       | 3        | 10.84    | 5       | 1197    | 2595     | 37.9    | 9.69       | 292  | 634      | 9.26   | 589  | 1277     | 18.6   |       |          |        |
| Gradation 2        | 4        | 10.84    | 5       | 1167    | 2530     | 36.9    | 9.53       | 293  | 636      | 9.28   | 593  | 1286     | 18.8   |       |          |        |
| (Sandy Gravel)     | 5        | 10.84    | 5       | 1165    | 2526     | 36.9    | 9.66       | 292  | 632      | 9.23   | 578  | 1253     | 18.3   |       |          |        |
|                    | 6        | 10.84    | 5       | 1238    | 2683     | 39.2    | 10.1       | 293  | 636      | 9.28   | 603  | 1308     | 19.1   | 1229  | 2665     | 38.9   |
|                    | 7        | 10.84    | 5       | 1153    | 2499     | 36.5    | 9.23       | 276  | 599      | 8.75   | 577  | 1250     | 18.3   |       |          |        |
|                    | 8        | 10.84    | 5       | 1176    | 2549     | 37.2    | 9.70       | 269  | 584      | 8.52   | 561  | 1215     | 17.7   |       |          |        |
|                    | 9        | 10.84    | 5       | 1218    | 2640     | 38.5    | 9.96       | 282  | 611      | 8.93   | 583  | 1263     | 18.4   |       |          |        |
|                    | 10       | 10.84    | 5       | 1209    | 2622     | 38.3    | 9.64       | 270  | 586      | 8.55   | 566  | 1227     | 17.9   |       |          |        |
|                    | [        |          |         |         |          |         |            |      |          |        |      |          |        |       |          |        |
| Average            | )        |          |         | 1192    | 2584     | 37.7    | 9.7        | 285  | 618      | 9.02   | 585  | 1269     | 18.5   | 1229  | 2665     | 38.9   |
| Standard Deviation | 1        |          |         | 26.5    | 57       | 0.84    | 0.23       | 9.96 | 21.59    | 0.32   | 15.4 | 33.4     | 0.49   |       |          |        |
| % COV              | ,        |          |         | 2.22    | 2.22     | 2.22    | 2.40       | 3.50 | 3.50     | 3.50   | 2.63 | 2.63     | 2.63   |       |          |        |

| Percent Retained |  | 96.0 | 96.0 | 96.0 | 94.0 | 100.0 | 100.0 | 100.0 | 100.2 | 100.2 | 100.2 | 100.6 | 100.6 | 100.6 |
|------------------|--|------|------|------|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| RFid             |  | 1.04 | 1.04 | 1.04 |      |       |       |       |       |       |       |       |       |       |

# Table D-3. Installation damage wide width tensile test results for 2XT geogrid, soil gradation 3.Installation damage testing (ASTM D 5818, as modified in WSDOT T925).Wide wide tensile testing (ASTM D 6637, Method B).

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load | Load     | Load   | Load | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|------|----------|--------|------|----------|--------|-------|----------|--------|
| Sample S           | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2% | @ 2%     | @ 2%   | @ 5% | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs  | (lbs/ft) | (kN/m) | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 10.84    | 5       | 1225    | 2656     | 38.8    | 10.3       | 280  | 608      | 8.87   | 570  | 1236     | 18.0   | 1209  | 2622     | 38.3   |
| 2XT                | 2        | 10.84    | 5       | 1236    | 2680     | 39.1    | 10.3       | 292  | 632      | 9.23   | 593  | 1285     | 18.8   | 1213  | 2629     | 38.4   |
| Baseline           | 3        | 10.84    | 5       | 1251    | 2712     | 39.6    | 10.0       | 300  | 651      | 9.51   | 607  | 1315     | 19.2   | 1250  | 2710     | 39.6   |
|                    | 4        | 10.84    | 5       | 1249    | 2707     | 39.5    | 10.6       | 282  | 612      | 8.93   | 567  | 1230     | 18.0   | 1208  | 2619     | 38.2   |
|                    | 5        | 10.84    | 5       | 1246    | 2701     | 39.4    | 10.2       | 270  | 586      | 8.56   | 584  | 1265     | 18.5   | 1229  | 2664     | 38.9   |
|                    |          |          |         |         |          |         |            |      |          |        |      |          |        |       |          |        |
| Average            |          |          |         | 1241    | 2691     | 39.3    | 10.3       | 285  | 618      | 9.02   | 584  | 1266     | 18.5   | 1222  | 2649     | 38.7   |
| Standard Deviation |          |          |         | 10.7    | 23.2     | 0.34    | 0.23       | 11.5 | 24.8     | 0.36   | 16.4 | 35.4     | 0.52   | 17.8  | 39       | 0.56   |
| % COV              |          |          |         | 0.86    | 0.86     | 0.86    | 2.19       | 4.02 | 4.02     | 4.02   | 2.80 | 2.80     | 2.80   | 1.46  | 1.46     | 1.46   |

#### Machine Direction

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load | Load     | Load   | Load | Load     | Load   | Load  | Load     | Load  |
|--------------------|----------|----------|---------|---------|----------|---------|------------|------|----------|--------|------|----------|--------|-------|----------|-------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2% | @ 2%     | @ 2%   | @ 5% | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10% |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs  | (lbs/ft) | (kN/m) | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m |
|                    | 1        | 10.84    | 5       | 1187    | 2573     | 37.6    | 9.9        | 278  | 602      | 8.80   | 566  | 1227     | 17.9   |       |          |       |
| 2XT                | 2        | 10.84    | 5       | 1209    | 2621     | 38.3    | 10.0       | 281  | 610      | 8.91   | 564  | 1222     | 17.8   | 1209  | 2620     | 38.3  |
| installed in       | 3        | 10.84    | 5       | 1191    | 2582     | 37.7    | 9.8        | 299  | 647      | 9.45   | 600  | 1300     | 19.0   |       |          |       |
| Gradation 3        | 4        | 10.84    | 5       | 1199    | 2599     | 37.9    | 9.8        | 296  | 642      | 9.37   | 574  | 1243     | 18.2   |       |          |       |
| (Sand)             | 5        | 10.84    | 5       | 1234    | 2674     | 39.0    | 10.7       | 290  | 628      | 9.18   | 573  | 1243     | 18.1   | 1204  | 2609     | 38.1  |
|                    | 6        | 10.84    | 5       | 1247    | 2702     | 39.5    | 10.3       | 285  | 617      | 9.01   | 591  | 1282     | 18.7   | 1232  | 2671     | 39.0  |
|                    | 7        | 10.84    | 5       | 940     | 2038     | 29.8    | 9.6        | 271  | 587      | 8.57   | 562  | 1218     | 17.8   |       |          |       |
|                    | 8        | 10.84    | 5       | 1195    | 2591     | 37.8    | 9.6        | 285  | 618      | 9.02   | 587  | 1272     | 18.6   |       |          |       |
|                    | 9        | 10.84    | 5       | 1200    | 2601     | 38.0    | 9.8        | 282  | 612      | 8.94   | 583  | 1265     | 18.5   |       |          |       |
|                    | 10       | 10.84    | 5       | 1238    | 2685     | 39.2    | 10.1       | 276  | 599      | 8.75   | 580  | 1257     | 18.4   | 1228  | 2662     | 38.9  |
|                    |          |          | 1       |         | -        | 1       | r          |      | 1        |        | 1    |          |        |       |          | -     |
| Average            |          |          |         | 1184    | 2567     | 37.5    | 9.9        | 284  | 616      | 9.00   | 578  | 1253     | 18.3   | 1218  | 2641     | 38.6  |
| Standard Deviation |          |          |         | 88.2    | 191      | 2.79    | 0.34       | 8.63 | 18.71    | 0.27   | 12.5 | 27.0     | 0.39   | 14.0  | 30.3     | 0.44  |
| % COV              | /        |          |         | 7.45    | 7.45     | 7.45    | 3.42       | 3.04 | 3.04     | 3.04   | 2.16 | 2.16     | 2.16   | 1.15  | 1.15     | 1.15  |

| Percent Retained |  | 95.4 | 95.4 | 95.4 | 96.7 | 99.8 | 99.8 | 99.8 | 99.0 | 99.0 | 99.0 | 99.7 | 99.7 | 99.7 |
|------------------|--|------|------|------|------|------|------|------|------|------|------|------|------|------|
| RFid             |  | 1.05 | 1.05 | 1.05 |      |      |      |      |      |      |      |      |      |      |

# Table D-4. Installation damage wide width tensile test results for 8XT geogrid, soil gradation 1. Installation damage testing (ASTM D 5818, as modified in WSDOT T925). Wide wide tensile testing (ASTM D 6637, Method B).

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load | Load     | Load   | Load | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|------|----------|--------|------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2% | @ 2%     | @ 2%   | @ 5% | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs  | (lbs/ft) | (kN/m) | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 10.84    | 5       | 3985    | 8639     | 126.1   | 11.6       | 870  | 1885     | 27.53  | 1614 | 3499     | 51.1   | 3653  | 7918     | 115.6  |
| 8XT                | 2        | 10.84    | 5       | 3902    | 8459     | 123.5   | 11.7       | 850  | 1843     | 26.91  | 1553 | 3368     | 49.2   | 3572  | 7742     | 113.0  |
| Baseline           | 3        | 10.84    | 5       | 3887    | 8427     | 123.0   | 11.6       | 831  | 1802     | 26.30  | 1566 | 3394     | 49.5   | 3603  | 7809     | 114.0  |
|                    | 4        | 10.84    | 5       | 3856    | 8359     | 122.0   | 11.8       | 786  | 1703     | 24.86  | 1499 | 3249     | 47.4   | 3481  | 7547     | 110.2  |
|                    | 5        | 10.84    | 5       | 3889    | 8431     | 123.1   | 11.6       | 847  | 1837     | 26.82  | 1531 | 3320     | 48.5   | 3574  | 7749     | 113.1  |
|                    |          |          |         |         |          |         |            |      |          |        |      |          |        |       |          |        |
| Average            | •        |          |         | 3904    | 8463     | 123.6   | 11.7       | 837  | 1814     | 26.48  | 1553 | 3366     | 49.1   | 3577  | 7753     | 113.2  |
| Standard Deviation |          |          |         | 48.5    | 105.1    | 1.53    | 0.08       | 31.7 | 68.8     | 1.00   | 42.7 | 92.5     | 1.35   | 62.4  | 135      | 1.98   |
| % COV              |          |          |         | 1.24    | 1.24     | 1.24    | 0.72       | 3.79 | 3.79     | 3.79   | 2.75 | 2.75     | 2.75   | 1.74  | 1.74     | 1.74   |

#### Machine Direction

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load  | Load     | Load   | Load | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|-------|----------|--------|------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2%  | @ 2%     | @ 2%   | @ 5% | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs   | (lbs/ft) | (kN/m) | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 10.84    | 5       | 2284    | 4952     | 72.3    | 6.7        | 824   | 1786     | 26.08  | 1570 | 3404     | 49.7   |       |          |        |
| 8XT                | 2        | 10.84    | 5       | 2018    | 4374     | 63.9    | 6.8        | 785   | 1701     | 24.83  | 1489 | 3228     | 47.1   |       |          |        |
| installed in       | 3        | 10.84    | 5       | 2502    | 5423     | 79.2    | 8.5        | 793   | 1718     | 25.09  | 1454 | 3151     | 46.0   |       |          |        |
| Gradation 1        | 4        | 10.84    | 5       | 2652    | 5748     | 83.9    | 8.0        | 806   | 1746     | 25.50  | 1541 | 3341     | 48.8   |       |          |        |
| (Coarse Gravel)    | 5        | 10.84    | 5       | 2523    | 5470     | 79.9    | 7.7        | 807   | 1749     | 25.54  | 1583 | 3433     | 50.1   |       |          |        |
|                    | 6        | 10.84    | 5       | 2404    | 5212     | 76.1    | 9.2        | 788   | 1708     | 24.93  | 1522 | 3300     | 48.2   |       |          |        |
|                    | 7        | 10.84    | 5       | 2720    | 5895     | 86.1    | 8.2        | 816   | 1769     | 25.83  | 1553 | 3366     | 49.1   |       |          |        |
|                    | 8        | 10.84    | 5       | 2605    | 5647     | 82.4    | 7.4        | 807   | 1749     | 25.53  | 1535 | 3327     | 48.6   |       |          |        |
|                    | 9        | 10.84    | 5       | 2563    | 5556     | 81.1    | 7.5        | 808   | 1751     | 25.56  | 1506 | 3265     | 47.7   |       |          |        |
|                    | 10       | 10.84    | 5       | 2221    | 4815     | 70.3    | 6.8        | 792   | 1717     | 25.07  | 1495 | 3241     | 47.3   |       |          |        |
|                    | [        |          |         |         |          |         |            |       |          |        |      |          |        |       |          |        |
| Average            | )        |          |         | 2449    | 5309     | 77.5    | 7.7        | 802   | 1739     | 25.40  | 1525 | 3306     | 48.3   |       |          |        |
| Standard Deviation |          |          |         | 217.8   | 472      | 6.89    | 0.80       | 12.74 | 27.61    | 0.40   | 39.8 | 86.2     | 1.26   |       |          |        |
| % COV              | ,        |          |         | 8.89    | 8.89     | 8.89    | 10.40      | 1.59  | 1.59     | 1.59   | 2.61 | 2.61     | 2.61   |       |          |        |

| Percent Retained |  | 62.7 | 62.7 | 62.7 | 65.8 | 95.9 | 95.9 | 95.9 | 98.2 | 98.2 | 98.2 |  |   |
|------------------|--|------|------|------|------|------|------|------|------|------|------|--|---|
| RFid             |  | 1.59 | 1.59 | 1.59 |      |      |      |      |      |      |      |  | ĺ |

# Table D-5. Installation damage wide width tensile test results for 8XT geogrid, soil gradation 2.Installation damage testing (ASTM D 5818, as modified in WSDOT T925).Wide wide tensile testing (ASTM D 6637, Method B).

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load | Load     | Load   | Load | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|------|----------|--------|------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2% | @ 2%     | @ 2%   | @ 5% | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs  | (lbs/ft) | (kN/m) | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 10.84    | 5       | 3985    | 8639     | 126.1   | 11.6       | 870  | 1885     | 27.53  | 1614 | 3499     | 51.1   | 3653  | 7918     | 115.6  |
| 8XT                | 2        | 10.84    | 5       | 3902    | 8459     | 123.5   | 11.7       | 850  | 1843     | 26.91  | 1553 | 3368     | 49.2   | 3572  | 7742     | 113.0  |
| Baseline           | 3        | 10.84    | 5       | 3887    | 8427     | 123.0   | 11.6       | 831  | 1802     | 26.30  | 1566 | 3394     | 49.5   | 3603  | 7809     | 114.0  |
|                    | 4        | 10.84    | 5       | 3856    | 8359     | 122.0   | 11.8       | 786  | 1703     | 24.86  | 1499 | 3249     | 47.4   | 3481  | 7547     | 110.2  |
|                    | 5        | 10.84    | 5       | 3889    | 8431     | 123.1   | 11.6       | 847  | 1837     | 26.82  | 1531 | 3320     | 48.5   | 3574  | 7749     | 113.1  |
|                    |          |          |         |         |          |         |            |      |          |        |      |          |        |       |          |        |
| Average            | •        |          |         | 3904    | 8463     | 123.6   | 11.7       | 837  | 1814     | 26.48  | 1553 | 3366     | 49.1   | 3577  | 7753     | 113.2  |
| Standard Deviation |          |          |         | 48.5    | 105.1    | 1.53    | 0.08       | 31.7 | 68.8     | 1.00   | 42.7 | 92.5     | 1.35   | 62.4  | 135      | 1.98   |
| % COV              |          |          |         | 1.24    | 1.24     | 1.24    | 0.72       | 3.79 | 3.79     | 3.79   | 2.75 | 2.75     | 2.75   | 1.74  | 1.74     | 1.74   |

#### Machine Direction

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load  | Load     | Load   | Load | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|-------|----------|--------|------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2%  | @ 2%     | @ 2%   | @ 5% | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs   | (lbs/ft) | (kN/m) | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 10.84    | 5       | 3433    | 7442     | 108.7   | 9.2        | 843   | 1828     | 26.69  | 1605 | 3479     | 50.8   |       |          |        |
| 8XT                | 2        | 10.84    | 5       | 3302    | 7158     | 104.5   | 8.8        | 825   | 1787     | 26.10  | 1581 | 3427     | 50.0   |       |          |        |
| installed in       | 3        | 10.84    | 5       | 3563    | 7724     | 112.8   | 9.4        | 864   | 1872     | 27.33  | 1625 | 3522     | 51.4   |       |          |        |
| Gradation 2        | 4        | 10.84    | 5       | 3392    | 7353     | 107.4   | 9.0        | 848   | 1838     | 26.83  | 1570 | 3404     | 49.7   |       |          |        |
| (Sandy Gravel)     | 5        | 10.84    | 5       | 3501    | 7590     | 110.8   | 9.4        | 819   | 1776     | 25.93  | 1585 | 3437     | 50.2   |       |          |        |
|                    | 6        | 10.84    | 5       | 3417    | 7406     | 108.1   | 9.1        | 834   | 1807     | 26.38  | 1606 | 3482     | 50.8   |       |          |        |
|                    | 7        | 10.84    | 5       | 3327    | 7212     | 105.3   | 9.1        | 838   | 1816     | 26.51  | 1566 | 3395     | 49.6   |       |          |        |
|                    | 8        | 10.84    | 5       | 3214    | 6966     | 101.7   | 8.7        | 792   | 1717     | 25.07  | 1523 | 3301     | 48.2   |       |          |        |
|                    | 9        | 10.84    | 5       | 3534    | 7660     | 111.8   | 9.3        | 846   | 1833     | 26.77  | 1646 | 3569     | 52.1   |       |          |        |
|                    | 10       | 10.84    | 5       | 3378    | 7323     | 106.9   | 9.2        | 852   | 1848     | 26.98  | 1560 | 3381     | 49.4   |       |          |        |
|                    | [        |          |         |         |          |         |            |       |          |        |      |          |        |       |          |        |
| Average            | )        |          |         | 3406    | 7383     | 107.8   | 9.1        | 836   | 1812     | 26.46  | 1587 | 3440     | 50.2   |       |          |        |
| Standard Deviation | 1        |          |         | 108.5   | 235      | 3.43    | 0.24       | 20.15 | 43.68    | 0.64   | 35.3 | 76.6     | 1.12   |       |          |        |
| % COV              | '        |          |         | 3.19    | 3.19     | 3.19    | 2.62       | 2.41  | 2.41     | 2.41   | 2.23 | 2.23     | 2.23   |       |          |        |

| Percent Retained |  | 87.2 | 87.2 | 87.2 | 78.3 | 99.9 | 99.9 | 99.9 | 102.2 | 102.2 | 102.2 |  |  |
|------------------|--|------|------|------|------|------|------|------|-------|-------|-------|--|--|
| RFid             |  | 1.15 | 1.15 | 1.15 |      |      |      |      |       |       |       |  |  |

# Table D-6. Installation damage wide width tensile test results for 8XT geogrid, soil gradation 3.Installation damage testing (ASTM D 5818, as modified in WSDOT T925).Wide wide tensile testing (ASTM D 6637, Method B).

| Identification         Number         Width         Tested         (lbs)         (lbs/ft)         (kN/m)         (%)         Ibs         (lbs/ft)         (kN/m)         Ibs         (lbs/ft)         (kN/ | 5%         @ 5%           ps/ft)         (kN/m)           499         51.1           368         49.2           394         49.5 | @ 10%<br>lbs<br>3653<br>3572 | @ 10%<br>(lbs/ft)<br>7918<br>7742 | @ 10%<br>(kN/m)<br>115.6<br>113.0 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------------------------------|-----------------------------------|
| 1         10.84         5         3985         8639         126.1         11.6         870         1885         27.53         1614         344           8XT         2         10.84         5         3902         8459         123.5         11.7         850         1843         26.91         1553         333           Baseline         3         10.84         5         3887         8427         123.0         11.6         831         1802         26.30         1566         333                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 499 51.1<br>368 49.2                                                                                                             | 3653<br>3572                 | 7918                              | 115.6                             |
| 8XT         2         10.84         5         3902         8459         123.5         11.7         850         1843         26.91         1553         339           Baseline         3         10.84         5         3887         8427         123.0         11.6         831         1802         26.30         1566         339                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 368 49.2                                                                                                                         | 3572                         |                                   |                                   |
| Baseline 3 10.84 5 3887 8427 123.0 11.6 831 1802 26.30 1566 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                  |                              | 7742                              | 113.0                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 204 40 5                                                                                                                         | 0000                         |                                   |                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 394 49.5                                                                                                                         | 3603                         | 7809                              | 114.0                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 249 47.4                                                                                                                         | 3481                         | 7547                              | 110.2                             |
| 5 10.84 5 3889 8431 123.1 11.6 847 1837 26.82 1531 33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 320 48.5                                                                                                                         | 3574                         | 7749                              | 113.1                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                  |                              |                                   |                                   |
| Average 3904 8463 123.6 11.7 837 1814 26.48 1553 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 366 49.1                                                                                                                         | 3577                         | 7753                              | 113.2                             |
| Standard Deviation         48.5         105.1         1.53         0.08         31.7         68.8         1.00         42.7         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2.5 1.35                                                                                                                         | 62.4                         | 135                               | 1.98                              |
| % COV 1.24 1.24 1.24 0.72 3.79 3.79 3.79 2.75 2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | .75 2.75                                                                                                                         | 1.74                         | 1.74                              | 1.74                              |

