
2015 NTPEP Report Series

NTPEP Report 2015-01-002

LABORATORY EVALUATION OF GEOSYNTHETIC REINFORCEMENT

FINAL PRODUCT VERIFICATION REPORT FOR MIRAGRID XT GEOGRID PRODUCT LINE

Report Issued: February 2016 Report Expiration Date: January 2018 Next Product Qualification Report: 2018

American Association of State Highway and Transportation Officials (AASHTO)

Executive Office: 444 North Capitol Street, NW, Suite 249 • Washington, DC • 20001 (t) 202.624.5800 • (f) 202.624.5469 • <u>www.NTPEP.ORG</u>

DOWNLOAD DATA FILES FOR THIS NTPEP REPORT @ NTPEP.org

2015 NTPEP Report Series

National Transportation Product Evaluation Program (NTPEP)

NTPEP Report 2015-01-002

LABORATORY EVALUATION OF GEOSYNTHETIC REINFORCEMENT

2015 PRODUCT SUBMISSIONS SAMPLED AUGUST 2015

Laboratory Evaluation by:

TRI/Environmental, Inc.

9063 Bee Caves Road Austin, TX 78733-6201

Product Line Manufactured by:

TenCate Geosynthetics

365 South Holland Drive Pendergrass, GA 30567

© Copyright 2009, by the American Association of State Highway and Transportation Officials (AASHTO). *All Rights Reserved.* Printed in the United States of America. This book or parts thereof, may not be reproduced without express written permission of the publisher. The report does not constitute an endorsement by AASHTO of the products contained herein. This report provides an original source of technical information to facilitate development of acceptability standards and is primarily intended for use by state and local transportation agencies.

DOWNLOAD DATA FILES FOR THIS NTPEP REPORT @ NTPEP.org

PROLOGUE

General Facts about NTPEP Reports:

- NTPEP Reports contain data collected according to laboratory testing and field evaluation protocols developed through consensus-based decision by the AASHTO's NTPEP Oversight Committee. These test and evaluation protocols are described in the *Project Work Plan* (see NTPEP website).
- Products are voluntarily submitted by manufacturers for testing by NTPEP. Testing fees are assessed from manufacturers to reimburse AASHTO member departments for conducting testing and to report results. AASHTO member departments provide a voluntary yearly contribution to support the administrative functions of NTPEP.
- ✤ AASHTO/NTPEP does not endorse any manufacturer's product over another. Use of certain proprietary products as "primary products" does not constitute endorsement of those products.
- ✤ AASHTO/NTPEP does not issue product approval or disapproval; rather, test data are furnished for the User to make judgment for product prequalification or approval for their transportation agency.

Guidelines for Proper Use of NTPEP Results:

- The User is urged to carefully read any introductory notes at the beginning of this Report, and also to consider any special clauses, footnotes or conditions which may apply to any test reported herein. Any of these notes may be relevant to the proper use of NTPEP test data.
- The User of this Report must be sufficiently familiar with the product performance requirements and/or (standard) specification of their agency in order to determine which test data are relevant to meeting those qualifying factors.
- NTPEP test data is intended to be predictive of actual product performance. Where a transportation agency has successful historical experience with a given product, it is suggested to factor that precedence in granting or withholding product approval or prequalification.

NTPEP Report Special Advisory for Geosynthetic Reinforcement (REGEO):

- This report contains product data that are intended to be applied to a product line, based on the test results obtained for specific products that are used to represent the product line for the purposes of NTPEP testing. It is expected that the User will estimate the properties of specific products in the line not specifically tested through interpolation or a lower or upper bound approach.
- It is intended that this data be used by the User to add products to their Qualified Products or Approved Products List, and/or to develop geosynthetic reinforcement strength design parameters in accordance with AASHTO, FHWA, or other widely accepted design specifications/guidelines. It is also intended that the User will conduct further, but limited, evaluation and testing of the products identified in this report for product acceptance purposes to verify product quality.
- Products included in this report must be resubmitted to NTPEP every three (3) years for a verification evaluation and every six (6) years for a full qualification evaluation in accordance with the work plan. Hence, all product test results included in this Report supersede data provided in previous Editions of this report.
- The User is guided to read the document entitled "Use and Application of NTPEP Geosynthetic Reinforcement Test Results" (see NTPEP website) for instructions and background on how to apply the results of the data contained in this report.

Tony Allen (Washington State DOT)

Chairman, Geosynthetics Technical Committee John Schuler (Virginia DOT) Vice Chairman, Geosynthetics Technical Committee

Table of Contents

Executive Summary	.3
1.0 Product Line Description and Testing Strategy	.4
1.1 Product Description	.4
1.2 Product Line Testing Approach	.4
2.0 Product Polymer, Geometry, and Manufacturing Information1	10
2.1 Product/Polymer Descriptors1	10
2.2 Geometric Properties of Geogrids1	10
3.0 Wide Width Tensile Strength Data1	11
4.0 Installation Damage Data (RF _{ID})1	12
4.1 Installation Damage Test Program1	
4.2 Laboratory Installation Damage Test Results per ISO/EN 107221	13
5.0 Creep Rupture Data (RF _{CR})1	14
5.1 Creep Rupture Test Program1	14
5.2 Baseline Tensile Strength Test Results1	
5.3 Creep Rupture Test Results1	
5.3.1 Statistical Verification to Confirm the Qualification Creep Rupture Data	
6.0 Long-Term Durability Data (RF _D)1	
6.1 Durability Test Program1	
6.2 Durability Test Results1	
7.0 Low Strain Creep Stiffness Data	
7.1 Low Strain Creep Stiffness Test Program	
7.2 Ultimate Tensile Test Results for Creep Stiffness Test Program	
7.3 Creep Stiffness Test Results	
Appendix A: NTPEP Oversight CommitteeA-	
Appendix B: Product Geometric and Production DetailsB-	
B.1 Product Geometric Information	
Appendix C: Tensile Strength Detailed Test ResultsC-	
Appendix D: Installation Damage Detailed Test Results D-	
Appendix E: Creep Rupture Detailed Test ResultsE-	
Appendix F: Durability Detailed Test ResultsF-	
Appendix G: Creep Stiffness Detailed Test Results	-1