#### Machine Direction

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load  | Load     | Load   | Load | Load     | Load   | Load  | Load     | Load  |
|--------------------|----------|----------|---------|---------|----------|---------|------------|-------|----------|--------|------|----------|--------|-------|----------|-------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2%  | @ 2%     | @ 2%   | @ 5% | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 109 |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs   | (lbs/ft) | (kN/m) | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m |
|                    | 1        | 10.84    | 5       | 3552    | 7699     | 112.4   | 9.8        | 841   | 1822     | 26.61  | 1519 | 3293     | 48.1   |       |          |       |
| 8XT                | 2        | 10.84    | 5       | 3560    | 7717     | 112.7   | 9.8        | 809   | 1755     | 25.62  | 1544 | 3348     | 48.9   |       |          |       |
| installed in       | 3        | 10.84    | 5       | 3502    | 7591     | 110.8   | 9.7        | 786   | 1704     | 24.88  | 1446 | 3135     | 45.8   |       |          |       |
| Gradation 3        | 4        | 10.84    | 5       | 3379    | 7325     | 106.9   | 9.4        | 816   | 1769     | 25.83  | 1477 | 3201     | 46.7   |       |          |       |
| (Sand)             | 5        | 10.84    | 5       | 3547    | 7689     | 112.3   | 9.6        | 805   | 1744     | 25.46  | 1512 | 3277     | 47.8   |       |          |       |
|                    | 6        | 10.84    | 5       | 3189    | 6914     | 100.9   | 9.1        | 791   | 1715     | 25.04  | 1437 | 3114     | 45.5   |       |          |       |
|                    | 7        | 10.84    | 5       | 3389    | 7346     | 107.3   | 9.6        | 786   | 1704     | 24.89  | 1490 | 3230     | 47.2   |       |          |       |
|                    | 8        | 10.84    | 5       | 3553    | 7701     | 112.4   | 10.0       | 817   | 1770     | 25.85  | 1453 | 3150     | 46.0   | 3546  | 7686     | 112.2 |
|                    | 9        | 10.84    | 5       | 3571    | 7742     | 113.0   | 10.1       | 783   | 1697     | 24.77  | 1462 | 3168     | 46.3   | 3522  | 7635     | 111.5 |
|                    | 10       | 10.84    | 5       | 3434    | 7444     | 108.7   | 9.7        | 789   | 1711     | 24.98  | 1473 | 3193     | 46.6   |       |          |       |
|                    |          |          |         |         |          |         |            |       |          |        |      |          |        |       |          |       |
| Average            | 9        |          |         | 3468    | 7517     | 109.7   | 9.7        | 802   | 1739     | 25.39  | 1481 | 3211     | 46.9   | 3534  | 7661     | 111.8 |
| Standard Deviatior | า        |          |         | 121.9   | 264      | 3.86    | 0.30       | 18.61 | 40.34    | 0.59   | 34.8 | 75.5     | 1.10   | 16.6  | 36.0     | 0.53  |
| % CO\              | /        |          |         | 3.52    | 3.52     | 3.52    | 3.13       | 2.32  | 2.32     | 2.32   | 2.35 | 2.35     | 2.35   | 0.47  | 0.47     | 0.47  |

| Percent Retained |  | 88.8 | 88.8 | 88.8 | 83.0 | 95.9 | 95.9 | 95.9 | 95.4 | 95.4 | 95.4 | 98.8 | 98.8 | 98.8 |
|------------------|--|------|------|------|------|------|------|------|------|------|------|------|------|------|
| RFid             |  | 1.13 | 1.13 | 1.13 |      |      |      |      |      |      |      |      |      |      |

# Table D-7. Installation damage wide width tensile test results for 24XT geogrid, soil gradation 1.Installation damage testing (ASTM D 5818, as modified in WSDOT T925).Wide wide tensile testing (ASTM D 6637, Method B).

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load | Load     | Load   | Load  | Load     | Load   | Load  | Load     | Load     |
|--------------------|----------|----------|---------|---------|----------|---------|------------|------|----------|--------|-------|----------|--------|-------|----------|----------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2% | @ 2%     | @ 2%   | @ 5%  | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%    |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m    |
|                    | 1        | 12.25    | 5       | 12257   | 30030    | 438.4   | 13.3       | 2386 | 5846     | 85.35  | 3743  | 9170     | 133.9  | 9829  | 24080    | 351.6    |
| 24XT               | 2        | 12.25    | 5       | 12369   | 30305    | 442.4   | 13.7       | 2273 | 5569     | 81.30  | 3725  | 9127     | 133.3  | 9470  | 23202    | 338.8    |
| Baseline           | 3        | 12.25    | 5       | 11980   | 29352    | 428.5   | 12.8       | 2241 | 5491     | 80.17  | 3476  | 8515     | 124.3  | 9459  | 23175    | 338.3    |
|                    | 4        | 12.25    | 5       | 12136   | 29733    | 434.1   | 13.8       | 2151 | 5269     | 76.93  | 3548  | 8692     | 126.9  | 9533  | 23356    | 341.0    |
|                    | 5        | 12.25    | 5       | 12092   | 29626    | 432.5   | 12.9       | 2301 | 5638     | 82.32  | 3780  | 9262     | 135.2  | 9489  | 23247    | 339.4    |
| Average            | e        |          |         | 12167   | 29809    | 435.2   | 13.3       | 2270 | 5563     | 81.21  | 3654  | 8953     | 130.7  | 9556  | 23412    | 341.8    |
| Standard Deviation | า        |          |         | 150.3   | 368.3    | 5.38    | 0.44       | 85.9 | 210.4    | 3.07   | 134.2 | 328.7    | 4.80   | 155.1 | 380      | 5.55     |
| % CO\              | /        |          |         | 1.24    | 1.24     | 1.24    | 3.28       | 3.78 | 3.78     | 3.78   | 3.67  | 3.67     | 3.67   | 1.62  | 1.62     | 1.62     |
|                    |          |          | •       | •       | •        |         | •          |      | •        | •      | •     | •        |        |       |          | <u>.</u> |

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load   | Load     | Load   | Load  | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|--------|----------|--------|-------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2%   | @ 2%     | @ 2%   | @ 5%  | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs    | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 12.25    | 5       | 9718    | 23809    | 347.6   | 9.7        | 2476   | 6065     | 88.56  | 4023  | 9856     | 143.9  |       |          |        |
| 24XT               | 2        | 12.25    | 5       | 9234    | 22623    | 330.3   | 10.4       | 2209   | 5412     | 79.02  | 3743  | 9170     | 133.9  | 8855  | 21694    | 316.7  |
| installed in       | 3        | 12.25    | 5       | 9534    | 23359    | 341.0   | 10.3       | 2082   | 5102     | 74.48  | 3468  | 8495     | 124.0  | 9287  | 22754    | 332.2  |
| Gradation 1        | 4        | 12.25    | 5       | 8549    | 20945    | 305.8   | 10.0       | 2087   | 5113     | 74.65  | 3715  | 9101     | 132.9  | 8499  | 20823    | 304.0  |
| (Coarse Gravel)    | 5        | 12.25    | 5       | 8973    | 21985    | 321.0   | 9.6        | 2276   | 5577     | 81.42  | 3749  | 9186     | 134.1  |       |          |        |
|                    | 6        | 12.25    | 5       | 8544    | 20932    | 305.6   | 9.2        | 2146   | 5258     | 76.77  | 3672  | 8996     | 131.3  |       |          |        |
|                    | 7        | 12.25    | 5       | 9188    | 22510    | 328.6   | 9.9        | 2353   | 5764     | 84.15  | 3959  | 9699     | 141.6  |       |          |        |
|                    | 8        | 12.25    | 5       | 8834    | 21643    | 316.0   | 9.8        | 2247   | 5505     | 80.37  | 3705  | 9078     | 132.5  |       |          |        |
|                    | 9        | 12.25    | 5       | 8811    | 21586    | 315.2   | 10.0       | 2103   | 5153     | 75.24  | 3585  | 8784     | 128.3  | 8709  | 21338    | 311.5  |
|                    | 10       | 12.25    | 5       | 8938    | 21897    | 319.7   | 9.6        | 2170   | 5315     | 77.61  | 3587  | 8788     | 128.3  |       |          |        |
|                    |          |          |         |         |          |         |            |        |          |        |       |          |        |       |          |        |
| Average            | )        |          |         | 9032    | 22129    | 323.1   | 9.9        | 2215   | 5426     | 79.23  | 3721  | 9115     | 133.1  | 8838  | 21652    | 316.1  |
| Standard Deviation | 1        |          |         | 388.7   | 952      | 13.90   | 0.35       | 126.95 | 311.03   | 4.54   | 167.4 | 410.2    | 5.99   | 333.4 | 816.9    | 11.93  |
| % COV              | /        |          |         | 4.30    | 4.30     | 4.30    | 3.52       | 5.73   | 5.73     | 5.73   | 4.50  | 4.50     | 4.50   | 3.77  | 3.77     | 3.77   |

| Percent Retained |  | 74.2 | 74.2 | 74.2 | 74.2 | 97.6 | 97.6 | 97.6 | 101.8 | 101.8 | 101.8 | 92.5 | 92.5 | 92.5 |
|------------------|--|------|------|------|------|------|------|------|-------|-------|-------|------|------|------|
| RFid             |  | 1.35 | 1.35 | 1.35 |      |      |      |      |       |       |       |      |      |      |

# Table D-8. Installation damage wide width tensile test results for 24XT geogrid, soil gradation 2.Installation damage testing (ASTM D 5818, as modified in WSDOT T925).Wide wide tensile testing (ASTM D 6637, Method B).

| Machine | Direction |
|---------|-----------|
|         |           |

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load | Load     | Load   | Load  | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|------|----------|--------|-------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2% | @ 2%     | @ 2%   | @ 5%  | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 12.25    | 5       | 12257   | 30030    | 438.4   | 13.3       | 2386 | 5846     | 85.35  | 3743  | 9170     | 133.9  | 9829  | 24080    | 351.6  |
| 24XT               | 2        | 12.25    | 5       | 12369   | 30305    | 442.4   | 13.7       | 2273 | 5569     | 81.30  | 3725  | 9127     | 133.3  | 9470  | 23202    | 338.8  |
| Baseline           | 3        | 12.25    | 5       | 11980   | 29352    | 428.5   | 12.8       | 2241 | 5491     | 80.17  | 3476  | 8515     | 124.3  | 9459  | 23175    | 338.3  |
|                    | 4        | 12.25    | 5       | 12136   | 29733    | 434.1   | 13.8       | 2151 | 5269     | 76.93  | 3548  | 8692     | 126.9  | 9533  | 23356    | 341.0  |
|                    | 5        | 12.25    | 5       | 12092   | 29626    | 432.5   | 12.9       | 2301 | 5638     | 82.32  | 3780  | 9262     | 135.2  | 9489  | 23247    | 339.4  |
|                    |          |          |         |         |          |         |            |      |          |        |       |          |        |       |          |        |
| Average            |          |          |         | 12167   | 29809    | 435.2   | 13.3       | 2270 | 5563     | 81.21  | 3654  | 8953     | 130.7  | 9556  | 23412    | 341.8  |
| Standard Deviation |          |          |         | 150.3   | 368.3    | 5.38    | 0.44       | 85.9 | 210.4    | 3.07   | 134.2 | 328.7    | 4.80   | 155.1 | 380      | 5.55   |
| % COV              |          |          |         | 1.24    | 1.24     | 1.24    | 3.28       | 3.78 | 3.78     | 3.78   | 3.67  | 3.67     | 3.67   | 1.62  | 1.62     | 1.62   |

#### Machine Direction

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load  | Load     | Load   | Load  | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|-------|----------|--------|-------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2%  | @ 2%     | @ 2%   | @ 5%  | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs   | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 12.25    | 5       | 11305   | 27697    | 404.4   | 12.1       | 2150  | 5268     | 76.91  | 3813  | 9342     | 136.4  | 9658  | 23663    | 345.5  |
| 24XT               | 2        | 12.25    | 5       | 11195   | 27428    | 400.4   | 11.2       | 2291  | 5613     | 81.94  | 3879  | 9503     | 138.7  | 9846  | 24122    | 352.2  |
| installed in       | 3        | 12.25    | 5       | 11516   | 28213    | 411.9   | 11.6       | 2192  | 5370     | 78.41  | 3794  | 9295     | 135.7  | 9750  | 23887    | 348.8  |
| Gradation 2        | 4        | 12.25    | 5       | 11350   | 27808    | 406.0   | 11.3       | 2273  | 5568     | 81.30  | 3935  | 9641     | 140.8  | 10083 | 24704    | 360.7  |
| (Sandy Gravel)     | 5        | 12.25    | 5       | 11302   | 27691    | 404.3   | 11.2       | 2159  | 5290     | 77.23  | 3946  | 9668     | 141.2  | 9875  | 24194    | 353.2  |
|                    | 6        | 12.25    | 5       | 11233   | 27521    | 401.8   | 11.5       | 2257  | 5529     | 80.72  | 3787  | 9279     | 135.5  | 9925  | 24316    | 355.0  |
|                    | 7        | 12.25    | 5       | 11459   | 28075    | 409.9   | 12.0       | 2050  | 5022     | 73.32  | 3493  | 8559     | 125.0  | 9808  | 24031    | 350.8  |
|                    | 8        | 12.25    | 5       | 10911   | 26733    | 390.3   | 10.6       | 2173  | 5323     | 77.72  | 3584  | 8780     | 128.2  | 9843  | 24116    | 352.1  |
|                    | 9        | 12.25    | 5       | 11176   | 27380    | 399.8   | 11.7       | 2172  | 5321     | 77.68  | 3871  | 9485     | 138.5  | 9457  | 23170    | 338.3  |
|                    | 10       | 12.25    | 5       | 11110   | 27219    | 397.4   | 11.6       | 2035  | 4985     | 72.79  | 3532  | 8653     | 126.3  | 9255  | 22676    | 331.1  |
|                    |          |          |         |         |          |         |            |       |          |        |       |          | -      |       |          |        |
| Average            | )        |          |         | 11256   | 27576    | 402.6   | 11.5       | 2175  | 5329     | 77.80  | 3764  | 9221     | 134.6  | 9750  | 23888    | 348.8  |
| Standard Deviatior | ו        |          |         | 174.2   | 427      | 6.23    | 0.44       | 85.72 | 210.02   | 3.07   | 166.9 | 408.9    | 5.97   | 239.8 | 587.4    | 8.58   |
| % COV              | /        |          |         | 1.55    | 1.55     | 1.55    | 3.83       | 3.94  | 3.94     | 3.94   | 4.43  | 4.43     | 4.43   | 2.46  | 2.46     | 2.46   |

| Percent Retained |  | 92.5 | 92.5 | 92.5 | 86.4 | 95.8 | 95.8 | 95.8 | 103.0 | 103.0 | 103.0 | 102.0 | 102.0 | 102.0 |
|------------------|--|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|
| RFid             |  | 1.08 | 1.08 | 1.08 |      |      |      |      |       |       | ľ     |       | ſ     |       |

# Table D-9. Installation damage wide width tensile test results for 24XT geogrid, soil gradation 3.Installation damage testing (ASTM D 5818, as modified in WSDOT T925).Wide wide tensile testing (ASTM D 6637, Method B).

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load | Load     | Load   | Load  | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|------|----------|--------|-------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2% | @ 2%     | @ 2%   | @ 5%  | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs  | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 12.25    | 5       | 12257   | 30030    | 438.4   | 13.3       | 2386 | 5846     | 85.35  | 3743  | 9170     | 133.9  | 9829  | 24080    | 351.6  |
| 24XT               | 2        | 12.25    | 5       | 12369   | 30305    | 442.4   | 13.7       | 2273 | 5569     | 81.30  | 3725  | 9127     | 133.3  | 9470  | 23202    | 338.8  |
| Baseline           | 3        | 12.25    | 5       | 11980   | 29352    | 428.5   | 12.8       | 2241 | 5491     | 80.17  | 3476  | 8515     | 124.3  | 9459  | 23175    | 338.3  |
|                    | 4        | 12.25    | 5       | 12136   | 29733    | 434.1   | 13.8       | 2151 | 5269     | 76.93  | 3548  | 8692     | 126.9  | 9533  | 23356    | 341.0  |
|                    | 5        | 12.25    | 5       | 12092   | 29626    | 432.5   | 12.9       | 2301 | 5638     | 82.32  | 3780  | 9262     | 135.2  | 9489  | 23247    | 339.4  |
|                    |          |          |         |         |          |         |            |      |          |        |       |          |        |       |          |        |
| Average            |          |          |         | 12167   | 29809    | 435.2   | 13.3       | 2270 | 5563     | 81.21  | 3654  | 8953     | 130.7  | 9556  | 23412    | 341.8  |
| Standard Deviation |          |          |         | 150.3   | 368.3    | 5.38    | 0.44       | 85.9 | 210.4    | 3.07   | 134.2 | 328.7    | 4.80   | 155.1 | 380      | 5.55   |
| % COV              |          |          |         | 1.24    | 1.24     | 1.24    | 3.28       | 3.78 | 3.78     | 3.78   | 3.67  | 3.67     | 3.67   | 1.62  | 1.62     | 1.62   |

#### Machine Direction

|                    |          | Ribs per | Number  | Maximum | Maximum  | Maximum | Elongation | Load   | Load     | Load   | Load  | Load     | Load   | Load  | Load     | Load   |
|--------------------|----------|----------|---------|---------|----------|---------|------------|--------|----------|--------|-------|----------|--------|-------|----------|--------|
| Sample             | Specimen | Foot     | of Ribs | Load    | Load     | Load    | @ Break    | @ 2%   | @ 2%     | @ 2%   | @ 5%  | @ 5%     | @ 5%   | @ 10% | @ 10%    | @ 10%  |
| Identification     | Number   | Width    | Tested  | (lbs)   | (lbs/ft) | (kN/m)  | (%)        | lbs    | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) | lbs   | (lbs/ft) | (kN/m) |
|                    | 1        | 12.25    | 5       | 10938   | 26798    | 391.2   | 11.1       | 2159   | 5290     | 77.24  | 3832  | 9389     | 137.1  | 9666  | 23682    | 345.8  |
| 24XT               | 2        | 12.25    | 5       | 11020   | 26999    | 394.2   | 11.6       | 2094   | 5130     | 74.89  | 3501  | 8578     | 125.2  | 9845  | 24120    | 352.1  |
| installed in       | 3        | 12.25    | 5       | 11546   | 28287    | 413.0   | 11.6       | 2318   | 5680     | 82.93  | 3895  | 9542     | 139.3  | 10087 | 24713    | 360.8  |
| Gradation 3        | 4        | 12.25    | 5       | 10942   | 26808    | 391.4   | 11.6       | 2189   | 5363     | 78.30  | 3621  | 8870     | 129.5  | 9610  | 23546    | 343.8  |
| (Sand)             | 5        | 12.25    | 5       | 11367   | 27849    | 406.6   | 11.2       | 2117   | 5187     | 75.74  | 3631  | 8896     | 129.9  | 10082 | 24700    | 360.6  |
|                    | 6        | 12.25    | 5       | 11698   | 28661    | 418.5   | 11.8       | 2284   | 5595     | 81.69  | 3633  | 8900     | 129.9  | 9917  | 24297    | 354.7  |
|                    | 7        | 12.25    | 5       | 11237   | 27530    | 401.9   | 11.8       | 2382   | 5837     | 85.22  | 3945  | 9666     | 141.1  | 9858  | 24152    | 352.6  |
|                    | 8        | 12.25    | 5       | 10888   | 26677    | 389.5   | 11.4       | 2215   | 5427     | 79.23  | 3579  | 8769     | 128.0  | 9650  | 23643    | 345.2  |
|                    | 9        | 12.25    | 5       | 10641   | 26071    | 380.6   | 10.8       | 2212   | 5420     | 79.13  | 3581  | 8773     | 128.1  | 9576  | 23461    | 342.5  |
|                    | 10       | 12.25    | 5       | 11023   | 27007    | 394.3   | 11.0       | 2040   | 4999     | 72.98  | 3509  | 8597     | 125.5  | 9427  | 23096    | 337.2  |
| Average            |          |          |         | 11130   | 27269    | 200.1   | 11.4       | 2201   | 5202     | 70 70  | 2672  | 0000     | 131.4  | 9772  | 220.44   | 240 5  |
| Average            |          |          |         |         |          | 398.1   |            | 2201   | 5393     | 78.73  | 3673  | 8998     |        | -     | 23941    | 349.5  |
| Standard Deviation |          |          |         | 326.0   | 799      | 11.66   | 0.34       | 105.46 | 258.37   | 3.77   | 159.3 | 390.4    | 5.70   | 220.8 | 540.9    | 7.90   |
| % COV              | /        |          |         | 2.93    | 2.93     | 2.93    | 2.97       | 4.79   | 4.79     | 4.79   | 4.34  | 4.34     | 4.34   | 2.26  | 2.26     | 2.26   |

| Percent Retained |  | 91.5 | 91.5 | 91.5 | 85.6 | 96.9 | 96.9 | 96.9 | 100.5 | 100.5 | 100.5 | 102.3 | 102.3 | 102.3 |
|------------------|--|------|------|------|------|------|------|------|-------|-------|-------|-------|-------|-------|
| RFid             |  | 1.09 | 1.09 | 1.09 |      |      |      |      |       |       |       |       |       |       |

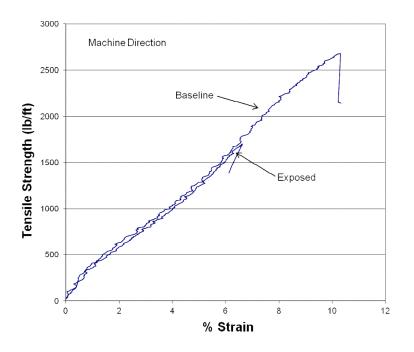



Figure D-1. Example baseline and exposed wide width tensile test load-strain curves for 2XT geogrid installed in soil gradation 1.