Tables

Table 1-1. Product designations included in product line4
Table 3-1. Wide width tensile strength, T _{ult} , for the Miragrid Geogrid XT product line11
Table 4-1. Independent installation damage testing required for NTPEP qualification and
verification
Table 4-2. Summary of laboratory (ISO procedure) installation damage test results. 13
Table 5-1. Independent creep rupture testing required for NTPEP qualification and verification. 15
Table 5-2. Ultimate tensile strength (UTS) and associated strain. 16
Table 5-3. Creep rupture test results for all tests conducted for verification
Table 6-1. Independent durability testing required for NTPEP qualification and verifcation19
Table 6-2. NTPEP durability test results for the Miragrid XT geogrid product line and criteria to
allow use of a default value for RF _D 20
Table 7-1. Ultimate tensile strength (UTS) & associated strain
Table 7-2. Summary of creep stiffness test results. 22

Note: Appendix tables not listed here.

Figures

Figure 1-1.	Photo of Miragrid 2XT (machine direction is perpendicular to ruler shown)5
Figure 1-2.	Photo of Miragrid 3XT (machine direction is perpendicular to ruler shown)5
Figure 1-3.	Photo of Miragrid 5XT (machine direction is perpendicular to ruler shown)6
Figure 1-4.	Photo of Miragrid 7XT (machine direction is perpendicular to ruler shown)6
Figure 1-5.	Photo of Miragrid 8XT (machine direction is perpendicular to ruler shown)7
Figure 1-6.	Photo of Miragrid 10XT (machine direction is perpendicular to ruler shown)7
Figure 1-7.	Photo of Miragrid 20XT (machine direction is perpendicular to ruler shown)
Figure 1-8.	Photo of Miragrid 22XT (machine direction is perpendicular to ruler shown)
Figure 1-9.	Photo of Miragrid 24XT (machine direction is perpendicular to ruler shown)9
Figure 5-1.	Composite creep rupture data/envelope for the Miragrid XT geogrid product line17
Figure 7-1.	Miragrid XT creep stiffness for 2 % strain @ 1000 hours23

Note: Appendix figures not listed here.

Executive Summary

This test report provides a mid-term verification of the data and evaluation provided in the January 2012 Product Qualification Report for the TenCate Miragrid XT Product Line. The purpose of this report is to provide data for verification of the test results included in the Product Qualification Report for this product line.

The test results contained herein were obtained in accordance with AASHTO R69-15 and the NTPEP work plan (see www.NTPEP.org). All testing reported herein was performed on the materials tested in the direction of manufacture, i.e., the machine direction.

Product Line Description: The product line evaluated includes the following specific polyester, PVC coated geogrid reinforcement products:

Miragrid 2XT, 3XT, 5XT, 7XT, 8XT, 10XT, 20XT, 22XT, and 24XT.

This product line was represented through testing of Miragrid 2XT, 8XT and 24XT. Samples of these three products were taken by an independent sampler on behalf of NTPEP. Qualification samples were taken on June 8, 2011 at the Miragrid manufacturing plant located in Pendergrass, GA. Verification samples of 2XT, 8XT and 24XT were taken on August 13, 2015 at the Miragrid manufacturing plant located in Pendergrass, GA.

Verification Testing: Regarding installation damage, the NTPEP verification testing verified that the qualification installation damage data continues to be valid. See Section 4.3 and Tables 4-2 and 4-3 regarding the validation of the use of the NTPEP qualification installation damage data.

Regarding creep rupture, the NTPEP verification testing verified that the NTPEP qualification data continues to be valid. See Section 5.3.1 and Appendix E, Figure E-5 regarding the validation of the use of the NTPEP qualification creep data.

Regarding durability testing, NTPEP verification testing verified that the products continue to meet the durability requirements outlined in R69-15 as well as the AASHTO LRFD Bridge Design Specifications. See Section 6.2 and Table 6-2 regarding the durability requirements.

Regarding creep stiffness, the NTPEP verification testing verified that the NTPEP qualification data continues to be valid. See Section 7.3 and Figure 7-1 regarding the validation of the use of the NTPEP qualification creep data.

<u>**Test Results for T**_{ult}</u>: All wide width test results (ASTM D6637) obtained for this product line through the NTPEP testing were greater than the minimum average roll values (MARV's) provided by the manufacturer (see Table 3-1).

<u>**Test Results for RF**</u>_{ID}, **RF**_{CR}, **RF**_D, **and Creep Stiffness**: See the Product Qualification Report for this product line, dated January 2012.

1.0 Product Line Description and Testing Strategy

1.1 Product Description

The **Miragrid XT Series** family of geogrids are high-strength woven, PVC coated geogrids. The product line evaluated consists of the products as manufactured by TenCate Geosynthetics listed in Table 1-1.

Miragrid Reinforcement Product Designations (i.e., Styles)			
Miragrid® 2XT	Miragrid® 7XT	Miragrid® 20XT	
Miragrid® 3XT	Miragrid® 8XT	Miragrid® 22XT	
Miragrid® 5XT	Miragrid® 10XT	Miragrid® 24XT	

Table 1-1.	Product	designations	included	in product line.
------------	---------	--------------	----------	------------------

The scope of the evaluation is limited to the strength in the machine direction (MD). The crossmachine direction (XD) was not specifically evaluated.