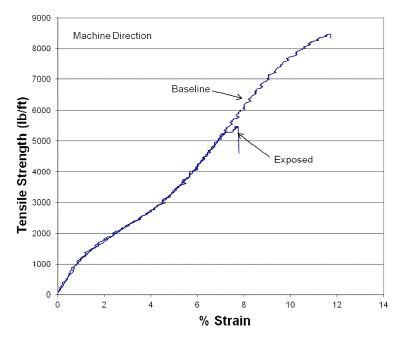



Figure D-2. Example baseline and exposed wide width tensile test load-strain curves for 8XT geogrid installed in soil gradation 1.

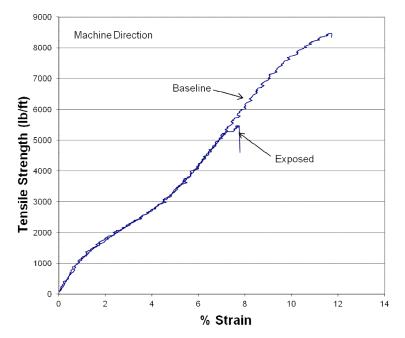



Figure D-3. Example baseline and exposed wide width tensile test load-strain curves for 24XT geogrid installed in soil gradation 1.

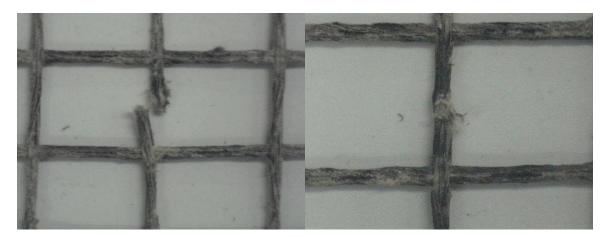



Figure D-4. Photos of typical visual damage of 2XT installed in soil gradation 1.

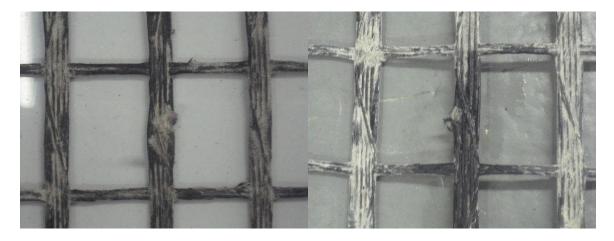



Figure D-5. Photos of typical visual damage of 8XT installed in soil gradation 1.

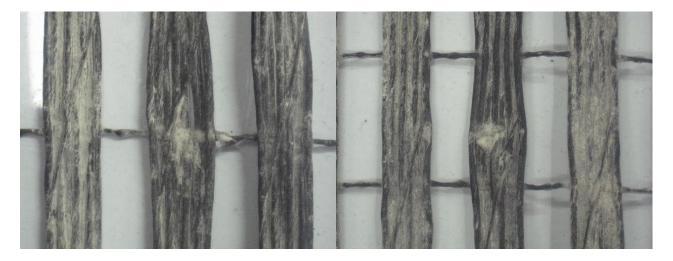



Figure D-6. Photos of typical visual damage of 24XT installed in soil gradation 1.

|           | Standard 1  | Installation Damage | e Soils Used for Field Expos | sures             |
|-----------|-------------|---------------------|------------------------------|-------------------|
| US Sieve  | Sieve Size  |                     | Percent Passing by Weight    | t                 |
| No.       | (mm)        | Type 1              | Type2                        | Type 3            |
| 110       | (1111)      | (Coarse Gravel)     | (Sandy Gravel)               | (Silty Sand)      |
| 6 - in    | 150         | 100.0               | 100.0                        | 100.0             |
| 3 - in.   | 75          | 100.0               | 100.0                        | 100.0             |
| 2 - in.   | 50          | 100.0               | 100.0                        | 100.0             |
| 1.5 - in. | 38          |                     | 100.0                        | 100.0             |
| 1 - in.   | 25          | 65.8                | 100.0                        | 100.0             |
| 3/4 - in. | 19          | 25.4                | 100.0                        | 100.0             |
| 1/2 - in. | 12.5        |                     |                              | 100.0             |
| 3/8 - in. | 9.5         | 1.3                 | 98.7                         | 100.0             |
| No. 4     | 4.75        | 1.0                 | 33.8                         | 99.8              |
| No. 10    | 1.7         | 0.9                 | 0.0                          | 79.5              |
| No. 20    | 0.85        | 0.8                 | 0.0                          | 42.1              |
| No. 40    |             |                     | 0.0                          | 28.7              |
| No. 60    | 0.25        | 0.0                 | 0.0                          | 23.8              |
| No. 100   | 0.15        | 0.0                 | 0.0                          | 21.2              |
| No. 200   | 0.075       | 0.0                 | 0.0                          | 18.4              |
| D50       | ), mm       | 22.6                | 5.9                          | 1.1               |
| LA A      | brasion     |                     |                              |                   |
| Smal      | l Drum      | 20.2% loss          | 12.6% loss                   |                   |
| Met       | hod B       | 20.2% 1088          | 12.0% 1088                   |                   |
| 500       | Cycles      |                     |                              |                   |
| Liquid    | Limit, %    | -                   | -                            | -                 |
| Plasticit | y Index, %  | -                   | -                            | -                 |
|           | ularity     | Angular to          | Angular                      | Angular to        |
| (ASTM     | [ D 2488 )  | Subangular          | Angular                      | Subangular        |
|           |             | GP                  | GP                           | SM                |
| Soil Cla  | ssification | Poorly Graded       | Poorly Graded Gravel with    | Well Graded Silty |
|           |             | Gravel              | Sand                         | Sand              |

# Table D-10. Standard test soil gradations (% passing).



Figure D-7. Lifting Plates positioned between ties and covered with first lift of compacted soil/aggregate.



Figure D-8. Grid positioned over compacted base and covered. Cover soil/aggregate is uniformly spread and compacted using field-scale equipment and procedures.



Figure D-9. The density of the compacted soil is measured with a nuclear density gauge.



Figure D-10. The steel plates are tilted to facilitate exhumation.

# Appendix E: ISO/EN Laboratory Installation Damage Detailed Test Results

# E.1 ISO/EN Laboratory Installation Damage Test Program

Testing is done per the EN/ISO 10722. Five wide width tensile specimens are exposed to 200 cycles producing between 209  $lb/ft^2$  (10 kPa) minimum and 10,443  $lb/ft^2$  (500 kPa) maximum stress at a frequency of 1 Hz. The aggregate used is a sintered aluminum oxide with a grain size such that 100% shall pass a 10 mm sieve and 0% shall pass a 5 mm sieve. The exposed specimens and five baseline specimens are tested according to ISO/EN 10319.

Representative photos of test apparatus and aggregate are provided in Figures E-1 and E-2. Detailed test results are provided in Tables E-1 through E-9.



Figure E-1. ISO/EN 10722, laboratory installation damage test apparatus.



Figure E-2. ISO/EN 10722, laboratory installation damage aggregate.

### Table E-1. Laboratory installation damage (ISO/EN 10722) tensile test results for 2XT

#### TRI Log #: E2280-56-08

| PARAMETER                           | TECT DE | DUCAT  |          | ъ      |      | MEAN       | STD.<br>DEV. | COEF.<br>VARI. | PERC  |
|-------------------------------------|---------|--------|----------|--------|------|------------|--------------|----------------|-------|
| PARAMEIER                           | 1 1     | PLICAT |          | к<br>4 | 5    | <br>IVIEAN | DEV.         | VARI.          | RETAI |
| Laboratory Installation Damage (    | -       | _      | 3        | 4      | J    |            |              |                |       |
| Strength Retained measured via wide |         | •      | /EN 1031 | 9)     |      |            |              |                |       |
| -                                   |         |        |          |        |      |            |              |                |       |
| MD Number of Ribs per Specimen:     | 8       |        |          |        |      |            |              |                |       |
| MD Number of Ribs per foot:         | 10.84   |        |          |        |      |            |              |                |       |
| MD - Tensile Strength (lbs) - B     | 2029    | 2038   | 2020     | 2044   | 1993 | 2025       | 20           | 1              |       |
| MD Tensile Strength (lbs/ft) - B    | 2750    | 2762   | 2737     | 2769   | 2701 | 2744       | 27           | 1              |       |
| MD Tensile Strength (kN/m) - B      | 40.1    | 40.3   | 40.0     | 40.4   | 39.4 | 40.1       | 0.4          | 1.0            |       |
|                                     | 10.1    | 10.0   | 10.0     | 10.1   | 00.1 |            | 0.1          | 1.0            |       |
| MD - Tensile Strength (lbs) - E     | 1622    | 1875   | 1960     | 1963   | 1998 | 1884       | 153          | 8              |       |
| MD Tensile Strength (lbs/ft) - E    | 2198    | 2541   | 2655     | 2660   | 2707 | 2552       | 207          | 8              | 93    |
| MD Tensile Strength (kN/m) - E      | 32.1    | 37.1   | 38.8     | 38.8   | 39.5 | 37.3       | 3.0          | 8.1            |       |
|                                     |         |        |          |        |      |            |              |                |       |
| MD - Elong. @ Max. Load (%) - B     | 10.7    | 10.7   | 10.6     | 10.6   | 10.2 | 10.5       | 0.2          | 2.2            |       |
| MD - Elong. @ Max. Load (%) - E     | 8.5     | 9.6    | 10.0     | 9.8    | 10.1 | 9.6        | 0.6          | 6.7            | 91    |
|                                     |         |        |          |        |      |            |              |                |       |
| B - Baseline Unexposed              |         |        |          |        |      |            |              |                |       |
| E - Exposed                         |         |        |          |        |      |            |              |                |       |
|                                     | 12      |        |          |        |      |            |              |                |       |

MD - Machine Direction TD - Transverse/Cross Machine Direction

### Table E-2. Laboratory installation damage (ISO/EN 10722) tensile test results for 3XT

#### TRI Log #: E2280-56-08

| PARAMETER                          | TEST DE |      | E NUM BE | P    |      | I | MEAN | STD.<br>DEV. | COEF.<br>VARI. | PERCENT<br>RETAINED |
|------------------------------------|---------|------|----------|------|------|---|------|--------------|----------------|---------------------|
|                                    | 1       | 2    | 3        | 4    | 5    |   |      | DEV.         | V AIN          |                     |
| Laboratory Installation Damage (   | -       | _    | Ū        | -    | Ū    |   |      |              |                |                     |
| Strength Retained measured via wid | •       |      | /EN 1031 | 9)   |      |   |      |              |                |                     |
| MD Number of Ribs per Specimen:    | 8       |      |          |      |      |   |      |              |                |                     |
| MD Number of Ribs per foot:        | 11.20   |      |          |      |      |   |      |              |                |                     |
| MD - Tensile Strength (lbs) - B    | 2884    | 2970 | 2929     | 2922 | 2899 |   | 2921 | 33           | 1              |                     |
| MD Tensile Strength (lbs/ft) - B   | 4038    | 4158 | 4100     | 4091 | 4059 |   | 4089 | 46           | 1              |                     |
| MD Tensile Strength (kN/m) - B     | 58.9    | 60.7 | 59.9     | 59.7 | 59.3 |   | 59.7 | 0.7          | 1.1            |                     |
| MD - Tensile Strength (lbs) - E    | 2898    | 2874 | 2787     | 2921 | 2806 |   | 2857 | 58           | 2              |                     |
| MD Tensile Strength (lbs/ft) - E   | 4057    | 4024 | 3902     | 4089 | 3928 |   | 4000 | 81           | 2              | 98                  |
| MD Tensile Strength (kN/m) - E     | 59.2    | 58.7 | 57.0     | 59.7 | 57.4 |   | 58.4 | 1.2          | 2.0            |                     |
| MD - Elong. @ Max. Load (%) - B    | 10.1    | 10.6 | 10.4     | 10.3 | 10.0 |   | 10.3 | 0.2          | 2.3            |                     |
| MD - Elong. @ Max. Load (%) - E    | 10.1    | 10.2 | 9.4      | 10.5 | 9.5  |   | 9.9  | 0.5          | 4.6            | 97                  |
| B - Baseline Unexposed             |         |      |          |      |      |   |      |              |                |                     |
| E - Exposed                        |         |      |          |      |      |   |      |              |                |                     |
|                                    |         |      |          |      |      |   |      |              |                |                     |

MD - Machine Direction TD - Transverse/Cross Machine Direction

### Table E-3. Laboratory installation damage (ISO/EN 10722) tensile test results for 5XT

#### TRI Log #: E2280-56-08

| PARAMETER                          | TEST RE      |            | E NUM BE | R    |      | MEAN | STD.<br>DEV. | COEF.<br>VARI. | PERCENT |
|------------------------------------|--------------|------------|----------|------|------|------|--------------|----------------|---------|
|                                    | 1            | 2          | 3        | 4    | 5    |      | 2211         | .,             |         |
| Laboratory Installation Damage (   | ISO/EN 10    | 722)       | -        |      | -    |      |              |                |         |
| Strength Retained measured via wid | e w idth tei | nsile (ISC | /EN 1031 | 9)   |      |      |              |                |         |
|                                    |              |            |          |      |      |      |              |                |         |
| MD Number of Ribs per Specimen:    | 8            |            |          |      |      |      |              |                |         |
| MD Number of Ribs per foot:        | 10.91        |            |          |      |      |      |              |                |         |
| MD - Tensile Strength (lbs) - B    | 3825         | 3843       | 3885     | 3788 | 3776 | 3823 | 44           | 1              |         |
| MD Tensile Strength (lbs/ft) - B   | 5216         | 5241       | 5298     | 5165 | 5149 | 5214 | 60           | 1              |         |
| MD Tensile Strength (kN/m) - B     | 76.2         | 76.5       | 77.3     | 75.4 | 75.2 | 76.1 | 0.9          | 1.1            |         |
|                                    | 70.2         | 70.5       | 11.5     | 75.4 | 15.2 | 70.1 | 0.9          | 1.1            |         |
| MD - Tensile Strength (lbs) - E    | 3566         | 3592       | 3747     | 3727 | 3692 | 3665 | 81           | 2              |         |
| MD Tensile Strength (lbs/ft) - E   | 4862         | 4899       | 5110     | 5083 | 5035 | 4998 | 111          | 2              | 96      |
| MD Tensile Strength (kN/m) - E     | 71.0         | 71.5       | 74.6     | 74.2 | 73.5 | 73.0 | 1.6          | 2.2            |         |
|                                    |              |            |          |      |      |      |              |                |         |
| MD - Elong. @ Max. Load (%) - B    | 10.9         | 11.7       | 11.7     | 11.6 | 11.3 | 11.4 | 0.4          | 3.1            |         |
| MD - Elong. @ Max. Load (%) - E    | 10.2         | 11.1       | 10.6     | 11.5 | 11.2 | 10.9 | 0.5          | 4.7            | 95      |
|                                    |              |            |          |      |      |      |              |                |         |
| B - Baseline Unexposed             |              |            |          |      |      |      |              |                |         |
| E - Exposed                        |              |            |          |      |      |      |              |                |         |
|                                    |              |            |          |      |      |      |              |                |         |

MD - Machine Direction TD - Transverse/Cross Machine Direction

### Table E-4. Laboratory installation damage (ISO/EN 10722) tensile test results for 7XT

#### TRI Log #: E2280-56-08

|                                    | TFOT D      |            |          | -    |      |          | STD. | COEF. | PERCENT  |
|------------------------------------|-------------|------------|----------|------|------|----------|------|-------|----------|
| PARAMETER                          | -           | -          |          |      |      | <br>MEAN | DEV. | VARI. | RETAINED |
|                                    | 1           | 2          | 3        | 4    | 5    |          |      |       |          |
| Laboratory Installation Damage (   | •           |            |          |      |      |          |      |       |          |
| Strength Retained measured via wid | e width tei | nsile (ISO | /EN 1031 | 9)   |      |          |      |       |          |
| MD Number of Ribs per Specimen:    | 8           |            |          |      |      |          |      |       |          |
| MD Number of Ribs per foot:        | 10.79       |            |          |      |      |          |      |       |          |
| MD - Tensile Strength (lbs) - B    | 4808        | 4850       | 4632     | 4694 | 4713 | 4740     | 88   | 2     |          |
| MD Tensile Strength (lbs/ft) - B   | 6485        | 6542       | 6248     | 6331 | 6357 | 6393     | 119  | 2     |          |
| <b>o</b> ( )                       |             |            |          |      |      |          | -    |       |          |
| MD Tensile Strength (kN/m) - B     | 94.7        | 95.5       | 91.2     | 92.4 | 92.8 | 93.3     | 1.7  | 1.9   |          |
| MD - Tensile Strength (lbs) - E    | 4182        | 4511       | 4531     | 4242 | 3981 | 4289     | 232  | 5     |          |
| MD Tensile Strength (lbs/ft) - E   | 5641        | 6084       | 6111     | 5721 | 5370 | 5785     | 313  | 5     | 91       |
| MD Tensile Strength (kN/m) - E     | 82.4        | 88.8       | 89.2     | 83.5 | 78.4 | 84.5     | 4.6  | 5.4   |          |
|                                    |             |            |          |      |      |          |      |       |          |
| MD - Elong. @ Max. Load (%) - B    | 11.1        | 10.8       | 10.2     | 10.9 | 10.8 | 10.8     | 0.4  | 3.4   |          |
| MD - Elong. @ Max. Load (%) - E    | 9.2         | 9.4        | 9.4      | 8.9  | 8.1  | 9.0      | 0.5  | 5.9   | 84       |
|                                    |             |            |          |      |      |          |      |       |          |
| B - Baseline Unexposed             |             |            |          |      |      |          |      |       |          |
| E - Exposed                        |             |            |          |      |      |          |      |       |          |
|                                    |             |            |          |      |      |          |      |       |          |

MD - Machine Direction TD - Transverse/Cross Machine Direction

### Table E-5. Laboratory installation damage (ISO/EN 10722) tensile test results for 8XT

#### TRI Log #: E2280-56-08

|                                    | TECT D        |            |          | <b>D</b> |      |          | STD. | COEF. | PERCENT  |
|------------------------------------|---------------|------------|----------|----------|------|----------|------|-------|----------|
| PARAMETER                          | -             | -          |          |          | 5    | <br>MEAN | DEV. | VARI. | RETAINED |
|                                    |               | 2          | 3        | 4        | Э    |          |      |       |          |
| Laboratory Installation Damage (   | •             | ,          |          | 0)       |      |          |      |       |          |
| Strength Retained measured via wid | ie w lath tei | nsile (ISO | /EN 1031 | 9)       |      |          |      |       |          |
| MD Number of Ribs per Specimen:    | 8             |            |          |          |      |          |      |       |          |
| MD Number of Ribs per foot:        | 10.84         |            |          |          |      |          |      |       |          |
| ·                                  |               |            |          |          |      |          |      |       |          |
| MD - Tensile Strength (lbs) - B    | 6018          | 6248       | 6192     | 6305     | 6333 | 6219     | 125  | 2     |          |
| MD Tensile Strength (lbs/ft) - B   | 8154          | 8465       | 8390     | 8542     | 8580 | 8426     | 169  | 2     |          |
| MD Tensile Strength (kN/m) - B     | 119           | 124        | 122      | 125      | 125  | 123      | 2    | 2     |          |
| 2                                  |               |            |          |          |      |          |      |       |          |
| MD - Tensile Strength (lbs) - E    | 5867          | 5372       | 5482     | 5816     | 6011 | 5709     | 271  | 5     |          |
| MD Tensile Strength (lbs/ft) - E   | 7948          | 7278       | 7427     | 7879     | 8145 | 7735     | 367  | 5     | 92       |
| MD Tensile Strength (kN/m) - E     | 116           | 106        | 108      | 115      | 119  | 113      | 5    | 5     |          |
|                                    |               |            |          |          |      |          |      |       |          |
| MD - Elong. @ Max. Load (%) - B    | 10.6          | 11.7       | 11.4     | 11.8     | 15.0 | 12.1     | 1.7  | 14.0  |          |
| MD - Elong. @ Max. Load (%) - E    | 10.7          | 9.7        | 9.8      | 10.7     | 10.5 | 10.3     | 0.5  | 4.8   | 85       |
| 5                                  | -             |            | -        |          |      |          |      | -     |          |
| B - Baseline Unexposed             |               |            |          |          |      |          |      |       |          |
| E - Exposed                        |               |            |          |          |      |          |      |       |          |
| •                                  |               |            |          |          |      |          |      |       |          |

MD - Machine Direction TD - Transverse/Cross Machine Direction

### Table E-6. Laboratory installation damage (ISO/EN 10722) tensile test results for 10XT

#### TRI Log #: E2280-56-08

| PARAMETER                           | TEST RE    | PLICATI    | FNUMBE   | R     |      | MEAN  | STD.<br>Dev. | COEF.<br>VARI. | PERCENT<br>RETAINED |
|-------------------------------------|------------|------------|----------|-------|------|-------|--------------|----------------|---------------------|
|                                     | 1          | 2          | 3        | 4     | 5    |       | DEV.         | <b>V</b> AIU.  |                     |
| Laboratory Installation Damage (    | ISO/EN 10  | 722)       | -        | -     | -    |       |              |                |                     |
| Strength Retained measured via wide | e width te | nsile (ISO | /EN 1031 | 9)    |      |       |              |                |                     |
|                                     |            |            |          |       |      |       |              |                |                     |
| MD Number of Ribs per Specimen:     | 8          |            |          |       |      |       |              |                |                     |
| MD Number of Ribs per foot:         | 10.79      |            |          |       |      |       |              |                |                     |
| MD - Tensile Strength (lbs) - B     | 8011       | 8052       | 8031     | 7880  | 7408 | 7876  | 270          | 3              |                     |
| MD Tensile Strength (lbs/ft) - B    | 10804      | 10860      | 10832    | 10628 | 9992 | 10623 | 364          | 3              |                     |
| MD Tensile Strength (kN/m) - B      | 158        | 159        | 158      | 155   | 146  | 155   | 5            | 3              |                     |
|                                     |            |            |          |       |      |       |              |                |                     |
| MD - Tensile Strength (lbs) - E     | 7467       | 7147       | 7245     | 7163  | 6968 | 7198  | 181          | 3              | -                   |
| MD Tensile Strength (lbs/ft) - E    | 10071      | 9640       | 9772     | 9662  | 9397 | 9708  | 245          | 3              | 91                  |
| MD Tensile Strength (kN/m) - E      | 147        | 141        | 143      | 141   | 137  | 142   | 4            | 3              |                     |
| MD - Elong. @ Max. Load (%) - B     | 11.5       | 11.9       | 12.2     | 11.7  | 10.9 | 11.6  | 0.5          | 4.3            |                     |
| <b>o</b> ( )                        | -          | -          |          |       |      | -     |              |                | 00                  |
| MD - Elong. @ Max. Load (%) - E     | 10.3       | 9.8        | 10.4     | 10.1  | 9.7  | 10.0  | 0.3          | 2.9            | 86                  |
| B - Baseline Unexposed              |            |            |          |       |      |       |              |                |                     |
| E - Exposed                         |            |            |          |       |      |       |              |                |                     |
|                                     |            |            |          |       |      |       |              |                |                     |

MD - Machine Direction TD - Transverse/Cross Machine Direction

#### Table E-7. Laboratory installation damage (ISO/EN 10722) tensile test results for 20XT

#### TRI Log #: E2280-56-08

|                                     | TFOT D      |            |          | -     |       |       | STD. | COEF. | PERCE  |
|-------------------------------------|-------------|------------|----------|-------|-------|-------|------|-------|--------|
| PARAMETER                           | -           | PLICATI    | -        |       |       | MEAN  | DEV. | VARI. | RETAIN |
|                                     |             | 2          | 3        | 4     | 5     |       |      |       |        |
| Laboratory Installation Damage (    |             |            |          | •     |       |       |      |       |        |
| Strength Retained measured via wide | e width tei | nsile (ISO | /EN 1031 | 9)    |       |       |      |       |        |
| MD Number of Ribs per Specimen:     | 9           |            |          |       |       |       |      |       |        |
| MD Number of Ribs per foot:         | 12.15       |            |          |       |       |       |      |       |        |
|                                     |             |            |          |       |       |       |      |       |        |
| MD - Tensile Strength (lbs) - B     | 12343       | 12308      | 12401    | 12083 | 11956 | 12218 | 190  | 2     |        |
| MD Tensile Strength (lbs/ft) - B    | 16850       | 16802      | 16929    | 16495 | 16322 | 16680 | 259  | 2     |        |
| MD Tensile Strength (kN/m) - B      | 246         | 245        | 247      | 241   | 238   | 244   | 4    | 2     |        |
|                                     |             |            |          |       |       |       |      |       |        |
| MD - Tensile Strength (lbs) - E     | 11244       | 11914      | 11747    | 11407 | 11519 | 11566 | 267  | 2     |        |
| MD Tensile Strength (lbs/ft) - E    | 15350       | 16265      | 16037    | 15572 | 15726 | 15790 | 365  | 2     | 95     |
| MD Tensile Strength (kN/m) - E      | 224         | 237        | 234      | 227   | 230   | 231   | 5    | 2     |        |
|                                     |             |            |          |       |       |       |      |       |        |
| MD - Elong. @ Max. Load (%) - B     | 11.6        | 11.5       | 12.5     | 11.6  | 11.1  | 11.7  | 0.5  | 4.3   |        |
| MD - Elong. @ Max. Load (%) - E     | 9.6         | 10.7       | 10.4     | 9.7   | 10.4  | 10.2  | 0.5  | 4.4   | 87     |
|                                     |             |            |          |       |       |       |      |       |        |
| B - Baseline Unexposed              |             |            |          |       |       |       |      |       |        |
| E - Exposed                         |             |            |          |       |       |       |      |       |        |
|                                     |             |            |          |       |       |       |      |       |        |

MD - Machine Direction TD - Transverse/Cross Machine Direction

### Table E-8. Laboratory installation damage (ISO/EN 10722) tensile test results for 22XT

#### TRI Log #: E2280-56-08

| PARAMETER                          | TEST RE     |            | E NUM BE | R     |       | MEAN  | STD.<br>DEV. | COEF.<br>Vari. | PERCE<br>RETAIN |
|------------------------------------|-------------|------------|----------|-------|-------|-------|--------------|----------------|-----------------|
|                                    | 1           | 2          | 3        | 4     | 5     |       |              | VAIG.          |                 |
| Laboratory Installation Damage (   | ISO/EN 10   | 722)       | -        | -     | -     |       |              |                |                 |
| Strength Retained measured via wid | e width tei | nsile (ISO | /EN 1031 | 9)    |       |       |              |                |                 |
| MD Number of Ribs per Specimen:    | 9           |            |          |       |       |       |              |                |                 |
| MD Number of Ribs per foot:        | 12.41       |            |          |       |       |       |              |                |                 |
| MD - Tensile Strength (lbs) - B    | 15712       | 16510      | 16915    | 17280 | 16986 | 16680 | 607          | 4              |                 |
| MD Tensile Strength (lbs/ft) - B   | 22412       | 23551      | 24128    | 24649 | 24229 | 23794 | 866          | 4              |                 |
| MD Tensile Strength (kN/m) - B     | 327         | 344        | 352      | 360   | 354   | 347   | 13           | 4              |                 |
| MD - Tensile Strength (lbs) - E    | 15814       | 15087      | 15581    | 15451 | 15272 | 15441 | 279          | 2              |                 |
| MD Tensile Strength (lbs/ft) - E   | 22557       | 21521      | 22225    | 22040 | 21784 | 22026 | 399          | 2              | 93              |
| MD Tensile Strength (kN/m) - E     | 329         | 314        | 324      | 322   | 318   | 322   | 6            | 2              |                 |
| MD - Elong. @ Max. Load (%) - B    | 11.1        | 11.3       | 12.0     | 12.2  | 12.1  | 11.7  | 0.5          | 4.5            |                 |
| MD - Elong. @ Max. Load (%) - E    | 10.7        | 10.6       | 10.8     | 10.7  | 10.6  | 10.7  | 0.1          | 1.0            | 91              |
| B - Baseline Unexposed             |             |            |          |       |       |       |              |                |                 |
| E - Exposed                        |             |            |          |       |       |       |              |                |                 |

MD - Machine Direction TD - Transverse/Cross Machine Direction

### Table E-9. Laboratory installation damage (ISO/EN 10722) tensile test results for 24XT

#### TRI Log #: E2280-56-08

|                                     | TFOT D       |            |          | -     |       |          | STD. | COEF. | PERC |
|-------------------------------------|--------------|------------|----------|-------|-------|----------|------|-------|------|
| PARAMETER                           | -            |            | -        |       | F     | <br>MEAN | DEV. | VARI. | RETA |
| Laboratory Installation Damage (    |              | 2          | 3        | 4     | 5     |          |      |       |      |
| Laboratory Installation Damage (    |              |            |          | 0)    |       |          |      |       |      |
| Strength Retained measured via wide | e wildth tei | nslie (ISO | /EN 1031 | 9)    |       |          |      |       |      |
| MD Number of Ribs per Specimen:     | 8            |            |          |       |       |          |      |       |      |
| MD Number of Ribs per foot:         | 12.25        |            |          |       |       |          |      |       |      |
|                                     |              |            |          |       |       |          |      |       |      |
| MD - Tensile Strength (lbs) - B     | 19647        | 19330      | 18984    | 19095 | 17806 | 18972    | 700  | 4     |      |
| MD Tensile Strength (lbs/ft) - B    | 30856        | 30358      | 29814    | 29988 | 27964 | 29796    | 1099 | 4     |      |
| MD Tensile Strength (kN/m) - B      | 450          | 443        | 435      | 438   | 408   | 435      | 16   | 4     |      |
|                                     |              |            |          |       |       |          |      |       |      |
| MD - Tensile Strength (lbs) - E     | 16962        | 16983      | 16858    | 16517 | 17110 | 16886    | 225  | 1     |      |
| MD Tensile Strength (lbs/ft) - E    | 26639        | 26672      | 26476    | 25940 | 26871 | 26520    | 353  | 1     | 89   |
| MD Tensile Strength (kN/m) - E      | 389          | 389        | 387      | 379   | 392   | 387      | 5    | 1     |      |
|                                     |              |            |          |       |       |          |      |       |      |
| MD - Elong. @ Max. Load (%) - B     | 13.1         | 13.8       | 14.1     | 14.9  | 13.0  | 13.8     | 0.8  | 5.8   |      |
| MD - Elong. @ Max. Load (%) - E     | 11.5         | 12.2       | 11.8     | 11.1  | 11.7  | 11.6     | 0.4  | 3.5   | 8    |
|                                     |              |            |          |       |       |          |      |       |      |
| B - Baseline Unexposed              |              |            |          |       |       |          |      |       |      |
| E - Exposed                         |              |            |          |       |       |          |      |       |      |
|                                     |              |            |          |       |       |          |      |       |      |

MD - Machine Direction TD - Transverse/Cross Machine Direction

# **Appendix F: Creep Rupture Detailed Test Results**

| 568n2m2xt701 | 3l11.xls                        | SUMMARY CREE |                     | NTPEP - Mirafi C | onstruction Products             | i                                    |                      |
|--------------|---------------------------------|--------------|---------------------|------------------|----------------------------------|--------------------------------------|----------------------|
| Specime      | en: <mark>568n2m2xtsim70</mark> | Test Date:   |                     |                  | SIM (10 <sup>4</sup> s, 14C),sin | <mark>igle rib, machine d</mark> ir. |                      |
|              | Average Creep Stress:           | 1874.6       | lb/ft               |                  |                                  | %UTS:                                | 70.00                |
| L            | JItimate Tensile Strength:      | 2678.0       | lb/ft               |                  |                                  | Rupture:                             | YES                  |
| Dwell Seq    | ť                               | t            | (t-t') <sub>i</sub> | Vshift(%)        | logA <sub>T</sub>                | Temp                                 | logA <sub>T</sub> /T |
| 1            | 0                               | 0.5          | 0.5                 | -                | -                                | 21.01                                | -                    |
| 2            | 9400                            | 10020        | 620                 | 0.09             | 1.2074                           | 34.82                                | 0.0875               |
| 3            | 19500                           | 20010        | 510                 | 0.09             | 1.3172                           | 48.61                                | 0.0955               |
| 4            | 29500                           | 30000        | 500                 | 0.1              | 1.3213                           | 62.52                                | 0.0950               |
| 5            | 39500                           | 39990        | 490                 | 0.08             | 1.3296                           | 76.69                                | 0.0938               |
| 6            |                                 |              |                     |                  |                                  |                                      |                      |
|              | Summary                         | Initial      | Final               | Units            | @20C refT                        | AVG                                  | 0.0929               |
|              | lab time                        | 41.0         | 46800               | sec              | -                                |                                      |                      |
|              | logA <sub>T</sub> (t-t')        | 1.6128       | 9.0388              | log hours        | 5.5711                           |                                      |                      |
|              | A <sub>T</sub> (t-t')           | -            | 34.65               | years            | 42.49                            |                                      |                      |
|              | Strain                          | 6.247        | 11.213              | %                | -                                |                                      |                      |
|              | Modulus                         | 23924.0      | 16746.4             | lb/ft            | -                                |                                      |                      |

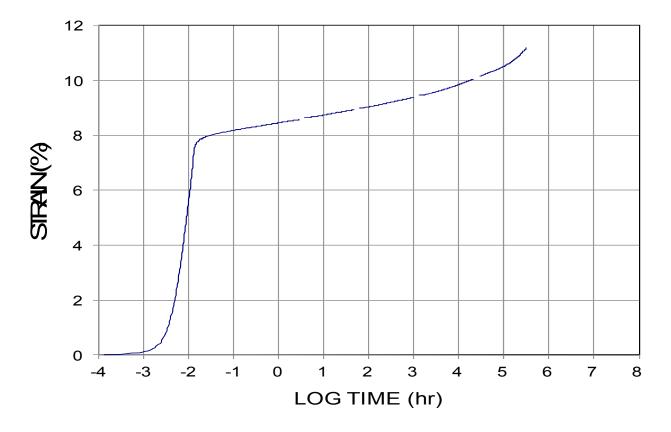



Figure F-1. SIM/Creep data/curve for 2XT at load level of 70.00% UTS.

| Accelerated | Creep | Rupture | via SIM - | ASTM D 6992 |
|-------------|-------|---------|-----------|-------------|
|-------------|-------|---------|-----------|-------------|

| 568n2m2xt742 | 26I11.xIs                  | SUMMARY CREE | P PARAMETERS:       | NTPEP - Mirafi Co | onstruction Products             | i                                    |                      |
|--------------|----------------------------|--------------|---------------------|-------------------|----------------------------------|--------------------------------------|----------------------|
|              |                            |              | 22                  | ХТ                |                                  |                                      |                      |
| Specim       | en: 568n2m2xtsim74         | Test Date:   | 26-Jul-11           | Method:           | SIM (10 <sup>4</sup> s, 14C),sin | <mark>igle rib, machine d</mark> ir. |                      |
|              | Average Creep Stress:      | 1981.6       | lb/ft               |                   |                                  | %UTS:                                | 73.99                |
| ι            | JItimate Tensile Strength: | 2678.0       | lb/ft               |                   |                                  | Rupture:                             | YES                  |
| Dwell Seq    | ť                          | t            | (t-t') <sub>i</sub> | Vshift(%)         | logA <sub>T</sub>                | Temp                                 | logA <sub>T</sub> /T |
| 1            | 0                          | 0.5          | 0.5                 | -                 | -                                | 20.81                                | -                    |
| 2            | 9400                       | 10020        | 620                 | 0.08              | 1.2073                           | 34.50                                | 0.0882               |
| 3            | 19400                      | 20010        | 610                 | 0.09              | 1.2393                           | 48.24                                | 0.0902               |
| 4            | 29400                      | 30000        | 600                 | 0.09              | 1.2461                           | 62.02                                | 0.0905               |
| 5            |                            |              |                     |                   |                                  |                                      |                      |
| 6            |                            |              |                     |                   |                                  |                                      |                      |
|              | Summary                    | Initial      | Final               | Units             | @20C refT                        | AVG                                  | 0.0896               |
|              | lab time                   | 56.0         | 33240               | sec               | -                                |                                      |                      |
|              | logA <sub>T</sub> (t-t')   | 1.7481       | 7.2770              | log hours         | 3.7918                           |                                      |                      |
|              | A <sub>T</sub> (t-t')      | -            | 0.60                | years             | 0.71                             |                                      |                      |
|              | Strain                     | 7.623        | 10.439              | %                 | -                                |                                      |                      |
|              | Modulus                    | 25996.3      | 18985.4             | lb/ft             | -                                |                                      |                      |

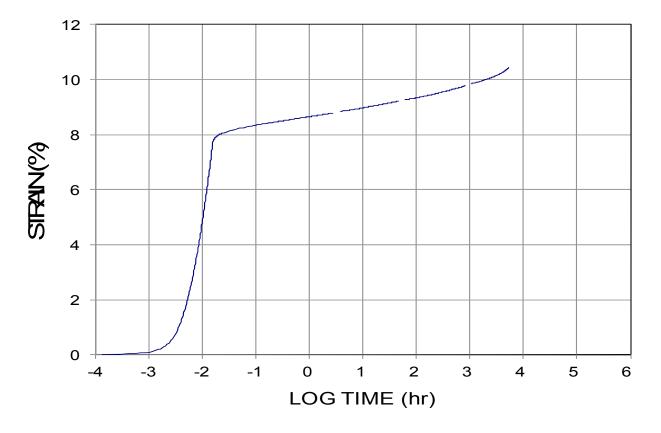



Figure F-2. SIM/Creep data/curve for 2XT at load level of 73.99% UTS.

| 568n2m2xt772 | 5l11.xls                   | SUMMARY CREE | P PARAMETER         | S: NTPEP - Mirafi Co<br>2XT | onstruction Products             | ;                                    |                      |
|--------------|----------------------------|--------------|---------------------|-----------------------------|----------------------------------|--------------------------------------|----------------------|
| Specim       | en: 568n2m2xtsim77         | Test Date    | 25-Jul-11           |                             | SIM (10 <sup>4</sup> s, 14C),sir | <mark>igle rib, machine d</mark> ir. |                      |
|              | Average Creep Stress:      | 2061.8       | lb/ft               |                             |                                  | %UTS:                                | 76.99                |
| ι            | JItimate Tensile Strength: | 2678.0       | lb/ft               |                             |                                  | Rupture:                             | YES                  |
| Dwell Seq    | ť                          | t            | (t-t') <sub>i</sub> | Vshift(%)                   | logA <sub>T</sub>                | Temp                                 | logA <sub>T</sub> /T |
| 1            | 0                          | 0.5          | 0.5                 | -                           | -                                | 20.77                                | -                    |
| 2            | 9400                       | 10020        | 620                 | 0.09                        | 1.2074                           | 34.57                                | 0.0875               |
| 3            | 19500                      | 20010        | 510                 | 0.09                        | 1.3172                           | 48.31                                | 0.0958               |
| 4            |                            |              |                     |                             |                                  |                                      |                      |
| 5            |                            |              |                     |                             |                                  |                                      |                      |
| 6            |                            |              |                     |                             |                                  |                                      |                      |
|              | Summary                    | Initial      | Final               | Units                       | @20C refT                        | AVG                                  | 0.0917               |
|              | lab time                   | 53.5         | 24390               | sec                         | -                                |                                      |                      |
|              | logA <sub>T</sub> (t-t')   | 1.7281       | 6.2138              | log hours                   | 2.7248                           |                                      |                      |
|              | A <sub>T</sub> (t-t')      | -            | 0.05                | years                       | 0.06                             |                                      |                      |
|              | Strain                     | 7.904        | 10.571              | %                           | -                                |                                      |                      |
|              | Modulus                    | 26085.2      | 19502.4             | lb/ft                       | -                                |                                      |                      |

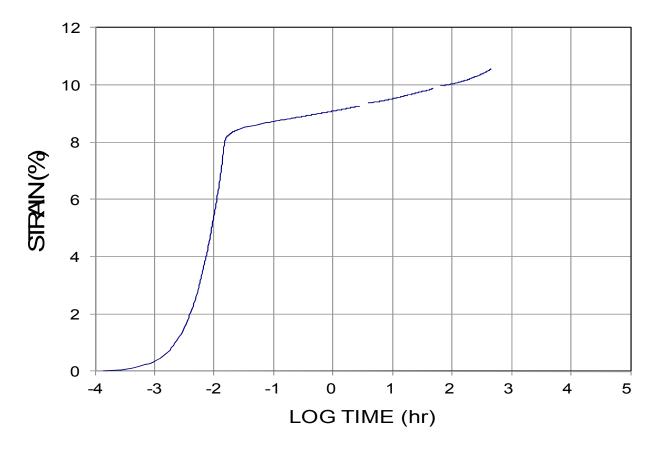



Figure F-3. SIM/Creep data/curve for 2XT at load level of 76.99% UTS.

| 568n2m2xt80 | 15l11.xls                  | SUMMARY CREE |                     | S: <mark>NTPEP - Mirafi Co</mark><br>2XT | onstruction Products             | i                                    |                      |
|-------------|----------------------------|--------------|---------------------|------------------------------------------|----------------------------------|--------------------------------------|----------------------|
| Specim      | nen: 568n2m2xtsim80        | Test Date:   |                     |                                          | SIM (10 <sup>4</sup> s, 14C),sir | <mark>igle rib, machine d</mark> ir. |                      |
|             | Average Creep Stress:      | 2142.4       | lb/ft               |                                          |                                  | %UTS:                                | 80.00                |
|             | Ultimate Tensile Strength: | 2678.0       | lb/ft               |                                          |                                  | Rupture:                             | YES                  |
| Dwell Seq   | ť                          | t            | (t-t') <sub>i</sub> | Vshift(%)                                | logA <sub>T</sub>                | Temp                                 | logA <sub>T</sub> /T |
| 1           | 0                          | 0.5          | 0.5                 | -                                        | -                                | 21.50                                | -                    |
| 2           | 9500                       | 10019        | 519                 | 0.05                                     | 1.2840                           | 35.42                                | 0.0923               |
| 3           | 19500                      | 20009        | 509                 | 0.05                                     | 1.3133                           | 52.52                                | 0.0768               |
| 4           |                            |              |                     |                                          |                                  |                                      |                      |
| 5           |                            |              |                     |                                          |                                  |                                      |                      |
| 6           |                            |              |                     |                                          |                                  |                                      |                      |
|             | Summary                    | Initial      | Final               | Units                                    | @20C refT                        | AVG                                  | 0.0837               |
|             | lab time                   | 49.2         | 20129               | sec                                      | -                                |                                      |                      |
|             | logA <sub>T</sub> (t-t')   | 1.6921       | 5.3962              | log hours                                | 1.9786                           |                                      |                      |
|             | A <sub>T</sub> (t-t')      | -            | 0.01                | years                                    | 0.01                             |                                      |                      |
|             | Strain                     | 8.343        | 11.125              | %                                        | -                                |                                      |                      |
|             | Modulus                    | 25681.4      | 19251.3             | lb/ft                                    | -                                |                                      |                      |