1.2 Product Line Testing Approach

This product line was represented through testing of Miragrid 2XT, 8XT and 24XT. 8XT was used as the primary product for product line characterization purposes (i.e., the baseline to which the other products were compared). Samples of these three products were taken by an independent sampler on behalf of NTPEP. Qualification samples were taken on June 8, 2011 at the Miragrid manufacturing plant located in Pendergrass, GA. Verification samples of 2XT, 8XT and 24XT were taken oin August 13, 2015 at the Miragrid manufacturing plant located in Pendergrass, GA.

Photographs of all the products tested are provided in figures 1-1 through 1-9.

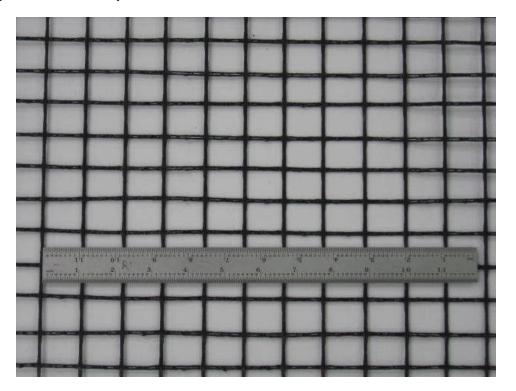


Figure 1-1. Photo of Miragrid 2XT (machine direction is perpendicular to ruler shown).



Figure 1-2. Photo of Miragrid 3XT (machine direction is perpendicular to ruler shown).

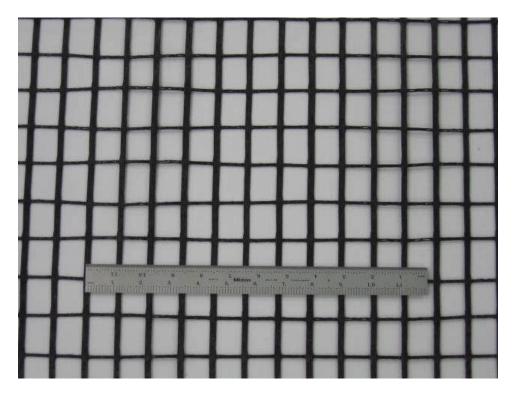


Figure 1-3. Photo of Miragrid 5XT (machine direction is perpendicular to ruler shown).

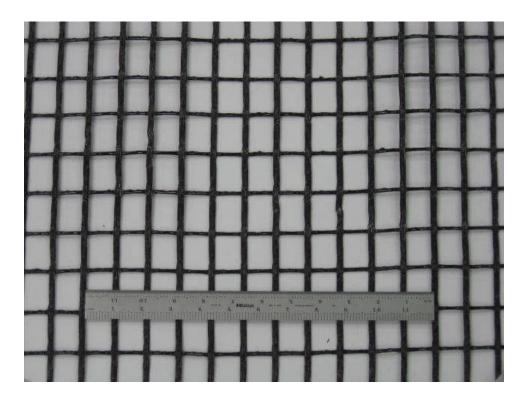


Figure 1-4. Photo of Miragrid 7XT (machine direction is perpendicular to ruler shown).

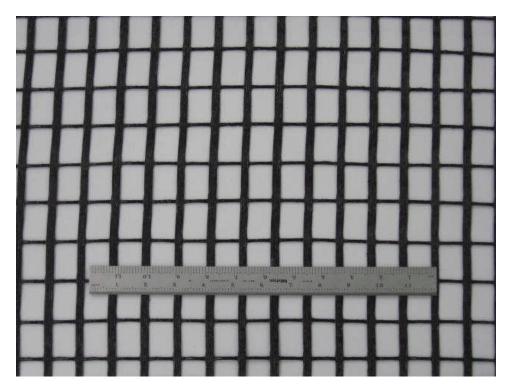


Figure 1-5. Photo of Miragrid 8XT (machine direction is perpendicular to ruler shown).

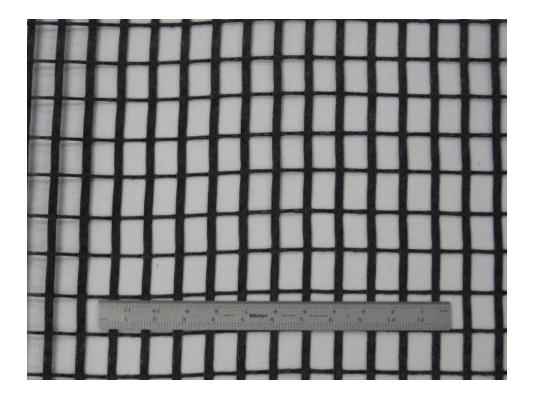


Figure 1-6. Photo of Miragrid 10XT (machine direction is perpendicular to ruler shown).

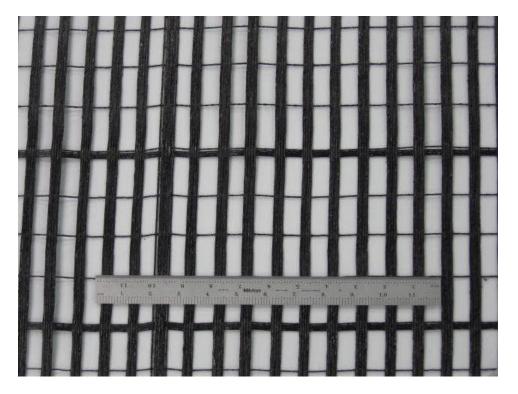


Figure 1-7. Photo of Miragrid 20XT (machine direction is perpendicular to ruler shown).

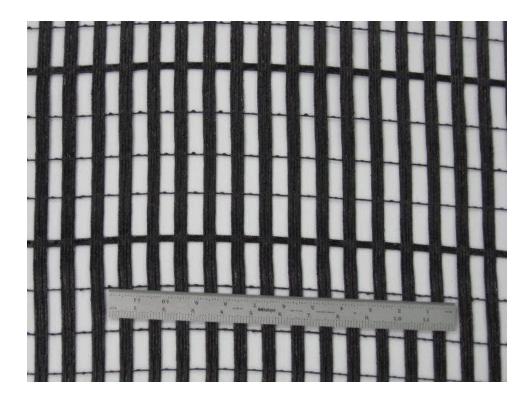


Figure 1-8. Photo of Miragrid 22XT (machine direction is perpendicular to ruler shown).