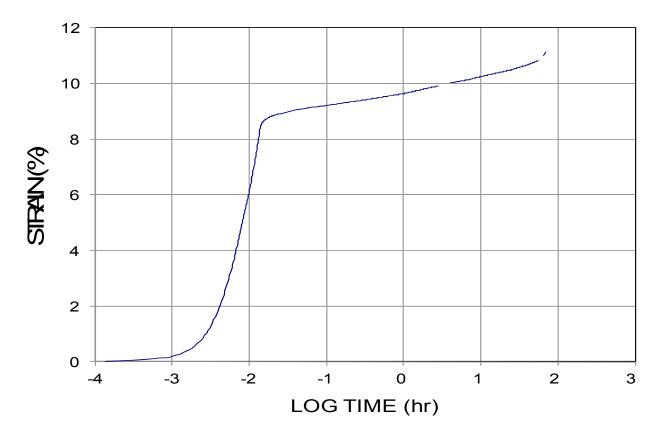



Figure F-4. SIM/Creep data/curve for 2XT at load level of 80.00% UTS.

| 568n2m8xt6519 | I11.xls                  | SUMMARY CREE           |                    |                | onstruction Products            |                                      |                      |
|---------------|--------------------------|------------------------|--------------------|----------------|---------------------------------|--------------------------------------|----------------------|
| Specimer      | n: 568n2m8xtsim65        | Test Date <sup>.</sup> | ۶<br>19-Jul-11     | 3XT<br>Method: | SIM (10 <sup>4</sup> s_14C) sin | <mark>igle rib, machine d</mark> ir. |                      |
| opeointer     | Average Creep Stress:    |                        | lb/ft              | Method.        |                                 | %UTS:                                | 64.35                |
| Ult           | timate Tensile Strength: |                        | lb/ft              |                |                                 | Rupture:                             | YES                  |
| Dwell Seq     | ť                        | t                      | (t-ť) <sub>i</sub> | Vshift(%)      | logA <sub>T</sub>               | Temp                                 | logA <sub>T</sub> /T |
| 1             | 0                        | 0.5                    | 0.5                | -              | -                               | 20.94                                | -                    |
| 2             | 9500                     | 10019                  | 519                | 0.09           | 1.2840                          | 34.81                                | 0.0926               |
| 3             | 19500                    | 20009                  | 509                | 0.09           | 1.3132                          | 48.70                                | 0.0945               |
| 4             | 29800                    | 29999                  | 199                | 0.09           | 1.7201                          | 62.72                                | 0.1227               |
| 5             | 39500                    | 39989                  | 489                | 0.1            | 1.3172                          | 76.73                                | 0.0940               |
| 6             | 49500                    | 49979                  | 479                | 0.12           | 1.3384                          | 90.87                                | 0.0947               |
|               | Summary                  | Initial                | Final              | Units          | @20C refT                       | AVG                                  | 0.0997               |
|               | lab time                 | 47.5                   | 51539              | sec            | -                               |                                      |                      |
|               | logA <sub>T</sub> (t-t') | 1.6767                 | 10.2824            | log hours      | 6.8129                          |                                      |                      |
|               | A <sub>T</sub> (t-t')    | -                      | 607.09             | years          | 741.52                          |                                      |                      |
|               | Strain                   | 7.036                  | 11.875             | %              | -                               |                                      |                      |
|               | Modulus                  | 69329.8                | 47223.1            | lb/ft          | -                               |                                      |                      |

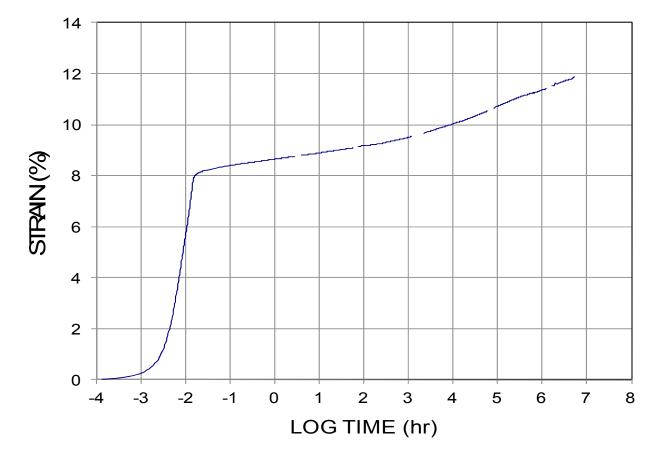



Figure F-5. SIM/Creep data/curve for 8XT at load level of 64.35% UTS.

| 568n2m8xt7029u11.xls | SUMMARY CREEP PARAMETERS: NTPEP - Mirafi Construction Products |  |
|----------------------|----------------------------------------------------------------|--|
|                      | 8XT                                                            |  |

| Accelerated Creep | Rupture via | a SIM - | ASTM D 6992 |
|-------------------|-------------|---------|-------------|
|-------------------|-------------|---------|-------------|

|           |                          |           |                          | 8XT       |                                  |                                     |                      |
|-----------|--------------------------|-----------|--------------------------|-----------|----------------------------------|-------------------------------------|----------------------|
| Specimen: | 568n2m8xtsim70           | Test Date | : <mark>29-Jun-11</mark> | Method:   | SIM (10 <sup>4</sup> s, 14C),sin | <mark>gle rib, machine d</mark> ir. |                      |
| A         | verage Creep Stress:     | 6039.0    | lb/ft                    |           |                                  | %UTS:                               | 69.30                |
| Ultim     | ate Tensile Strength:    | 8714.4    | lb/ft                    |           |                                  | Rupture:                            | YES                  |
| Dwell Seq | ť                        | t         | (t-t') <sub>i</sub>      | Vshift(%) | logA <sub>T</sub>                | Temp                                | logA <sub>T</sub> /T |
| 1         | 0                        | 0.5       | 0.5                      | -         | -                                | 21.54                               | -                    |
| 2         | 9400                     | 10020     | 620                      | 0.07      | 1.2074                           | 35.41                               | 0.0870               |
| 3         | 19600                    | 20010     | 410                      | 0.07      | 1.4121                           | 49.30                               | 0.1017               |
| 4         | 29200                    | 30000     | 800                      | 0.1       | 1.1129                           | 63.24                               | 0.0798               |
| 5         | 39300                    | 39990     | 690                      | 0.1       | 1.1932                           | 77.23                               | 0.0853               |
| 6         | 49400                    | 49980     | 580                      | 0.12      | 1.2642                           | 91.32                               | 0.0897               |
|           | Summary                  | Initial   | Final                    | Units     | @20C refT                        | AVG                                 | 0.0887               |
| ſ         | lab time                 | 47.5      | 50670                    | sec       | -                                |                                     |                      |
|           | logA <sub>T</sub> (t-t') | 1.6767    | 9.2935                   | log hours | 5.8708                           |                                     |                      |
|           | A <sub>T</sub> (t-t')    | -         | 62.28                    | years     | 84.73                            |                                     |                      |
|           | Strain                   | 6.995     | 11.988                   | %         | -                                |                                     |                      |
|           | Modulus                  | 68358.9   | 50376.9                  | lb/ft     | -                                |                                     |                      |

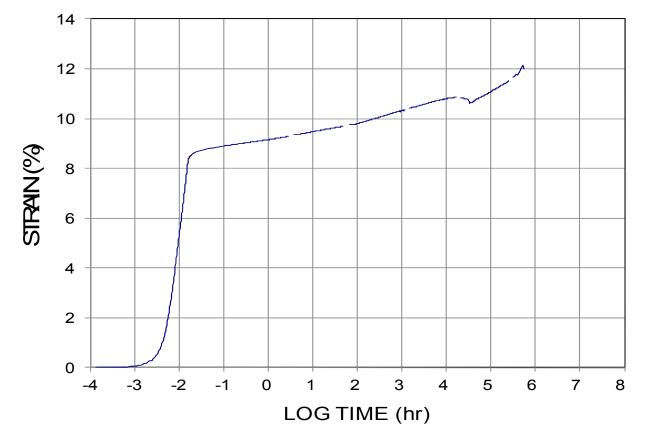



Figure F-6. SIM/Creep data/curve for 8XT at load level of 69.30% UTS.

| 568n2m8xt7201l1 | 1.xls                    | SUMMARY CREE |                     |                | onstruction Products                          | 3                                    |                      |
|-----------------|--------------------------|--------------|---------------------|----------------|-----------------------------------------------|--------------------------------------|----------------------|
| Specimen:       | 568n2m8xtsim72.5         | Test Date:   |                     | 3XT<br>Method: | : <mark>SIM (10<sup>4</sup>s, 14C),sir</mark> | <mark>ngle rib, machine d</mark> ir. |                      |
| A               | Average Creep Stress:    | 6254.7       | lb/ft               |                |                                               | %UTS:                                | 71.77                |
| Ultir           | nate Tensile Strength:   | 8714.4       | lb/ft               |                |                                               | Rupture:                             | YES                  |
| Dwell Seq       | ť                        | t            | (t-t') <sub>i</sub> | Vshift(%)      | logA <sub>T</sub>                             | Temp                                 | logA <sub>T</sub> /T |
| 1               | 0                        | 0.5          | 0.5                 | -              | -                                             | 20.68                                | -                    |
| 2               | 9500                     | 10019        | 519                 | 0.12           | 1.2840                                        | 34.85                                | 0.0906               |
| 3               | 19600                    | 20009        | 409                 | 0.14           | 1.4082                                        | 48.82                                | 0.1008               |
| 4               | 29600                    | 29999        | 399                 | 0.16           | 1.4143                                        | 62.77                                | 0.1014               |
| 5               |                          |              |                     |                |                                               |                                      |                      |
| 6               |                          |              |                     |                |                                               |                                      |                      |
|                 | Summary                  | Initial      | Final               | Units          | @20C refT                                     | AVG                                  | 0.0976               |
|                 | lab time                 | 48.5         | 39959               | sec            | -                                             | -                                    |                      |
|                 | logA <sub>T</sub> (t-t') | 1.6860       | 8.1219              | log hours      | 4.6272                                        |                                      |                      |
|                 | A <sub>T</sub> (t-t')    | -            | 4.20                | years          | 4.83                                          |                                      |                      |
|                 | Strain                   | 8.397        | 11.553              | %              | -                                             |                                      |                      |
|                 | Modulus                  | 74487.1      | 54138.2             | lb/ft          | -                                             |                                      |                      |

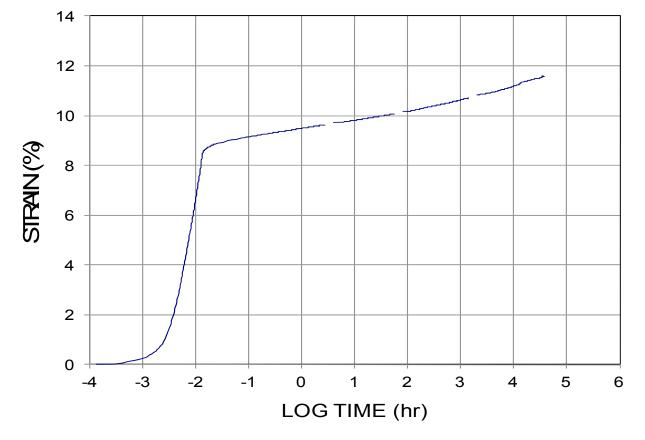



Figure F-7. SIM/Creep data/curve for 8XT at load level of 71.77% UTS.

| 568n2m8xt7520l11.xls |                          | SUMMARY CREE |                     |                            | onstruction Products             |                                      |                      |
|----------------------|--------------------------|--------------|---------------------|----------------------------|----------------------------------|--------------------------------------|----------------------|
| Specimen.            | 568n2m8xtsim75           | Test Date:   | ۶<br>20-Jul-11      | 3XT<br>Method <sup>.</sup> | SIM (10 <sup>4</sup> s, 14C),sin | <mark>igle rib, machine d</mark> ir. |                      |
|                      | Average Creep Stress:    | 6470.4       | lb/ft               |                            |                                  | %UTS:                                | 74.25                |
|                      | mate Tensile Strength:   | 8714.4       | lb/ft               |                            |                                  | Rupture:                             | YES                  |
| Dwell Seq            | ť                        | t            | (t-t') <sub>i</sub> | Vshift(%)                  | logA <sub>T</sub>                | Temp                                 | logA <sub>T</sub> /T |
| 1                    | 0                        | 0.5          | 0.5                 | -                          | -                                | 20.85                                | -                    |
| 2                    | 9350                     | 10020        | 670                 | 0.03                       | 1.1737                           | 34.69                                | 0.0848               |
| 3                    | 19500                    | 20010        | 510                 | 0.02                       | 1.3192                           | 48.55                                | 0.0952               |
| 4                    | 29400                    | 30000        | 600                 | 0.09                       | 1.2420                           | 62.42                                | 0.0896               |
| 5                    |                          |              |                     |                            |                                  |                                      |                      |
| 6                    |                          |              |                     |                            |                                  |                                      |                      |
|                      | Summary                  | Initial      | Final               | Units                      | @20C refT                        | AVG                                  | 0.0899               |
|                      | lab time                 | 58.0         | 34320               | sec                        | -                                |                                      |                      |
|                      | logA <sub>T</sub> (t-t') | 1.7634       | 7.4268              | log hours                  | 3.9427                           |                                      |                      |
|                      | A <sub>⊤</sub> (t-t')    | -            | 0.85                | years                      | 1.00                             |                                      |                      |
|                      | Strain                   | 8.418        | 12.875              | %                          | -                                |                                      |                      |
|                      | Modulus                  | 69937.0      | 50254.1             | lb/ft                      | -                                |                                      |                      |

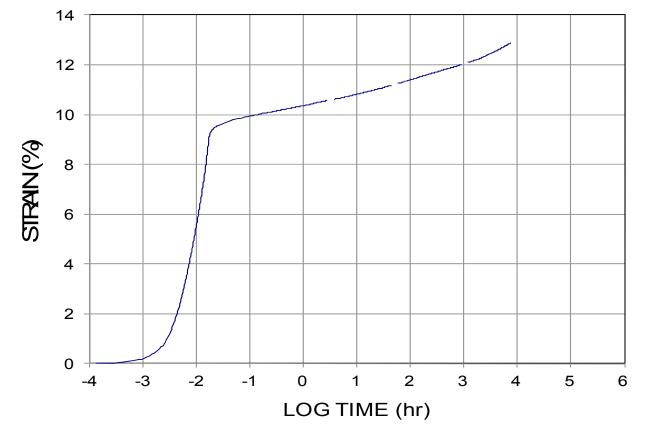



Figure F-8. SIM/Creep data/curve for 8XT at load level of 74.25% UTS.

| 568n2m8xt7722l11.xls       |                          | SUMMARY CREE |                     |                | onstruction Products             | i                                    |                      |
|----------------------------|--------------------------|--------------|---------------------|----------------|----------------------------------|--------------------------------------|----------------------|
| Specimen: 568n2m8xtsim77.5 |                          | Test Date:   |                     | 3XT<br>Method: | SIM (10 <sup>4</sup> s, 14C),sir | <mark>igle rib, machine d</mark> ir. |                      |
| A                          | Average Creep Stress:    | 6686.2       | lb/ft               |                |                                  | %UTS:                                | 76.73                |
| Ultir                      | mate Tensile Strength:   | 8714.4       | lb/ft               |                |                                  | Rupture:                             | YES                  |
| Dwell Seq                  | ť                        | t            | (t-t') <sub>i</sub> | Vshift(%)      | logA <sub>T</sub>                | Temp                                 | logA <sub>T</sub> /T |
| 1                          | 0                        | 0.5          | 0.5                 | -              | -                                | 20.73                                | -                    |
| 2                          | 9400                     | 10020        | 620                 | 0.05           | 1.2075                           | 34.58                                | 0.0872               |
| 3                          | 19400                    | 20010        | 610                 | 0.06           | 1.2395                           | 48.36                                | 0.0899               |
| 4                          | 29400                    | 30000        | 600                 | 0.06           | 1.2463                           | 62.20                                | 0.0900               |
| 5                          |                          |              |                     |                |                                  |                                      |                      |
| 6                          |                          |              |                     |                |                                  |                                      |                      |
|                            | Summary                  | Initial      | Final               | Units          | @20C refT                        | AVG                                  | 0.0890               |
|                            | lab time                 | 66.0         | 37440               | sec            | -                                |                                      |                      |
|                            | logA <sub>T</sub> (t-t') | 1.8195       | 7.5985              | log hours      | 4.1056                           |                                      |                      |
|                            | A <sub>T</sub> (t-t')    | -            | 1.26                | years          | 1.45                             |                                      |                      |
|                            | Strain                   | 9.388        | 14.207              | %              | -                                |                                      |                      |
|                            | Modulus                  | 71034.8      | 47061.2             | lb/ft          | -                                |                                      |                      |

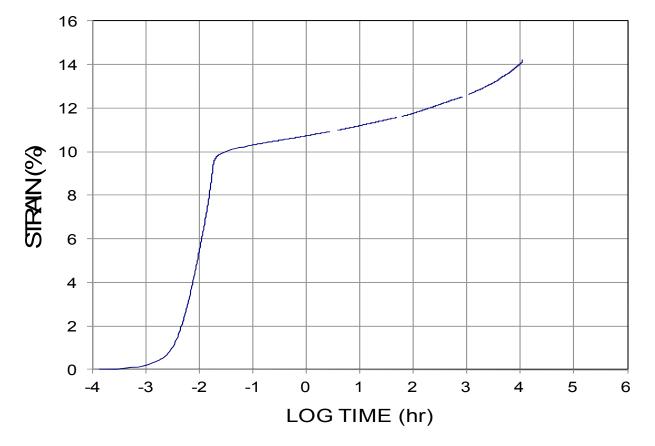



Figure F-9. SIM/Creep data/curve for 8XT at load level of 76.73% UTS.

| 568n2m8xt802             | 1I11.xls                   | SUMMARY CREE |                     | NTPEP - Mirafi C<br>XT | onstruction Products                          |                                      |                      |
|--------------------------|----------------------------|--------------|---------------------|------------------------|-----------------------------------------------|--------------------------------------|----------------------|
| Specimen: 568n2m8xtsim80 |                            | Test Date:   | o<br>21-Jul-11      |                        | : <mark>SIM (10<sup>4</sup>s, 14C),sin</mark> | <mark>igle rib, machine d</mark> ir. |                      |
|                          | Average Creep Stress:      | 6901.9       | lb/ft               |                        |                                               | %UTS:                                | 79.20                |
| U                        | Iltimate Tensile Strength: | 8714.4       | lb/ft               |                        |                                               | Rupture:                             | YES                  |
| Dwell Seq                | ť                          | t            | (t-t') <sub>i</sub> | Vshift(%)              | logA <sub>T</sub>                             | Temp                                 | logA <sub>T</sub> /T |
| 1                        | 0                          | 0.5          | 0.5                 | -                      | -                                             | 20.67                                | -                    |
| 2                        | 9400                       | 10020        | 620                 | 0.04                   | 1.2075                                        | 34.63                                | 0.0865               |
| 3                        | 19500                      | 20010        | 510                 | 0.03                   | 1.3173                                        | 48.74                                | 0.0934               |
| 4                        |                            |              |                     |                        |                                               |                                      |                      |
| 5                        |                            |              |                     |                        |                                               |                                      |                      |
| 6                        |                            |              |                     |                        |                                               |                                      |                      |
| <u>-</u>                 | Summary                    | Initial      | Final               | Units                  | @20C refT                                     | AVG                                  | 0.0899               |
|                          | lab time                   | 68.6         | 22470               | sec                    | -                                             |                                      |                      |
|                          | logA <sub>T</sub> (t-t')   | 1.8365       | 5.9974              | log hours              | 2.4988                                        |                                      |                      |
|                          | A <sub>T</sub> (t-t')      | -            | 0.03                | years                  | 0.04                                          |                                      |                      |
|                          | Strain                     | 9.898        | 13.166              | %                      | -                                             |                                      |                      |
|                          | Modulus                    | 69734.4      | 52420.6             | lb/ft                  | -                                             |                                      |                      |

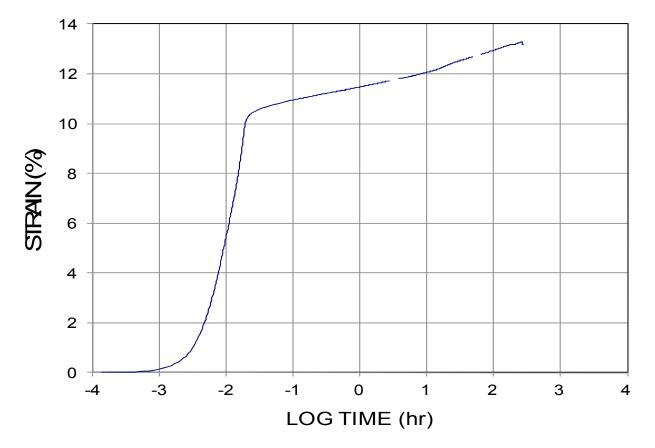
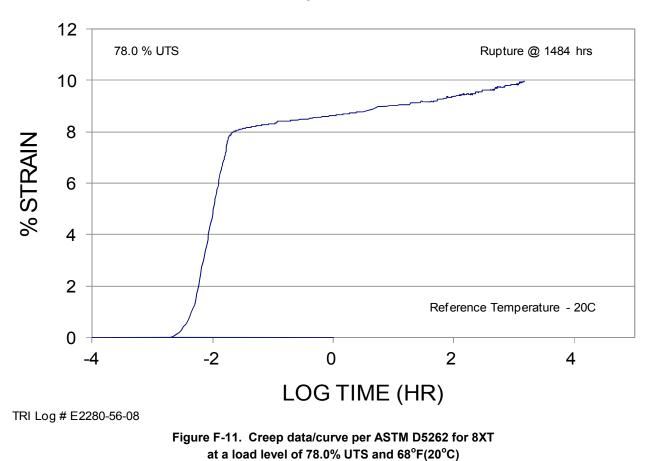
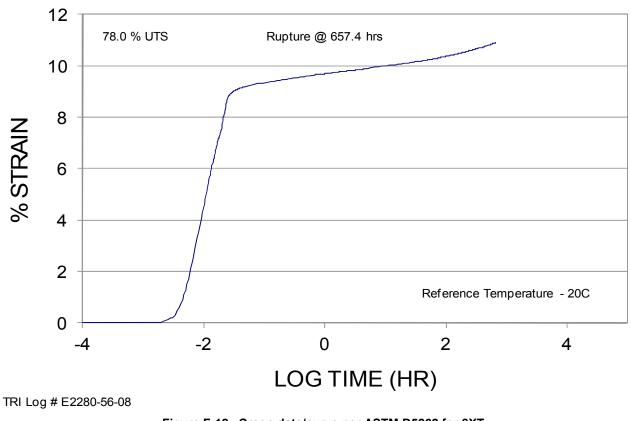





Figure F-10. SIM/Creep data/curve for 8XT at load level of 79.20% UTS.