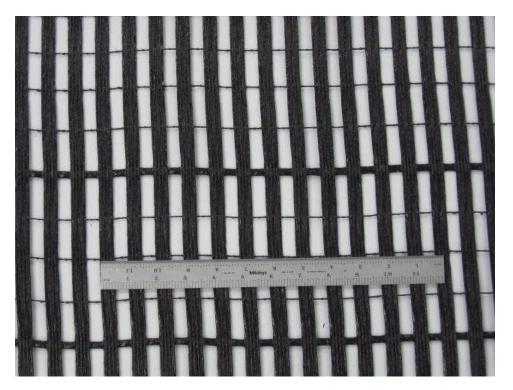


Figure 1-9. Photo of Miragrid 24XT (machine direction is perpendicular to ruler shown).

2.0 Product Polymer, Geometry, and Manufacturing Information

2.1 Product/Polymer Descriptors

Yarn used in all **Miragrid XT Series** geogrids is a high molecular weight, low CEG, high tenacity polyester (PET) with UV inhibitors. Source of Yarn is confidential. Coating used in all **Miragrid XT Series** geogrids is a PVC-based coating with no post-consumer recycled materials. The coating target weight per unit area is between 50-57% of the total weight of the finished product. Source of Coating is confidential.

For the PET yarns, key descriptors include minimum production number average molecular weight (GRI-GG7 and ASTM D 4603) and maximum carboxyl end group content (GRI-GG8):

- \circ Minimum Molecular Weight > 25,000 (independent test values are 34,855 from the product qualification testing and 30,570 from the verification testing)
- \circ Maximum CEG < 30 (independent test values are 15.2 from the product qualification testing and 22.1 from the verification testing)
- % of regrind used in product: 0%.
- o % of post-consumer recycled material by weight: 0%

2.2 Geometric Properties of Geogrids

Rib width, spacing, thickness, and product weight/unit area vary depending on geogrid style. While such data are generally not used for design, it can be useful for identification purposes, and to be able to detect any changes in the product. Measurements of geogrid rib spacing are also used to convert tensile test results (i.e., load at peak strength, T_{ult} , and load at a specified strain to obtain stiffness, J) to a load per unit width value (i.e., lbs/ft or kN/m). Detailed measurement results for both product qualification testing and verification testing, as well as the typical values supplied by the manufacturer for each product, are provided in Appendix B, Section B.1.

3.0 Wide Width Tensile Strength Data

Minimum average roll values supplied by the manufacturer and test results obtained on the three products used to represent the product line in this NTPEP testing program are provided in Table 3-1. Wide width tensile tests were conducted in accordance with ASTM D6637. The measured geogrid dimensions discussed in Section 2 and provided in Appendix B, Section B.1, were used to convert test loads to load per unit width values. Note that the independently measured T_{ult} values only indicate that the sampled products have a tensile strength that exceeds the Manufacturer's minimum average roll values (MARV's). As such, these independently measured T_{ult} values should not be used directly for design purposes. However, these independently measured T_{ult} test results have been used as roll specific tensile strengths for comparison to installation damage and creep testing and interpretation. Detailed test results are provided in Appendix C.

Product Style/Type	Test Method	MARV for T _{ult} , in MD (lb/ft)	T _{ult} , Independently Measured in MD (lb/ft)	T _{ult} , Independently Measured in MD (lb/ft)
2XT	ASTM D 6637	2,000	2,691*	2,756**
3XT	ASTM D 6637	3,500		
5XT	ASTM D 6637	4,700		
7XT	ASTM D 6637	5,900		
8XT	ASTM D 6637	7,400	8,463*	8,248**
10XT	ASTM D 6637	9,500		
20XT	ASTM D 6637	13,705		
22XT	ASTM D 6637	20,559		
24XT	ASTM D 6637	27,415	29,809*	28,615**

(Conversion: 1 lb/ft = 0.0146 kN/m)

MD = machine direction

*Average of 5 readings obtained during NTPEP qualification testing.

**Average of 5 readings obtained during NTPEP verification testing.

4.0 Installation Damage Data (RF_{ID})

4.1 Installation Damage Test Program

Installation damage testing and interpretation was conducted in accordance with AASHTO R69-15, except as noted herein. Qualification samples were exposed to three "standard" soils: a coarse gravel, a sandy gravel, and a sand. The verification sample was exposed to laboratory installation damage testing in accordance with ISO/EN 10722. The specific installation damage test program is summarized in Table 4-1.

Table 4-1. Independent installation damage testing required for NTPEP qualification and
verification.

Manufacturer: TenCate Geosynthetics PRODUCT Line: 2XT to 24XT					
Qualification (every 6 yrs) / Verification (every 3 yrs)					
Tests Conducted	Products T	# of Tests			
	Qualification	Verification	(see Note 1)		
Index tensile tests on undamaged material (ASTM D 6637)	2XT, 8XT, 24XT	NA	3		
Three field exposures, including soil characterization and compaction measurements (ASTM D5818)	2XT, 8XT, 24XT in Types 1, 2, and 3 soils	NA	9		
Tensile tests on damaged specimens (ASTM D 6637)	2XT, 8XT, 24XT in Types 1, 2, and 3 soils	NA	9		
Laboratory installation damage testing –as basis for future verification (ISO/EN 10722)	2XT, 3XT, 5XT, 7XT, 8XT, 10XT, 20XT, 22XT, 24XT	2ХТ	9		
Note 1 Each test is performed using the number of specimens required by the test standard. For example, for index tensile testing, a test is defined 5 to 6 specimens. See the specific test procedures for details on this.					

Verification

4.2 Laboratory Installation Damage Test Results per ISO/EN 10722

For qualification testing, three "standard" soils: a coarse gravel, a sandy gravel, and a sand were used for the field exposure of the geogrid samples to installation damage. In addition, laboratory installation damage testing and interpretation was conducted in accordance with ISO/EN 10722. In this procedure, geosynthetic specimens are exposed to simulated installation stresses and abrasion using a standard "backfill" material in a bench scale device. Once exposed, they are tested for tensile strength to determine the retained strength after damage. Five baseline and five exposed specimens from each product were tested. New installation damage tests were conducted using the verification principles provided in the REGEO work plan and in accordance with AASHTO R69-15 to verify that the installation damage data generated during qualification testing is still applicable for current geogrid production. For verification testing, 2XT was subjected to laboratory installation damage.

The verification installation damage test results are provided with the product qualification installation damage test results to facilitate direct comparison between the two sets of data. The roll specific ultimate tensile strength (ISO 10319) test results for the baseline, T_{lot} (i.e., undamaged tensile strength tested prior to sample installation in the ground) and the ultimate tensile strength of the installation damaged geogrid samples, T_{dam} , are provided in Table 4-2. Strength retained is calculated as the ratio of the average exposed strength T_{dam} divided by the average baseline strength T_{lot} for the product sample. Detailed test results for the verification testing for each specimen tested are provided in Appendix D, Table D-1.

Miragrid XT Style	Mean Baseline Tensile Strength (lb/ft)	Coefficient of Variation (%)	Mean Exposed Tensile Strength (lb/ft)	Coefficient of Variation (%)	Strength Retained (%)
2XT	2,744	1	2,552	8	93
2XT	2,788	2	2,689	1	96

Table 4-2. Summary of laboratory (ISO procedure) installation damage test results.

(Conversion: 1 lb/ft = 0.0146 kN/m)

The verification test results technically meet the R69-15 requirement that the maximum difference between the two means shall be no greater that what is defined as statistically insignificant based on a one-sided student-t distribution at a level of significance of 0.05 (see Table 4-2 and 4-3). Therefore the verification data for the Miragrid XT series confirms the product qualification data results according to R69-15.

5.0 Creep Rupture Data (RF_{CR})

5.1 Creep Rupture Test Program

Creep testing and interpretation has been conducted in accordance with AASHTO R69-15. A baseline (i.e., reference) temperature of 68° F (20° C) was used. For the product qualification testing, Miragrid 8XT was used as the primary product to establish the creep rupture envelope, with limited creep testing of the other Miragrid geogrids (i.e., 2XT and 24XT) to verify the ability to interpolate creep rupture behavior to the XT geogrid products not specifically tested (i.e., to treat all the products submitted for evaluation as a product line per R69-15 and the NTPEP work plan).

The product qualification testing verified that SIM (ASTM D 6992) could be used to accelerate the creep testing, and that furthermore single rib tests could be conducted to represent wide width tensile strengths obtained per ASTM D6637.

Verification creep testing and interpretation has been conducted in accordance with the verification principles provided in the REGEO work plan and in accordance with R69-15. The focus of this creep testing (specifically, testing of 8XT as the primary product for product line characterization) was to provide verification data to confirm the qualification creep data. Creep testing for product verification was conducted using SIM (ASTM D 6992) on single rib specimens.

The qualification and verification creep rupture testing programs are summarized in Table 5-1.

Manufacturer: TenCate Geosynthetics PRODUCT Line: 2XT to 24XT				
Qualification (every 6 yrs) / Verification (every				
Tests Conducted	Products Teste	Products Tested		
	Qualification	Verification	Note 1)	
Index single rib tensile tests on lot specific material (ASTM D 6637)	2XT, 8XT, 24XT	8XT	3	
Index wide width tensile tests on lot specific material (ASTM D 6637)	NA	NA	0	
PRIMARY PRODUCT 6 Rupture Points – <u>Conventional Creep testing</u> @ 10, 100, 500, 1000, 2500, 10000 hrs (ASTM D5262)	8XT @ 6 load levels	NA	6	
PRIMARY PRODUCT 6 Rupture Points – <u>Accelerated Creep rupture testing (SIM)</u> . (ASTM D6992)	8XT @ 6 load levels	8XT @ 4 load levels	6	
SECONDARY PRODUCT(S) Conventional Creep Testing (ASTM D5262)	None	NA	0	
SECONDARY PRODUCT(S) Accelerated Creep rupture testing (SIM). (ASTM D6992)	2XT and 24XT @ 4 load levels	NA	8	
Note 1: Each test is performed using the number of specimens required by the test standard. For example, for index tensile testing, a test is defined as 5 to 6 specimens. See the specific test procedures for details on this.				

Table 5-1. Independent creep rupture testing required for NTPEP qualification and
verification.

5.2 Baseline Tensile Strength Test Results

Sample specific geogrid dimensions were used to convert tensile test loads on single rib specimens to load per unit width values. The tensile test specimens tested were taken from the same rolls of material that were used for the creep testing. The measured geogrid dimensions discussed in Section 2 and provided in Appendix B, Section B.1, were used to convert tensile test loads to load per unit width values.

Product	Single Rib UTS per ASTM D6637, T _{lot} (lb/ft @ % Strain)
8XT	8,714 @ 12.8%
8XT Verification	8,691 @ 12.0%

Table 5-2. U	Ultimate tensile strength ((UTS) and associated strain.
--------------	-----------------------------	------------------------------

(Conversion: 1 lb/ft = 0.0146 kN/m)

5.3 Creep Rupture Test Results

A total of four Stepped Isothermal Method (SIM) tests were run to fulfill the verification requirements. Load levels were selected in accordance with AASHTO R69-15 (i.e., one that results in an approximate rupture time of 500 hours, and three at a load level that results in an approximate rupture time of 100,000 hours, based on the product qualification rupture envelope). Table 5-4 summarize the tests performed and their outcomes. Detailed test results, including creep curves for each specimen tested, are provided in Appendix E, Figures E-1 through E-4.