### NTPEP - Mirafi Construction Products Conventional Creep Test Results - ASTM D 5262 8XT

Figure F-12. Creep data/curve per ASTM D5262 for 8XT at a load level of 78.0% UTS and 68°F(20°C)

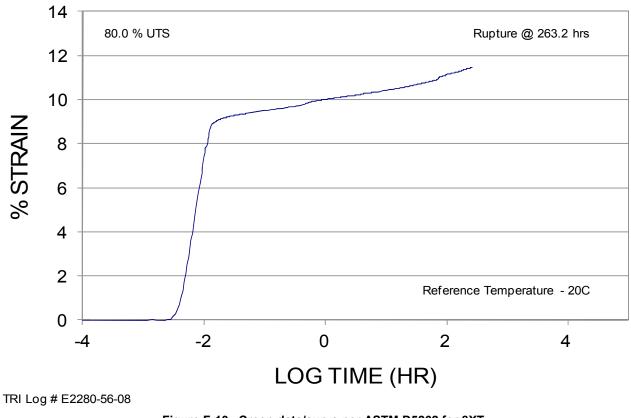





Figure F-13. Creep data/curve per ASTM D5262 for 8XT at a load level of 80.0% UTS and 68°F(20°C)

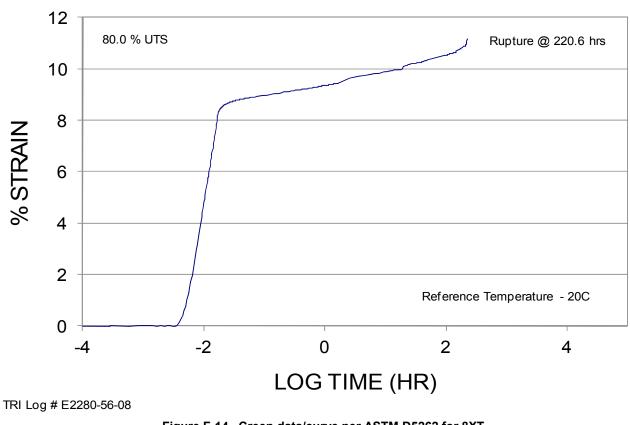





Figure F-14. Creep data/curve per ASTM D5262 for 8XT at a load level of 80.0% UTS and 68°F(20°C)

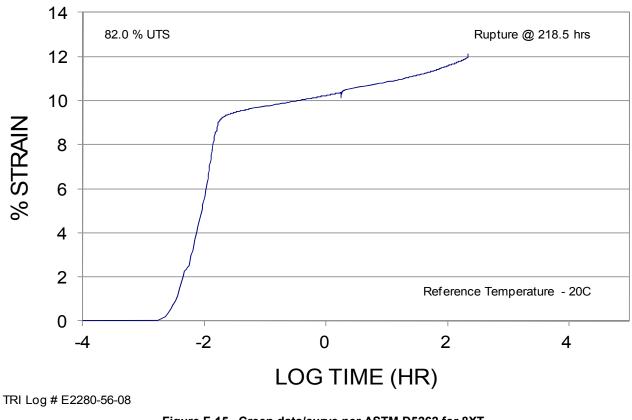
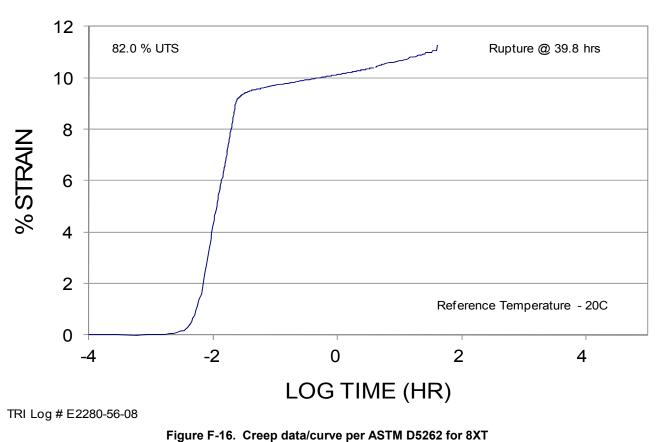






Figure F-15. Creep data/curve per ASTM D5262 for 8XT at a load level of 82.0% UTS and 68°F(20°C)





at a load level of 82.0% UTS and 68°F(20°C)

| g11.xls | SUMMARY CREEF | P PARAMETERS: NTPEP - Mirafi C | onstruction Products |
|---------|---------------|--------------------------------|----------------------|
|         |               | 24XT                           |                      |

| Accelerated Creep Rupture via SIM - ASTM | D 6992 |
|------------------------------------------|--------|
|------------------------------------------|--------|

| 568n2m24xt6 | 802g11.xls                        | SUMMARY CREE | P PARAMETERS        | : NTPEP - Mirafi Co | nstruction Products              | i                                    |                      |
|-------------|-----------------------------------|--------------|---------------------|---------------------|----------------------------------|--------------------------------------|----------------------|
|             |                                   |              | 24                  | 4XT                 |                                  |                                      |                      |
| Specim      | nen: <mark>568n2m24xtsim68</mark> | Test Date:   | 02-Aug-11           | Method:             | SIM (10 <sup>4</sup> s, 14C),sin | <mark>igle rib, machine d</mark> ir. |                      |
|             | Average Creep Stress:             | 20885        | lb/ft               |                     |                                  | %UTS:                                | 68.00                |
|             | Ultimate Tensile Strength:        | 30714        | lb/ft               |                     |                                  | Rupture:                             | YES                  |
| Dwell Seq   | q ť                               | t            | (t-t') <sub>i</sub> | Vshift(%)           | logA <sub>T</sub>                | Temp                                 | logA <sub>T</sub> /T |
| 1           | 0                                 | 0.5          | 0.5                 | -                   | -                                | 20.78                                | -                    |
| 2           | 9500                              | 10020        | 520                 | 0.1                 | 1.2834                           | 34.56                                | 0.0931               |
| 3           | 19500                             | 20010        | 510                 | 0.11                | 1.3126                           | 48.36                                | 0.0951               |
| 4           | 29500                             | 30000        | 500                 | 0.12                | 1.3208                           | 62.31                                | 0.0947               |
| 5           | 39400                             | 39990        | 590                 | 0.12                | 1.2485                           | 76.31                                | 0.0892               |
| 6           | 49400                             | 49980        | 580                 | 0.12                | 1.2597                           | 90.27                                | 0.0902               |
|             | Summary                           | Initial      | Final               | Units               | @20C refT                        | AVG                                  | 0.0925               |
|             | lab time                          | 80.0         | 52230               | sec                 | -                                |                                      |                      |
|             | logA <sub>T</sub> (t-t')          | 1.9031       | 9.8768              | log hours           | 6.3928                           |                                      |                      |
|             | A <sub>T</sub> (t-t')             | -            | 238.61              | years               | 281.83                           |                                      |                      |
|             | Strain                            | 9.909        | 15.893              | %                   | -                                |                                      |                      |
|             | Modulus                           | 210787.2     | 131413.5            | lb/ft               | -                                |                                      |                      |

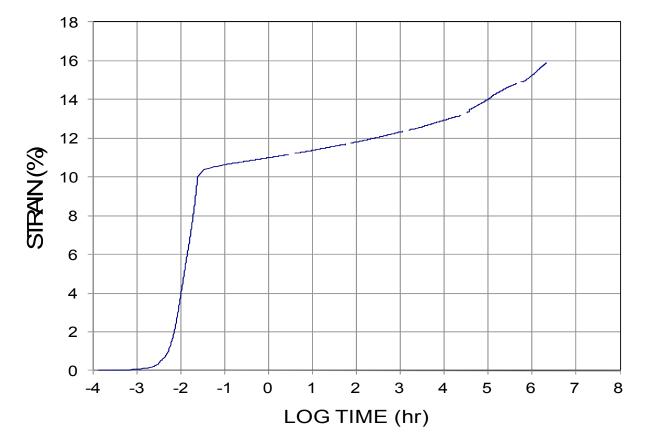



Figure F-17. SIM/Creep data/curve for 24XT at load level of 68.00% UTS.

### Accelerated Creep Rupture via SIM - ASTM D 6992

| 568n2m24xt712 | 7I11.xls                        | SUMMARY CREE |                     | 6: NTPEP - Mirafi Co | Instruction Products             | ;                                    |                      |
|---------------|---------------------------------|--------------|---------------------|----------------------|----------------------------------|--------------------------------------|----------------------|
|               |                                 |              | 2                   | 24XT                 |                                  |                                      |                      |
| Specimer      | n: <mark>568n2m24xtsim68</mark> | Test Date:   | 02-Aug-11           | Method:              | SIM (10 <sup>4</sup> s, 14C),sir | <mark>igle rib, machine d</mark> ir. |                      |
|               | Average Creep Stress:           | 21807        | lb/ft               |                      |                                  | %UTS:                                | 71.00                |
| Ult           | timate Tensile Strength:        | 30714        | lb/ft               |                      |                                  | Rupture:                             | YES                  |
| Dwell Seq     | ť                               | t            | (t-t') <sub>i</sub> | Vshift(%)            | logA <sub>T</sub>                | Temp                                 | logA <sub>T</sub> /T |
| 1             | 0                               | 0.5          | 0.5                 | -                    | -                                | 20.73                                | -                    |
| 2             | 9500                            | 10020        | 520                 | 0.09                 | 1.2837                           | 34.41                                | 0.0938               |
| 3             | 19500                           | 20010        | 510                 | 0.15                 | 1.3129                           | 48.20                                | 0.0952               |
| 4             | 29500                           | 30000        | 500                 | 0.11                 | 1.3211                           | 62.15                                | 0.0947               |
| 5             | 39400                           | 39990        | 590                 | 0.12                 | 1.2488                           | 76.19                                | 0.0889               |
| 6             |                                 |              |                     |                      |                                  |                                      |                      |
|               | Summary                         | Initial      | Final               | Units                | @20C refT                        | AVG                                  | 0.0931               |
|               | lab time                        | 79.7         | 45600               | sec                  | -                                | -                                    |                      |
|               | logA <sub>T</sub> (t-t')        | 1.9015       | 8.9589              | log hours            | 5.4707                           |                                      |                      |
|               | A <sub>T</sub> (t-t')           | -            | 28.83               | years                | 33.72                            |                                      |                      |
|               | Strain                          | 10.081       | 14.394              | %                    | -                                |                                      |                      |
|               | Modulus                         | 189030.2     | 151498.4            | lb/ft                | -                                |                                      |                      |

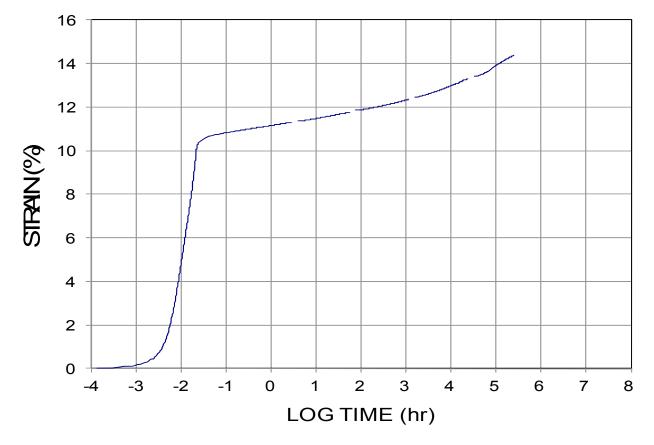



Figure F-18. SIM/Creep data/curve for 24XT at load level of 71.00% UTS.

| 568n2m24xt7 | 529I11.xls                 | SUMMARY CREE |                     | S: NTPEP - Mirafi Co | onstruction Products             | i                                    |                      |
|-------------|----------------------------|--------------|---------------------|----------------------|----------------------------------|--------------------------------------|----------------------|
| Specim      | nen: 568n2m24xtsim75       | Test Date:   | 29-Jul-11           | 24XT<br>Method:      | SIM (10 <sup>4</sup> s, 14C),sin | <mark>igle rib, machine d</mark> ir. |                      |
|             | Average Creep Stress:      | 23036        | lb/ft               |                      |                                  | %UTS:                                | 75.00                |
| I           | Ultimate Tensile Strength: | 30714        | lb/ft               |                      |                                  | Rupture:                             | YES                  |
| Dwell Seq   | ť                          | t            | (t-t') <sub>i</sub> | Vshift(%)            | logA <sub>T</sub>                | Temp                                 | logA <sub>T</sub> /T |
| 1           | 0                          | 0.5          | 0.5                 | -                    | -                                | 20.82                                | -                    |
| 2           | 9500                       | 10020        | 520                 | 0.11                 | 1.2837                           | 34.54                                | 0.0935               |
| 3           | 19500                      | 20010        | 510                 | 0.13                 | 1.3129                           | 48.43                                | 0.0946               |
| 4           | 29400                      | 30000        | 600                 | 0.13                 | 1.2419                           | 62.41                                | 0.0888               |
| 5           |                            |              |                     |                      |                                  |                                      |                      |
| 6           |                            |              |                     |                      |                                  |                                      |                      |
|             | Summary                    | Initial      | Final               | Units                | @20C refT                        | AVG                                  | 0.0923               |
|             | lab time                   | 80.0         | 37740               | sec                  | -                                |                                      |                      |
|             | logA <sub>T</sub> (t-t')   | 1.9031       | 7.7597              | log hours            | 4.2798                           |                                      |                      |
|             | A <sub>T</sub> (t-t')      | -            | 1.82                | years                | 2.17                             |                                      |                      |
|             | Strain                     | 10.465       | 15.717              | %                    | -                                |                                      |                      |
|             | Modulus                    | 193139.5     | 146568.8            | lb/ft                | -                                |                                      |                      |

### Accelerated Creep Rupture via SIM - ASTM D 6992

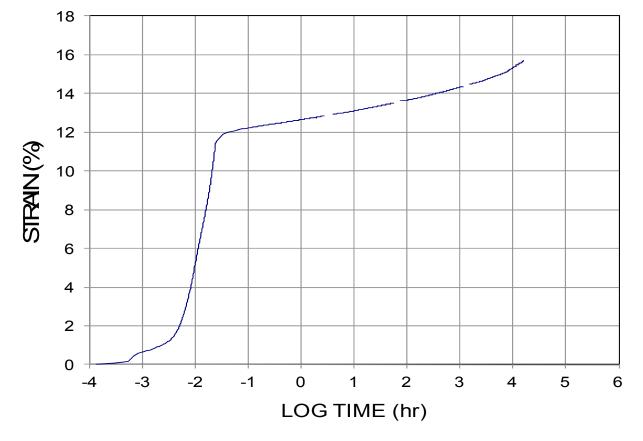



Figure F-19. SIM/Creep data/curve for 24XT at load level of 75.00% UTS.

### Accelerated Creep Rupture via SIM - ASTM D 6992

| 568n2m24xt790 | 1g11.xls                        | SUMMARY CREE | P PARAMETERS        | : NTPEP - Mirafi Co | nstruction Products              |                                      |                      |
|---------------|---------------------------------|--------------|---------------------|---------------------|----------------------------------|--------------------------------------|----------------------|
|               |                                 |              | 24                  | 4XT                 |                                  |                                      |                      |
| Specimer      | n: <mark>568n2m24xtsim79</mark> | Test Date:   | 01-Aug-11           | Method:             | SIM (10 <sup>4</sup> s, 14C),sin | <mark>igle rib, machine d</mark> ir. |                      |
|               | Average Creep Stress:           | 24264        | lb/ft               |                     |                                  | %UTS:                                | 79.00                |
| Ult           | timate Tensile Strength:        | 30714        | lb/ft               |                     |                                  | Rupture:                             | YES                  |
| Dwell Seq     | ť                               | t            | (t-t') <sub>i</sub> | Vshift(%)           | logA <sub>T</sub>                | Temp                                 | logA <sub>T</sub> /T |
| 1             | 0                               | 0.5          | 0.5                 | -                   | -                                | 20.70                                | -                    |
| 2             | 9500                            | 10021        | 521                 | 0.11                | 1.2827                           | 34.61                                | 0.0922               |
| 3             | 19400                           | 20011        | 611                 | 0.12                | 1.2343                           | 48.47                                | 0.0891               |
| 4             |                                 |              |                     |                     |                                  |                                      |                      |
| 5             |                                 |              |                     |                     |                                  |                                      |                      |
| 6             |                                 |              |                     |                     |                                  |                                      |                      |
|               | Summary                         | Initial      | Final               | Units               | @20C refT                        | AVG                                  | 0.0906               |
|               | lab time                        | 90.0         | 25981               | sec                 | -                                |                                      |                      |
|               | logA <sub>T</sub> (t-t')        | 1.9542       | 6.3354              | log hours           | 2.8434                           |                                      |                      |
|               | A <sub>T</sub> (t-t')           | -            | 0.07                | years               | 0.08                             |                                      |                      |
|               | Strain                          | 11.090       | 15.497              | %                   | -                                |                                      |                      |
|               | Modulus                         | 206745.0     | 156575.5            | lb/ft               | -                                |                                      |                      |

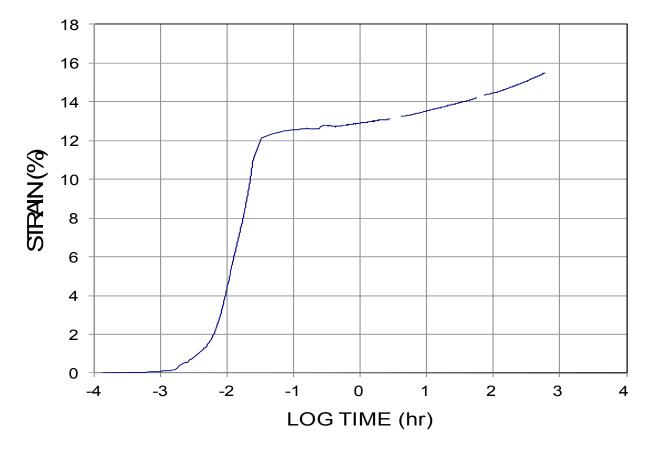



Figure F-20. SIM/Creep data/curve for 24XT at load level of 79.00% UTS.

#### NTPEP January 2012 Final Report Report Expiration Date: 2018

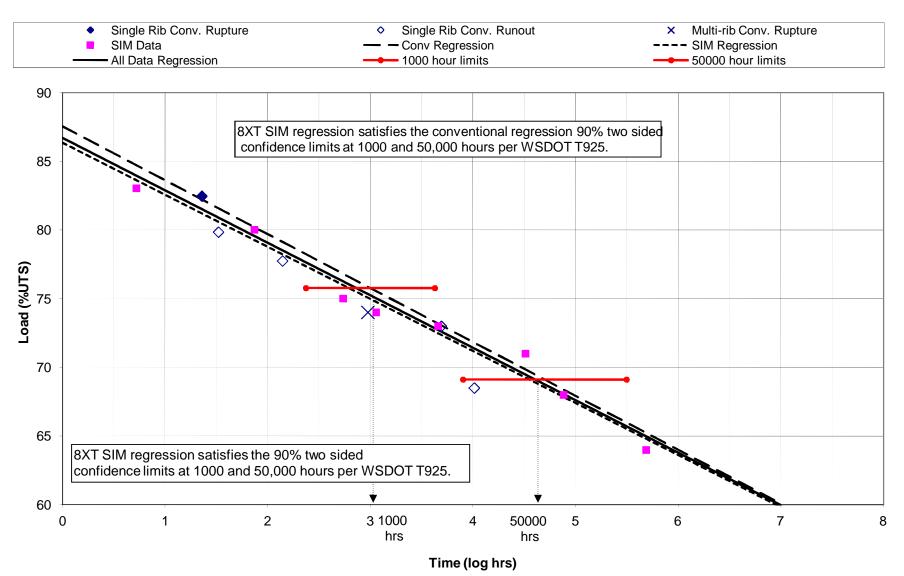



Figure F-21. Statistical evaluation results for determining validity of using SIM to extend Miragrid XT geogrid conventional creep rupture data, and to compare single-rib to multi-rib data (from NTPEP 2008, Report 8505.3).

 Single Rib Conv. Rupture SIM Data -All Data Regression -Series3 90.00 85.00 80.00 ٠ 75.00 Load (%UTS) 70.00 65.00 60.00 55.00 50.00 0 1 2 3 4 5 6 7 8 Time (log hrs)

Figure F-22. Visual evaluation for verifying validity of using SIM to extend Macgrid XT geogrid conventional creep rupture data.

# Miragrid 8XT- Creep Rupture

NTPEP January 2012 Final Report

Report Expiration Date: 2018

REGEO-2011-01-001

#### Miragrid 8XT - 2XT - 24XT - Creep Rupture

REGEO-2011-01-001

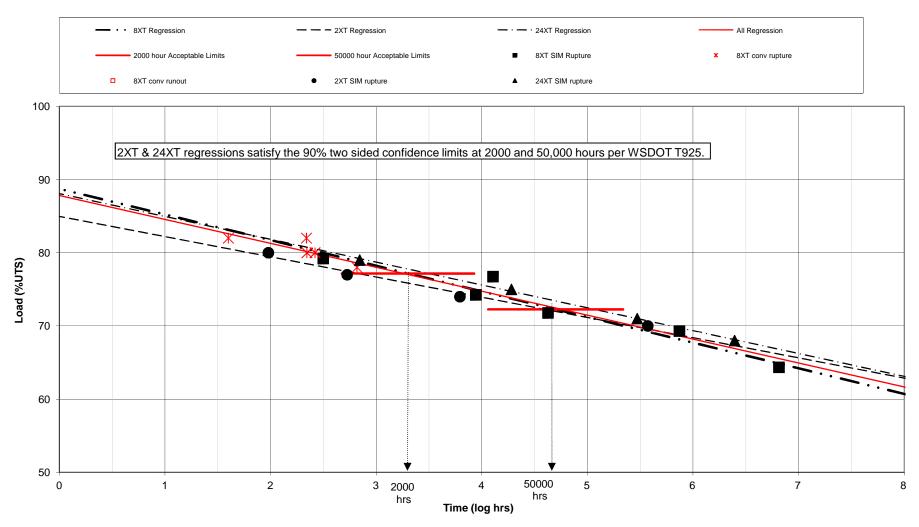



Figure F-23. Statistical evaluation results for determining validity of creating composite creep rupture envelope for the Miragrid XT geogrid product line.

|        |                |                    |             |                    |             |                  | Mira               | agrid 2)    | (T Creep I        | Data Eval        | uation         |           |           |            |          |      |                                                         |
|--------|----------------|--------------------|-------------|--------------------|-------------|------------------|--------------------|-------------|-------------------|------------------|----------------|-----------|-----------|------------|----------|------|---------------------------------------------------------|
| -      |                | SIM Tes            | ts on 2XT   |                    |             |                  |                    |             | SIM & Co          | onventional Te   | ests on 8XT    |           |           |            |          | _    |                                                         |
|        |                | Expected time, log |             |                    | Test        |                  |                    |             |                   |                  |                | (logti-   |           |            |          |      |                                                         |
| Report | Product        | hrs                | %UTS        | Rupture            | Repor       | Product          | time, log hrs      | %UTS        | Rupture           | Runout           | logti-logtbar  | logtbar)2 | Pi - Pbar | (Pi-Pbar)2 | K*L      |      | 2XT - All Points                                        |
|        | 2XT            | 5.5711             | 70.00       | 70.00              |             | 8XT              | 6.8129             | 64.35       | 64.35             |                  | 3.23           | 10.4522   | -11.80    | 139.1327   | -38.1345 | SIM  | time is dependent variable:                             |
|        | 2XT            | 3.7918             | 73.99       | 73.99              |             | 8XT              | 5.8708             | 69.30       | 69.30             |                  | 2.29           | 5.2481    | -6.85     | 46.86025   | -15.6821 | SIM  | if time were but time is                                |
|        | 2XT            | 2.7248             | 76.99       | 76.99              |             | 8XT              | 4.6272             | 71.77       | 71.77             |                  | 1.05           | 1.0968    | -4.38     | 19.1446    | -4.58234 | SIM  | the y axis the x axis                                   |
|        | 2XT            | 1.9786             | 80.00       | 80.00              |             | 8XT              | 3.9427             | 74.25       | 74.25             |                  | 0.36           | 0.1316    | -1.90     | 3.592748   | -0.68764 | SIM  | slope -0.362004 -2.7624                                 |
| -      |                |                    |             |                    |             | 8XT              | 4.1056             | 76.73       | 76.73             |                  | 0.53           | 0.2763    | 0.58      | 0.341693   | 0.307286 | SIM  | intercept 30.75553 84.9592                              |
|        | student's t =  | 1.812              | (90% 2-side | ed prediction limi | t)          | 8XT              | 2.4988             | 79.20       | 79.20             |                  | -1.08          | 1.1688    | 3.05      | 9.330248   | -3.30232 | SIM  | R squared 0.984141 0.984141                             |
|        | n-2XT =        | 4                  |             |                    |             | 8XT              |                    |             |                   |                  |                |           |           |            |          | SIM  | -2 90.48401                                             |
|        | n-8XT =        | 12                 | d-o-f       | 10                 |             | 8XT              |                    |             |                   |                  |                |           |           |            |          | SIM  | 10 57.33516                                             |
|        | treg =         | 3.3010             |             |                    |             | 8XT              | 1.5999             | 82.00       | 82.00             |                  | -1.98          | 3.9205    | 5.85      | 34.2757    | -11.5922 | Conv | 3.3010 75.84042 = 2000 hr intercept                     |
|        | treg =         | 4.6990             |             |                    |             | 8XT              | 2.3395             | 82.00       | 82.00             |                  | -1.24          | 1.5386    | 5.85      | 34.2757    | -7.26207 | Conv | 4.6990 71.97875 = 50000 hr intercept                    |
|        | P2000 =        | 77.1577            |             |                    |             | 8XT              | 2.3436             | 80.00       | 80.00             |                  | -1.24          | 1.5285    | 3.85      | 14.85752   | -4.76544 | Conv | 8XT - All Points                                        |
|        | P50000 =       | 72.2606            |             |                    |             | 8XT              | 2.4203             | 80.00       | 80.00             |                  | -1.16          | 1.3447    | 3.85      | 14.85752   | -4.46979 | Conv | time is dependent variable:                             |
| sig    | ıma squared =  | 0.1099             |             |                    |             | 8XT              | 2.8178             | 78.00       | 78.00             |                  | -0.76          | 0.5808    | 1.85      | 3.439339   | -1.41338 | Conv | if time were but time is                                |
|        | sigma =        | 0.3315             |             |                    |             | 8XT              | 3.1714             | 78.00       | 78.00             |                  | -0.41          | 0.1669    | 1.85      | 3.439339   | -0.75761 | Conv | the y axis the x axis                                   |
|        |                |                    |             |                    |             | 8XT              |                    |             |                   |                  |                |           |           |            |          | Conv | slope -0.285463 -3.50308                                |
|        |                |                    |             |                    |             | 8XT              |                    |             |                   |                  |                |           |           |            |          | Conv | intercept 25.32671 88.72148                             |
|        |                |                    |             |                    |             | 8XT              |                    |             |                   |                  |                |           |           |            |          | Conv | R squared 0.959993 0.959993                             |
| 2-side | ed conf. limit |                    |             |                    |             | 8XT              |                    |             |                   |                  |                |           |           |            |          | Conv | -2 95.72763                                             |
| f      | student's t    |                    |             |                    |             | Sum              | 39.3791            | 837.60      | )                 | Sum              | -0.41          | 27.4540   | 1.85      | 323.5474   | -92.3422 |      | 10 53.69068                                             |
|        | 2.92           |                    |             |                    |             | Mean             | 3.5799             | 76.15       | 5                 |                  |                |           |           |            |          |      | 3.3010 77.15771 = 2000 hr intercept                     |
|        | 2.353          |                    |             |                    |             | * runout plotti  | ng below the regre | ession line | is not included i | n the regression | on             |           |           |            |          |      | 4.6990 72.26061 = 50000 hr intercept                    |
|        | 2.132          |                    |             |                    | 8           | XT - 2000 hrs (l | og 3.301)          |             | 8XT - 5           | 0000 hrs (log    | <b>4.699</b> ) |           |           |            |          |      | All Creep Data 8XT & 2XT (conv & SIM)                   |
|        | 2.015          |                    |             |                    |             |                  |                    |             |                   |                  |                |           |           |            |          |      | time is dependent variable:                             |
|        | 1.943          |                    |             |                    | log tL - lo |                  | 2.67               |             | log tL - lower :  |                  | 4.06           |           |           |            |          |      | if time were but time is                                |
|        | 1.895          |                    |             |                    | log tL - u  | pper =           | 3.93               | 77.1577     | log tL - upper    | =                | 5.34           | 72.2606   |           |            |          |      | the y axis the x axis                                   |
|        | 1.86<br>1.833  |                    |             |                    | 2XT - Io    | gtL @ Load =     | 2.82               | OK          | 2XT - logtL @     |                  | 4.60           | OK        |           |            |          |      | slope -0.293708 -3.40475<br>intercept 25.87097 88.08412 |
| )      | 1.812          |                    |             |                    | 271 - 10    | gic e coau =     | 2.02               | UN          | ZAT - IOGIL @     | LUau =           | 4.00           | UN        |           |            |          |      | R squared 0.947144 0.947144                             |
|        | 1.796          |                    |             |                    |             |                  |                    |             |                   |                  |                |           |           |            |          |      | -2 94.89361                                             |
| 2      | 1.782          |                    |             |                    |             |                  |                    |             |                   |                  |                |           |           |            |          |      | 10 54.03664                                             |
| 3      | 1.771          |                    |             |                    |             |                  |                    |             |                   |                  |                |           |           |            |          |      | 5.8176 68.27666 = 75-yr intercept                       |
| 4      | 1.761          |                    |             |                    |             |                  |                    |             |                   |                  |                |           |           |            |          |      | 5.9425 67.8514 = 100-yr intercept                       |

# Table F-2. Computation table to determine statistical validity of creating composite creep rupture envelope for the Miragrid XT geogrid product line - 2XT and 8XT comparision.

|            |                |                              |             |                    |        |                   | Mira               | grid 24       | XT Creep         | Data Eva       | luation       |                      |           |            |          |      |                                                                         |
|------------|----------------|------------------------------|-------------|--------------------|--------|-------------------|--------------------|---------------|------------------|----------------|---------------|----------------------|-----------|------------|----------|------|-------------------------------------------------------------------------|
|            |                | SIM Test                     | s on 24XT   |                    |        |                   |                    |               | SIM & Co         | onventional Te | ests on 8XT   |                      |           |            |          | _    |                                                                         |
| est Report | Product        | Expected<br>time, log<br>hrs | %UTS        | Rupture            | Te     |                   | time, log hrs      | %UTS          | Rupture          | Runout         | logti-logtbar | (logti-<br>logtbar)2 | Pi - Phar | (Pi-Pbar)2 | K*L      |      | 24XT - All Points                                                       |
| scittepoit | 24XT           | 6.3928                       | 68.00       | 68.00              | Nep    | 8XT               | 6.8129             | 64.35         | 64.35            | Kunout         | 3.23          | 10,4522              | -11.80    | 139.1327   | -38.1345 | SIM  | time is dependent variable:                                             |
|            | 24XT           | 5.4707                       | 71.00       | 71.00              |        | 8XT               | 5.8708             | 69.30         | 69.30            |                | 2.29          | 5.2481               | -6.85     | 46.86025   |          | SIM  | if time were but time is                                                |
|            | 24XT           | 4.2798                       | 75.00       | 75.00              |        | 8XT               | 4.6272             | 71.77         | 71.77            |                | 1.05          | 1.0968               | -4.38     | 19,1446    |          | -    | the yaxis the xaxis                                                     |
|            | 24XT           | 2.8434                       | 79.00       | 79.00              |        | 8XT               | 3.9427             | 74.25         | 74.25            |                | 0.36          | 0.1316               | -1.90     | 3.592748   |          | SIM  | slope -0.320467 -3.12045                                                |
|            |                |                              |             |                    |        | 8XT               | 4.1056             | 76.73         | 76.73            |                | 0.53          | 0.2763               | 0.58      | 0.341693   | 0.307286 | SIM  | intercept 28.22085 88.06176                                             |
|            | student's t =  | 1.812                        | (90% 2-side | ed prediction limi | t)     | 8XT               | 2.4988             | 79.20         | 79.20            |                | -1.08         | 1.1688               | 3.05      | 9.330248   | -3.30232 | SIM  | R squared 0.998046 0.998046                                             |
|            | n-24XT =       | 4                            |             |                    |        | 8XT               |                    |               |                  |                |               |                      |           |            |          | SIM  | -2 94.30267                                                             |
|            | n-8XT =        | 12                           | d-o-f       | 10                 |        | 8XT               |                    |               |                  |                |               |                      |           |            |          | SIM  | 10 56.85726                                                             |
|            | treg =         | 3.3010                       |             |                    |        | 8XT               | 1.5999             | 82.00         | 82.00            |                | -1.98         | 3.9205               | 5.85      | 34.2757    | -11.5922 | Conv | 3.3010 77.76106 = 2000 hr intercept                                     |
|            | treg =         | 4.6990                       |             |                    |        | 8XT               | 2.3395             | 82.00         | 82.00            |                | -1.24         | 1.5386               | 5.85      | 34.2757    | -7.26207 | Conv | 4.6990 73.39886 = 50000 hr intercept                                    |
|            | P2000 =        | 77.1577                      |             |                    |        | 8XT               | 2.3436             | 80.00         | 80.00            |                | -1.24         | 1.5285               | 3.85      | 14.85752   | -4.76544 | Conv | 8XT - All Points                                                        |
|            | P50000 =       | 72.2606                      |             |                    |        | 8XT               | 2.4203             | 80.00         | 80.00            |                | -1.16         | 1.3447               | 3.85      | 14.85752   | -4.46979 | Conv | time is dependent variable:                                             |
| sig        | gma squared =  | 0.1099                       |             |                    |        | 8XT               | 2.8178             | 78.00         | 78.00            |                | -0.76         | 0.5808               | 1.85      | 3.439339   | -1.41338 | Conv | if time were but time is                                                |
|            | sigma =        | 0.3315                       |             |                    |        | 8XT               | 3.1714             | 78.00         | 78.00            |                | -0.41         | 0.1669               | 1.85      | 3.439339   | -0.75761 | Conv | the y axis the x axis                                                   |
|            |                |                              |             |                    |        | 8XT               |                    |               |                  |                |               |                      |           |            |          | Conv | slope -0.285463 -3.50308                                                |
|            |                |                              |             |                    |        | 8XT               |                    |               |                  |                |               |                      |           |            |          | Conv | intercept 25.32671 88.72148                                             |
|            |                |                              |             |                    |        | 8XT               |                    |               |                  |                |               |                      |           |            |          | Conv | R squared 0.959993 0.959993                                             |
| 90% 2-side | ed conf. limit |                              |             |                    |        | 8XT               |                    |               |                  |                |               |                      |           |            |          | Conv | -2 95.72763                                                             |
| df         | student's t    |                              |             |                    |        | Sum               | 39.3791            |               |                  | Sum            | -0.41         | 27.4540              | 1.85      | 323.5474   | -92.3422 |      | 10 53.69068                                                             |
| 2          | 2.92           |                              |             |                    |        | Mean              | 3.5799             |               |                  |                |               |                      |           |            |          |      | 3.3010 77.15771 = 2000 hr intercept                                     |
| 3          | 2.353          |                              |             |                    |        |                   | ng below the regre | ession line i |                  |                |               |                      |           |            |          |      | 4.6990 72.26061 = 50000 hr intercept                                    |
| 4          | 2.132          |                              |             |                    |        | 8XT - 2000 hrs (k | og 3.301)          |               | 8XT - 5          | 60000 hrs (log | y 4.699)      |                      |           |            |          |      | All Creep Data 8XT & 24XT (conv & SIM)                                  |
| 5          | 2.015          |                              |             |                    |        |                   |                    |               |                  |                |               |                      |           |            |          |      | time is dependent variable:                                             |
| 6          | 1.943          |                              |             |                    |        | lower =           | 2.67               |               | log tL - lower : |                | 4.06          |                      |           |            |          |      | if time were but time is                                                |
| 7 8        | 1.895<br>1.86  |                              |             |                    | log tL | upper =           | 3.93               | //.1577       | log tL - upper   | =              | 5.34          | 72.2606              |           |            |          |      | the y axis the x axis<br>slope -0.298388 -3.35134                       |
| 9          | 1.833          |                              |             |                    | 24XT   | logtL @ Load =    | 3.49               | ок            | 24XT - logtL     | @ Load =       | 5.06          | ок                   |           |            |          |      | intercept 26.38553 88.42702                                             |
| 10         | 1.812          |                              |             |                    |        |                   |                    |               | . 3              |                |               |                      |           |            |          |      | R squared 0.962598 0.962598                                             |
| 11         | 1.796          |                              |             |                    |        |                   |                    |               |                  |                |               |                      |           |            |          |      | -2 95.12971                                                             |
| 12         | 1.782          |                              |             |                    |        |                   |                    |               |                  |                |               |                      |           |            |          |      | 10 54.91357                                                             |
| 13<br>14   | 1.771<br>1.761 |                              |             |                    |        |                   |                    |               |                  |                |               |                      |           |            |          |      | 5.8176 68.93024 = 75-yr intercept<br>5.9425 68.51165 = 100-yr intercept |
| 14         | 1.701          |                              |             |                    |        |                   |                    |               |                  |                |               |                      |           |            |          |      | 5.5425 06.51105 = 100-y1 melCept                                        |

# Table F-3. Computation table to determine statistical validity of creating composite creep rupture envelope for the Miragrid XT geogrid product line - 24XT and 8XT comparision.