Table 5-3.	Creep rupture	test results for all	tests conducted for	verification.
------------	----------------------	----------------------	---------------------	---------------

Style & Test Type	Creep Load (% of T _{lot})	Time to Rupture (log hrs)
8XT - SIM	70.40	5.1258
8XT - SIM	70.75	4.7700
8XT - SIM	70.93	4.9525
8XT - SIM	78.88	2.6852

5.3.1 Statistical Verification to Confirm the Qualification Creep Rupture Data

The 8XT verification creep test results were obtained to perform a check on the qualification data for the primary product (8XT) to assess consistency of the current products with the original product qualification composite creep rupture envelope for this product line. The verification check of the 8XT creep rupture data is shown in Figure E-5. This figure illustrates that the 95% single-sided lower confidence limit per R69-15 is met by the test data. Details of the statistical verification evaluation conducted in accordance with R69-15 are contained in Appendix E. The primary product creep rupture verification data for 8XT satisfies the 95% single-sided lower confidence limit per R69-15 (see Figure E-5).The verification test results are provided in Figure 5-1, showing both the original creep rupture envelope and test data provided in the product qualification test report and the verification test results.

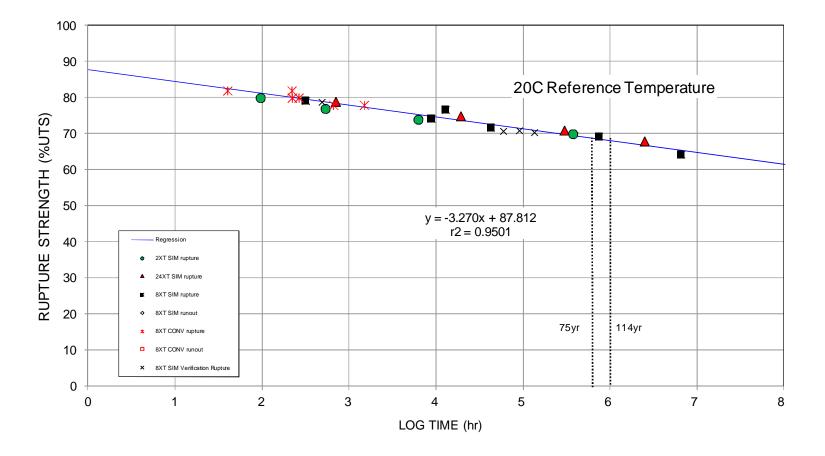


Figure 5-1. Composite creep rupture data/envelope for the Miragrid XT geogrid product line.

6.0 Long-Term Durability Data (RF_D)

6.1 Durability Test Program

Basic molecular properties relating to durability were evaluated, allowing a "default" RF_D to be used in accordance with AASHTO R69-15, provided that the long-term environment in which the geosynthetic is to be used is considered to be non-aggressive in accordance with the AASHTO LRFD Bridge Design Specifications and R69-15.

The index properties/test results obtained can be related to long-term performance of the polymer through correlation to longer-term laboratory durability performance tests and long-term experience. Note that long-term durability performance testing in accordance with R69-15 and the NTPEP work plan to allow direct calculation of RF_D was not requested by the manufacturer for the product qualification testing, nor evaluated as part of the testing program for this product line. Therefore, the durability evaluation was focused on index durability tests only.

For polyester (PET) geosynthetics, key durability issues to address include hydrolysis and ultraviolet (UV) oxidative degradation. To assess the potential for these types of degradation, index property tests to assess molecular weight, carboxyl end group content, and ultraviolet (UV) oxidative degradation are conducted. Criteria for test results obtained each of these tests are provided in R69-15 as well as the AASHTO LRFD Bridge Design Specifications.

The UV degradation tests were conducted on the lightest weight product in the product line (Miragrid 2XT) as recommended in R69-15. Since UV degradation attacks from the surface of the geosynthetic, the heavier the product, the more resistant it will be to UV degradation. Therefore, UV testing the lightest weight product should produce the most conservative result.

The molecular weight and carboxyl end group content tests are conducted on the base yarn for the product series. Since for a product line the base yarn used must be the same for all products in the line, these tests on the base yarn will be applicable to all products in the product line.

For the verification evaluation for the product qualification testing conducted for this product line, these index tests were essentially repeated using the verification sample. The qualification and verification durability testing programs are summarized in Table 6-1.

Manufacturer: TenCate Geosynthetics PRODUCT Line: 2XT to 24XT						
Qualification (every 6 yrs) / Verification (every 3 y						
Tests Conducted	Products Teste	ed	# of Tests (see			
	Qualification	Verification	Note 1)			
All polymers, resistance to weathering @ 500 hrs (ASTM D4355), including before/after tensile strength	2XT	2XT	1			
For polyesters, molecular weight determination (ASTM D4603 and GRI-GG7) – on yarn/strip	2XT yarn	2XT yarn	1			
For polyesters, carboxyl end group content determination (GRI-GG8) – on yarn/strip	2XT yarn	2XT yarn	1			
CEG-MW Testing Coating Removal, if necessary	2XT yarn	NA	1			
Brittleness (WSDOT T926)	NA	NA	0			
For polyolefins, long-term evaluation via Oxidative degradation (ISO/EN 13438:1999)	NA	NA	0			
For polyesters, long-term evaluation via Hydrolytic degradation (AASHTO R69-15)	None	None	0			
For polyolefins, long-term evaluation via Oxidative degradation (AASHTO R69-15)	NA	NA	0			
Note 1: Each test is performed using the number for index tensile testing, a test is defined details on this.						