|         | data f | or regression ca | loulation                  |                          |        |       | sim          | rlt                              | conv"l                   | sim     | conv'l  |                                                        |
|---------|--------|------------------|----------------------------|--------------------------|--------|-------|--------------|----------------------------------|--------------------------|---------|---------|--------------------------------------------------------|
| roduct: | Gata I | loghrs           | all                        | 2XT                      | 24XT   | 8XT   | rupture      | rupture                          | rupture                  | runout* | runout* |                                                        |
|         | 2XT    | 5.5711           | 70.00                      | 70.00                    | 2.00   | 0/11  | 70.00        | Tuptaro                          | Tupturo                  | landat  |         | NOTE: Don't include runouts in the regression          |
| -       | 2XT    | 3.7918           | 73.99                      | 73.99                    |        |       | 73.99        |                                  |                          |         |         | calculation unless the points lie above the line       |
| _       | 2XT    | 2.7248           | 76.99                      | 76.99                    |        |       | 76.99        |                                  |                          |         |         |                                                        |
| -       | 2XT    | 1.9786           | 80.00                      | 80.00                    |        |       | 80.00        |                                  |                          |         |         | SIM & Conventional - 2XT                               |
|         |        |                  |                            |                          |        |       |              |                                  |                          |         |         | time is dependent variable:                            |
| _       | 24XT   | 6.3928           | 68.00                      |                          | 68.00  |       | 68.00        |                                  |                          |         |         | if time were but time is                               |
|         | 24XT   | 5.4707           | 71.00                      |                          | 71.00  |       | 71.00        |                                  |                          |         |         | the y axis the x axis                                  |
|         | 24XT   | 4.2798           | 75.00                      |                          | 75.00  |       | 75.00        |                                  |                          |         |         | slope -0.362004 -2.7624                                |
| SIM     | 24XT   | 2.8434           | 79.00                      |                          | 79.00  |       | 79.00        |                                  |                          |         |         | ntercept 30.75553 84.9592                              |
| ATA:    |        |                  |                            |                          |        |       |              |                                  |                          |         |         | R squared 0.984141 0.98414                             |
|         | 8XT    | 6.8129           | 64.35                      |                          |        | 64.35 | 64.35        |                                  |                          |         |         | -2 90.484                                              |
|         | 8XT    | 5.8708           | 69.30                      |                          |        | 69.30 | 69.30        |                                  |                          |         |         | 10 57.3352                                             |
|         | 8XT    | 4.6272           | 71.77                      |                          |        | 71.77 | 71.77        |                                  |                          |         |         | 6 68.38478 = 114 Year intercept                        |
|         | 8XT    | 3.9427           | 74.25                      |                          |        | 74.25 | 74.25        |                                  |                          |         |         | 5.817863 68.88791 = 75 Year intercept                  |
|         | 8XT    | 4.1056           | 76.73                      |                          |        | 76.73 | 76.73        |                                  |                          |         |         | SIM & Conventional - 24XT                              |
|         | 8XT    | 2.4988           | 79.20                      |                          |        | 79.20 | 79.20        |                                  |                          |         |         | ime is dependent variable:                             |
|         |        |                  |                            |                          |        |       |              |                                  |                          |         |         | if time were but time is                               |
|         |        |                  |                            |                          |        |       |              |                                  |                          |         |         | the y axis the x axis                                  |
| ONV     |        |                  |                            |                          |        |       |              |                                  |                          |         |         |                                                        |
| DATA:   | 8XT    | 1.5999           | 82.00                      |                          |        | 82.00 |              |                                  | 82.00                    |         |         | slope -0.320467 -3.1205                                |
|         | 8XT    | 2.3395           | 82.00                      |                          |        | 82.00 |              |                                  | 82.00                    |         |         | ntercept 28.22085 88.0618                              |
|         | 8XT    | 2.3436           | 80.00                      |                          |        | 80.00 |              |                                  | 80.00                    |         |         | R squared 0.998046 0.99805                             |
|         | 8XT    | 2.4203           | 80.00                      |                          |        | 80.00 |              |                                  | 80.00                    |         |         | -2 94.3027                                             |
|         | 8XT    | 2.8178           | 78.00                      |                          |        | 78.00 |              |                                  | 78.00                    |         |         | 10 56.8573                                             |
|         | 8XT    | 3.1714           | 78.00                      |                          |        | 78.00 |              |                                  | 78.00                    |         |         | 6 69.33906 = 114 Year intercept                        |
|         |        |                  |                            |                          |        |       |              |                                  |                          |         |         | 5.817863 69.90741 = 75 Year intercept                  |
|         |        |                  |                            |                          |        |       |              |                                  |                          |         |         | SIM Only - 8XT                                         |
|         |        |                  |                            |                          |        |       |              |                                  |                          |         |         | time is dependent variable:                            |
|         |        |                  |                            |                          |        |       |              |                                  |                          |         |         | if time were but time is                               |
|         |        |                  |                            |                          |        |       |              |                                  |                          |         |         | the y axis the x axis                                  |
|         |        |                  |                            |                          |        |       |              |                                  |                          |         |         | slope -0.27603 -3.6228                                 |
|         |        |                  |                            |                          |        |       |              |                                  |                          |         |         | intercept 24.68277 89.4206                             |
|         |        |                  | -                          |                          |        |       | -            |                                  |                          |         |         | R squared 0.939709 0.93971                             |
| _       |        |                  | -                          |                          |        |       | -            |                                  |                          |         |         | -2 96.6662                                             |
| L       |        |                  |                            |                          |        |       |              |                                  |                          |         |         | 10 53.1927                                             |
|         |        |                  |                            |                          |        |       |              |                                  |                          |         |         | 5.999706 67.68493 = 114 Year intercept                 |
|         |        |                  |                            |                          |        |       |              | anti-met All                     |                          |         |         | 5.817863 68.34371 = 75 Year intercept                  |
|         |        | SIM Only - A     | ndent variable             |                          |        |       |              | entional - All<br>ndent variable |                          |         |         | SIM & Conventional - 8XT<br>ime is dependent variable: |
|         |        | ume is deper     |                            |                          |        |       | ume is deper |                                  |                          |         |         |                                                        |
|         |        |                  | if time were<br>the y axis | but time is the x axis   |        |       |              | if time were                     | but time is the x axis   |         |         | if time were but time is<br>the y axis the x axis      |
|         |        | slope            |                            | the x axis<br>-3.1840561 |        |       | slope        | the y axis                       | the x axis<br>-3.2700614 |         |         | the y axis the x axis<br>slope -0.286105 -3.4952       |
|         |        | intercept        |                            | 87.3945745               |        |       | intercept    | 26.8534688                       |                          |         |         | ntercept 25.36552 88.658                               |
|         |        | R squared        |                            | 0.93666255               |        |       | R squared    | 0.95013202                       |                          |         |         | R squared 0.960264 0.96026                             |
|         |        | i squaieu        |                            | 93.7626867               |        |       | i squareu    |                                  | 94.3526149               |         |         | -2 95.6485                                             |
|         |        |                  |                            | 55.5540132               |        |       |              |                                  | 55.111878                |         |         |                                                        |
|         |        | 5 00070600       |                            |                          |        |       | 5 00070000   |                                  |                          |         |         | 10 53.7059<br>5.999706 67.68776 = 114 Year intercept   |
|         |        |                  | 68.2911728                 |                          |        |       |              | 68.193084                        |                          |         |         |                                                        |
|         |        | 5.81786273       | 68.870173                  | = 15 rear int            | ercept |       | 5.81/862/3   | 68.7877237                       | = 15 Year in             | lercept |         | 5.817863 68.32334 = 75 Year intercept                  |

#### Table F-4. Computation table for composite creep rupture envelope for the Miragrid XT geogrid product line (in support of Figure 5-1).

The regression for the all creep tests on the primary product (8XT) produced log 3.3010 hr (2,000 hrs) and log 4.6990 hr (50,000 hrs) intercepts at 77.16% and 72.26% UTS, respectively. The regression for the creep tests on 2XT & 24XT produced log time intercepts for the same %UTS within the 90% confidence limits of log 2.67 to log 3.93 and log 4.06 to log 5.34 associated with those %UTS. This evaluation is summarized in Table F-5. Thus, the primary, 8XT, and secondary products, 2XT & 24XT, data may be used together to construct the characteristic creep rupture curve of the family of products. Confidence limits satisfied per T925.

| Table F-5. Summary of statistical comparison between rupture envelopes for all tested XT |
|------------------------------------------------------------------------------------------|
| geogrid products, to test validity of composite creep rupture envelope for product line. |

| Product | Intercept at log<br>3.3010 & 4.6990<br>hrs, %UTS | Intercept at<br>same % UTS,<br>log hrs | 90%<br>Confidence<br>Limits @<br>Higher %UTS,<br>log hrs | 90%<br>Confidence<br>Limits @ Lower<br>%UTS, log hrs |
|---------|--------------------------------------------------|----------------------------------------|----------------------------------------------------------|------------------------------------------------------|
| 8XT     | 77.16 & 72.26                                    | 3.3010 & 4.6990                        | -                                                        | -                                                    |
| 2XT     |                                                  | 2.82 & 4.60                            | 2.67 to 3.93                                             | 4.06 to 5.34                                         |
| 24XT    | -                                                | 3.49 & 5.06                            | 2.67 to 3.93                                             | 4.06 to 5.34                                         |

# **Appendix G: Durability Detailed Test Results**

# Table G-1. Yarn test results to evaluate susceptibility to hydrolysis

Material: Polyester Yarn Product Identification: Uncoated 3XT TRI Log #: E2280-56-08

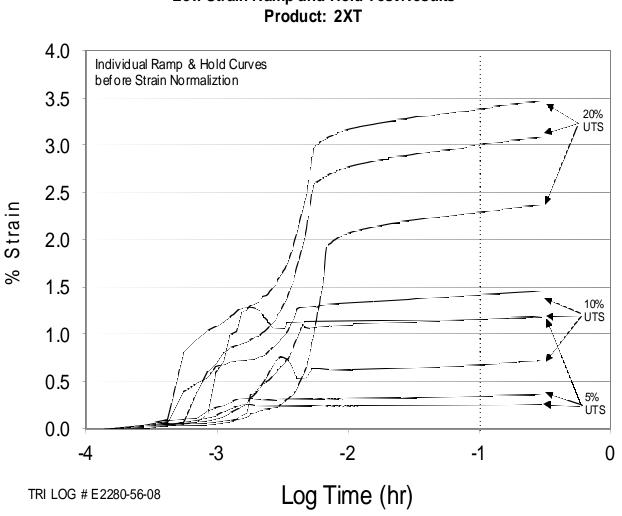
| PARAMETER                                                | TEST REPLICATE | E NUMBE | R      | MEAN   | STD.<br>DEV. |
|----------------------------------------------------------|----------------|---------|--------|--------|--------------|
| Carboxyl End Group (CEG) Count<br>(Test Method: GRI GG7) | 1              | 2       | 3      |        |              |
| mmol/Kg                                                  | 15.0           | 15.4    | 15.2   | 15.2   | 0.2          |
| Molecular Weight<br>(Test Method: GRI GG8)               |                |         |        |        |              |
| Mn (Number average molecular weig                        | ht) 34,765     | 34,760  | 35,040 | 34,855 | 160          |

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested.

#### Table G-2. UV resistance test results of 2XT geogrid.

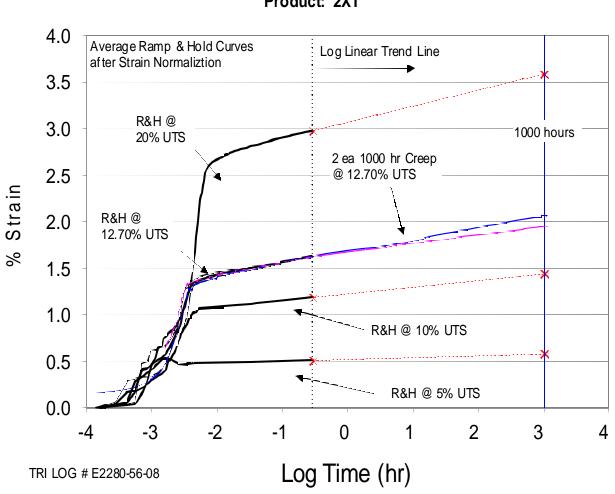
#### TRI Log #: E2280-56-08

| PARAMETER                           | TEST R        |           | E NUM BE | æ         |           | MEAN | STD.<br>DEV. | PERCENT<br>RETAINE |
|-------------------------------------|---------------|-----------|----------|-----------|-----------|------|--------------|--------------------|
|                                     | 1             | 2         | 3        | 4         | 5         |      |              |                    |
| UV Resistance (ASTM D 4355)         | -             | _         | -        | -         | -         |      |              |                    |
| Strength Retained measured via sing | gle strip ter | nsile (AS | TM D 663 | 7, Methoo | IA, mod.) |      |              |                    |
| MD - Number of Ribs per foot:       | 10.84         |           |          |           |           |      |              |                    |
| MD - Tensile Strength (lbs) - B     | 245.1         | 248.1     | 243.3    | 250.5     | 248.3     | 247  | 3            |                    |
| MD - Tensile Strength (lb/ft) - B   | 2657          | 2689      | 2637     | 2715      | 2691      | 2678 | 31           |                    |
| MD - Tensile Strength (kN/m) - B    | 38.8          | 39.3      | 38.5     | 39.6      | 39.3      | 39.1 | 0.5          |                    |
| MD - Tensile Strength (lbs) - E     | 208.2         | 214.3     | 210.0    | 207.5     | 211.9     | 210  | 3            |                    |
| MD - Tensile Strength (lb/ft) - E   | 2257          | 2323      | 2276     | 2249      | 2297      | 2280 | 30           | 85                 |
| MD - Tensile Strength (kN/m) - E    | 32.9          | 33.9      | 33.2     | 32.8      | 33.5      | 33.3 | 0.4          |                    |
| MD - Elong. @ Max. Load (%) - B     | 10.7          | 10.9      | 10.8     | 10.7      | 11.0      | 10.8 | 0.1          |                    |
| MD - Elong. @ Max. Load (%) - E     | 10.1          | 10.8      | 10.1     | 10.4      | 10.1      | 10.3 | 0.3          | 95                 |
| B - Baseline Unexposed              |               |           |          |           |           |      |              |                    |
| E - Exposed for 500 hours of ASTM   | D 4355 Cy     | cle       |          |           |           |      |              |                    |
|                                     |               |           |          |           |           |      |              |                    |


MD - Machine Direction TD - Transverse/Cross Machine Direction

The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested.

| Miragrid XT<br>Series Style | Mean Baseline<br>Tensile Strength<br>(lb/ft) | Standard<br>Deviation<br>(lb/ft) | Mean Exposed<br>Tensile Strength<br>(lb/ft) | Standard<br>Deviation<br>(lb/ft) | %<br>Strength<br>Retained |
|-----------------------------|----------------------------------------------|----------------------------------|---------------------------------------------|----------------------------------|---------------------------|
| 2XT                         | 2,678                                        | 31                               | 2,280                                       | 30                               | 85                        |


(Conversion: 1 lb/ft = 0.0146 kN/m)

# **Appendix H: Creep Stiffness Detailed Test Results**



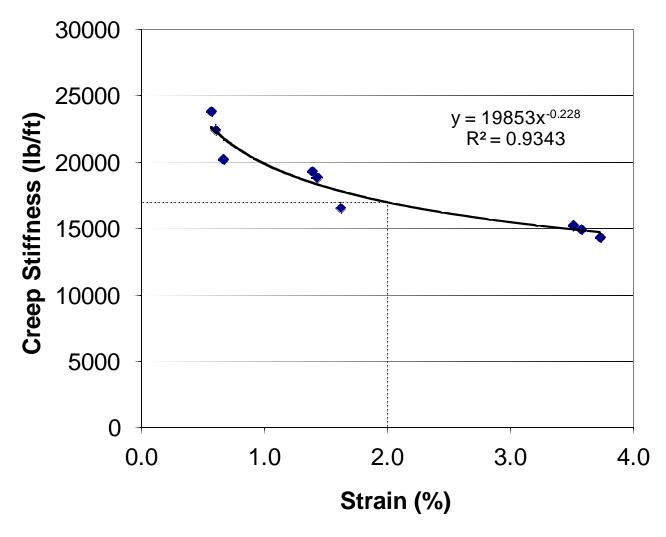

### NTPEP - Mirafi Construction Products Low Strain Ramp and Hold Test Results Product: 2XT

Figure H-1. Low strain ramp and hold tests for 2XT, before strain normalization.



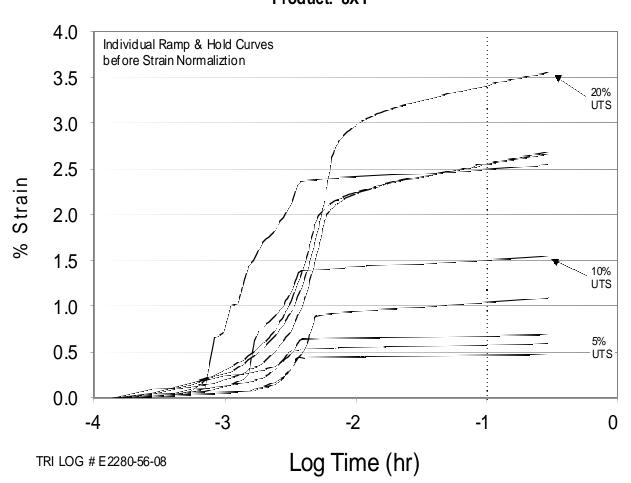

## NTPEP - Mirafi Construction Products Low Strain Ramp and Hold Test Results Product: 2XT

Figure H-2. Low strain ramp and hold tests for 2XT, after strain normalization, with 1000 hour low strain creep tests.



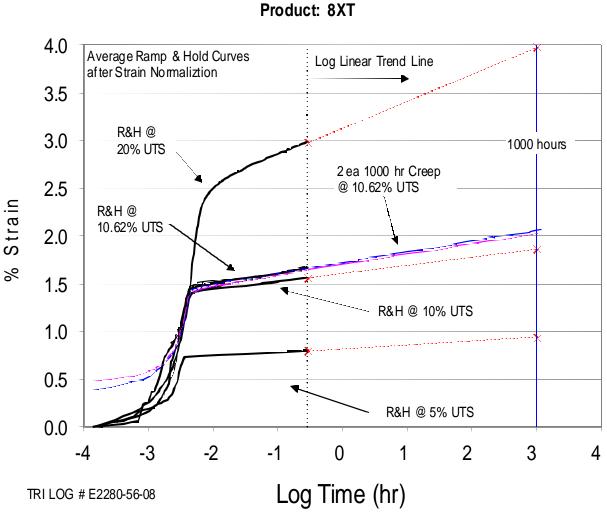

Creep Stiffness @ 1000 hours Product: 2XT

Figure H-3. Creep stiffness versus strain at 1,000 hours for 2XT.



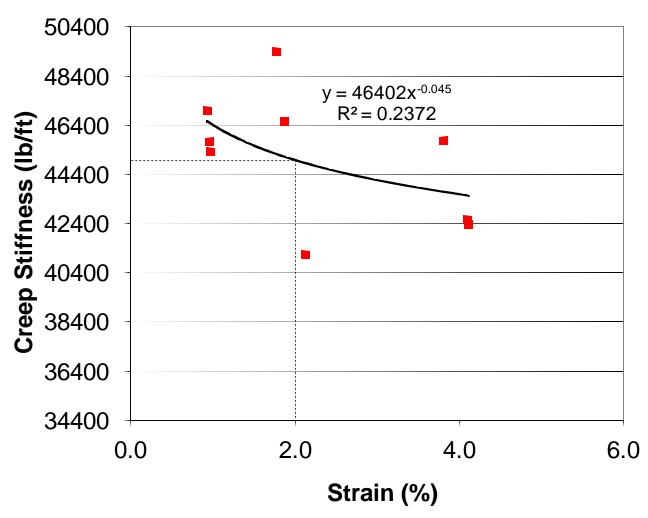

### NTPEP - Mirafi Construction Products Low Strain Ramp and Hold Test Results Product: 8XT

Figure H-4. Low strain ramp and hold tests for 8XT, before strain normalization.



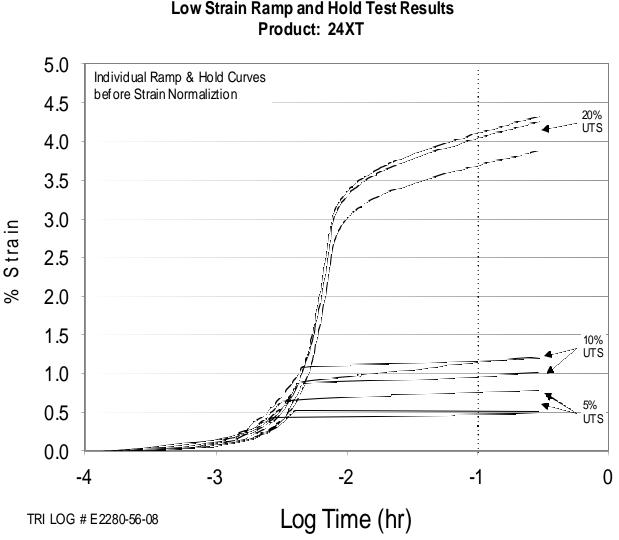

### NTPEP - Mirafi Construction Products Low Strain Ramp and Hold Test Results Product: 8XT

Figure H-5. Low strain ramp and hold tests for 8XT, after strain normalization, with 1000 hour low strain creep tests.



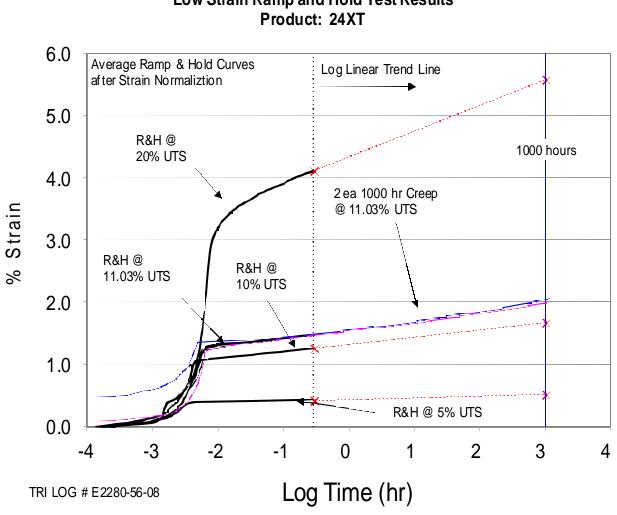

Creep Stiffness @ 1000 hours Product: 8XT

Figure H-6. Creep stiffness versus strain at 1,000 hours for 8XT.



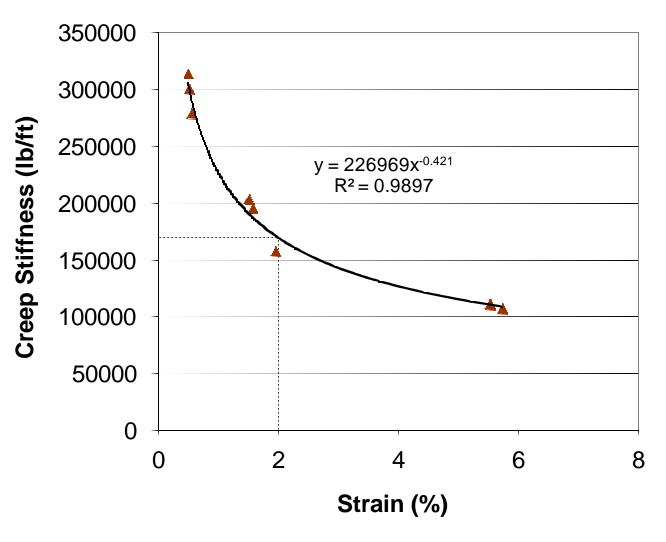

# **NTPEP-Mirafi Construction Products** Low Strain Ramp and Hold Test Results

Figure H-7. Low strain ramp and hold tests for 24XT, before strain normalization.



NTPEP - Mirafi Construction Products Low Strain Ramp and Hold Test Results Product: 24XT

Figure H-8. Low strain ramp and hold tests for 24XT, after strain normalization, with 1000 hour low strain creep tests.



Creep Stiffness @ 1000 hours Product: 24XT

Figure H-9. Creep stiffness versus strain at 1,000 hours for 24XT.

"The National Transportation Product Evaluation Program (NTPEP) was established by the American Association of State Highway and Transportation Officials (AASHTO) in early 1994. The program pools the professional and physical resources of the AASHTO member departments in order to test materials, products and devices of common interest. The primary goals of the program are to provide cost-effective evaluations for the states by eliminating duplication of routine testing by the states; and to reduce duplication of effort by the manufacturers who produce and market commonly used proprietary, engineered products." 🇞 NTPEP 🤝

-- Rick Smutzer (IN), former NTPEP Chairman

call 1.202.624.5800 fax 1.800.525.5469 online <u>www.NTPEP.ORG</u>

ITEM: NTPEP Report REGEO-2011-01-001