Table 6-1. Independent durability testing required for NTPEP qualification and
verifcation.

6.2 Durability Test Results

A summary of the test results is provided in Table 6-2, showing both the original product qualification test results and the verification test results. This table also includes the criteria to allow the use of a default reduction factor for RF_D provided in R69-15 and the AASHTO LRFD Bridge Design Specifications. Detailed durability test results are provided in Appendix F.

Table 6-2. NTPEP durability test results for the Miragrid XT geogrid product line and
criteria to allow use of a default value for RF _D .

Polymer Type	Property	Test Method	Criteria to Allow Use of Default RF*	Test Result Obtained as Part of NTPEP Program
PP and HDPE	UV Oxidation Resistance	ASTM D4355	Min. 70% strength retained after 500 hrs in weatherometer	NA
PET	UV Oxidation Resistance	ASTM D4355	Min. 50% strength retained after 500 hrs in weatherometer if geosynthetic will be buried within one week, 70% if left exposed for more than one week.	Qualification 85% strength retained Verificaton 82% strength retained
PP and HDPE	Thermo- Oxidation Resistance	ENV ISO 13438:1999, Method A (PP) or B (HDPE)	Min. 50% strength retained after 28 days (PP) or 56 days (HDPE)	NA
PET	Hydrolysis Resistance	Inherent Viscosity Method (ASTM D4603 and GRI Test Method GG8)	Min. Number Average Molecular Weight of 25,000	Qualification 34,855 Verificaton 30,570
PET	Hydrolysis Resistance	GRI Test Method GG7	Max. Carboxyl End Group Content of 30	Qualification 15.2 Verificaton 22.1

Note: PP = polypropylene, HDPE = high density polyethylene, PET = polyester

The product qualification test results demonstrated that the products in the product line meet the minimum durability test results criteria to justify the use of a default value for RF_D , meeting the requirements in R69-15. The verification test results continue to meet the minimum durability requirements outlined in Table 6.2 and therefore justify the use of a default value for RF_D as outlined in R69-15.

7.0 Low Strain Creep Stiffness Data

7.1 Low Strain Creep Stiffness Test Program

Creep stiffness testing was conducted in accordance with AASHTO R69-15 and the NTPEP work plan. The creep stiffness determination was targeted to 2% strain at 1,000 hours.

Products selected to represent the XT product line (i.e., 2XT, 8XT, and 24XT) were tested for creep stiffness for the product qualification testing. Roll specific single rib short-term rapid loading tensile strength tests (T_{lot}) were conducted for each product for correlation purposes and to calculate load levels. A total of nine Ramp and Hold (R&H), 1,000 second creep tests, were conducted on each product. Three specimens were R&H tested at each of the following stresses: 5, 10 and 20% of the ultimate tensile strength (UTS). A linear regression based on %UTS and % strain at 0.1 hour was used to normalize strain curves to reduce the variability of the elastic portion of the strain curve. The % UTS required to obtain 2% strain at 1,000 hours was then determined. Three R&H tests and two 1,000 hour conventional creep tests (ASTM D5262, but as modified for low strain in R69-15 and using a single rib specimen) were conducted at this load. All tests were conducted at 68° F (20° C).

Verification testing was conducted on the primary product in the product line (8XT). Roll specific single rib short-term rapid loading tensile strength tests (T_{lot}) were conducted for correlation purposes and to calculate load levels. A total of nine Ramp and Hold (R&H), 1,000 second creep tests, were conducted. Three specimens were R&H tested at each of the following stresses: 5, 10 and 20% of the ultimate tensile strength (UTS). A linear regression based on %UTS and % strain at 0.1 hour was used to normalize strain curves to reduce the variability of the elastic portion of the strain curve. The % UTS required to obtain 2% strain at 1,000 hours was then determined. Three R&H tests were conducted at this load. All tests were conducted at 68° F (20° C).

7.2 Ultimate Tensile Test Results for Creep Stiffness Test Program

The values provided in Table 7-1 represent the baseline, roll specific, ultimate tensile strength used to normalize the load level for the verification creep stiffness testing. Sample specific geogrid dimensions were used to convert tensile test loads to load per unit width values.

Product	T _{lot} for Single Rib (lb/ft @ % Strain)
8XT	8,714 @ 12.8%
8XT Verification	8,691 @ 12.0%
(Conversion, 1 lb/ft	-0.0146 l N/m

Table 7-1.	. Ultimate tensile strength (UTS) & associated strain.
------------	--

(Conversion: 1 lb/ft = 0.0146 kN/m)

7.3 Creep Stiffness Test Results

Detailed test results for the verification testing are provided in Appendix G. Table 7-2 provides a summary of the creep stiffness values obtained on the primary product (8XT) for both product qualification and verification testing. Figure 7-1 shows the relationship between the measured tensile strength and the percent strain at 1000 hours for the original product qualification and the verification testing on the primary product (8XT). The percent strain at 1000 hours of the verification testing on 8XT falls above the 95 percent lower prediction limit established by Student's *t*-test of the original product qualification data set. Therefore, the verification testing meets the requirements outlined in R69-15.

	Average Creep	Average Creep	Average Creep	Average Creep
Miragrid XT	Stiffness @ 1000	Stiffness @ 1000	Stiffness @ 1000	Stiffness for
Series Style	hours for 5% UTS	hours for 10%	hours for 20%	2% strain @
Series Style	Ramp & Hold	UTS Ramp &	UTS Ramp &	1000 hrs
	(lb/ft)	Hold (lb/ft)	Hold (lb/ft)	(lb/ft)
8XT	46,030	45,708	43,576	44,977
8XT Verification	116,119	72,203	50,920	61.297

Table 7-2. Summary of creep stiffness test results.

(Conversion: 1 lb/ft = 0.0146 kN/m)

Figure 7-1. Miragrid XT creep stiffness for 2 % strain @ 1000 hours.

APPENDICES

Appendix A: NTPEP Oversight Committee

National Transportation Product Evaluation Program (NTPEP)

Chair: Christine Reed, Illinois

Vice Chair: Thomas E. Baker, Washington

AASHTO Staff: Greta Smith, Katheryn Malusky, Evan Rothblatt and Dan Stegmaier

NTPEP Committee

Member Department	Member/Delegate	Phone Number	Email Address	Voting Member
Alabama				
	Michelle Owens	(334) 353-6940	owensm@dot.state.al.us	Voting Member
Alaska				
	Michael San Angelo	(907) 269-6234	michael.sanangelo@alaska.gov	Voting Member
Arizona				
	Paul Sullivan		psullivan@azdot.gov	Voting Member
Arkansas				
	Mark Bradley	(501) 569-2380	mark.bradley@arkansashighways.com	Voting Member
	Michael Benson	(501) 569-2185	michael.benson@arkansashighways.com	✓ Voting Member
	Tony Sullivan	(501) 569-2661	tony.sullivan@arkansashighways.com	Voting Member
California				
	L. Janie Spencer		New_Products@dot.ca.gov	Voting Member
	Lawerence Orcutt	(916) 654-8877	larry_orcutt@dot.ca.gov	Voting Member
Colorado				
	David Kotzer	(303) 398-6566	david.kotzer@dot.state.co.us	✓ Voting Member
	Jim Zufall		jim.zufall@dot.state.co.us	Voting Member
	K.C. Matthews	(303) 757-9543	K.C.Matthews@dot.state.co.us	Voting Member
Connecticut				
	Andrew J. Mroczkowksi	(860) 258-0304	andrew.mroczkowski@ct.gov	Voting Member
	James M. Sime, P.E.	(860) 258-0309	james.sime@ct.gov	Voting Member
Delaware				
	James T. Pappas III, P.E.	(302) 760-2400	jpappas@mail.dot.state.de.us	Voting Member
District of Columbia				
	Wasi U. Khan	(202) 671-2316	wasi.khan@dc.gov	✓ Voting Member
	William P. Carr	(202) 671-1371	williamp.carr@dc.gov	Voting Member
Florida				
	Karen Byram	(850) 414-4353	karen.byram@dot.state.fl.us	✓ Voting Member
	Paul Vinik	(352) 955-6649	Paul.Vinik@dot.state.fl.us	Voting Member

NTPEP Committee

Member Departmen	t Member/Delegate	Phone Number	Email Address	Voting Member
Georgia				
	Brad Young	(404) 363-7560	byoung@dot.ga.gov	Voting Member
	Don Wishon	(404) 363-7632	dwishon@dot.ga.gov	Voting Member
	Richard Douds	(404) 362-2545	Rdouds@dot.ga.gov	✓ Voting Member
Hawaii				
	JoAnne Nakamura		joanne.nakamura@hawaii.gov	Voting Member
Idaho				
	Bryan Martin		bryan.martin@itd.idaho.gov	Voting Member
Illinois				
	David Lippert		david.lippert@illinois.gov	✓ Voting Member
	Matt Mueller		matthew.mueller@illinois.gov	Voting Member
Indiana				
	Kenny Anderson	(317) 610-7251	kbanderson@indot.in.gov	Voting Member
	Ronald P. Walker	(317) 610-7251	rwalker@indot.in.gov	Voting Member
Iowa				
	Joseph Putherickal	(515) 239-1259	Joseph.putherickal@dot.iowa.gov	✓ Voting Member
	Kurtis Younkin	(515) 239-1184	kurtis.younkin@dot.iowa.gov	Voting Member
Kansas				
	David Meggers, PE	(785) 291-3845	dmeggers@ksdot.org	Voting Member
	Stacey Lowe	(785) 296-3899	curt@ksdot.org	Voting Member
Kentucky				
	Derrick Castle	(502) 564-3160	derrick.castle@ky.gov	✓ Voting Member
	Ross Mills	(502) 564-3160	ross.mills@ky.gov	Voting Member
	Trevor Booker		trevor.booker@ky.gov	Voting Member
Louisiana				
	Chris Abadie		chris.abadie@la.gov	✓ Voting Member
	Jason Davis	(225) 248-4131	jason.davis@la.gov	Voting Member
	Richie Charoenpap		Richie.Charoenpap@LA.GOV	Voting Member
Maine				
	Doug Gayne	(207) 624-3268	doug.gayne@maine.gov	Voting Member
Maryland				
	Dan Sajedi	(443) 572-5162	dsajedi@sha.state.md.us	✓ Voting Member
	Russell A. Yurek	(410) 582-5505	ryurek@sha.state.md.us	Voting Member
Massachusetts				
	Clement Fung	(617) 951-1372	Clement.Fung@MHD.state.ma.us	Voting Member
	John Grieco	(617) 951-0596	John.Grieco@state.ma.us	✓ Voting Member

(updates found at www.ntpep.org)

Member Departmer	nt Member/Delegate	Phone Number	Email Address	Voting Member
Michigan				
_	John Staton, P.E.	(517) 322-5701	statonj@michigan.gov	Voting Member
Minnesota				
	David Iverson	(651) 366-5550	david.iverson@state.mn.us	Voting Member
	James McGraw	(651) 366-5548	jim.mcgraw@state.mn.us	Voting Member
Mississippi				
	Alan Kegley	(601) 359-1666	akegley@mdot.state.ms.us	Voting Member
	Celina Sumrall	(601) 359-7001	csumrall@mdot.state.ms.us	✓ Voting Member
	James S. Sullivan	(601) 359-1454	jssulivan@mdot.state.ms.us	Voting Member
Aissouri				
	Julie Lamberson	(573) 751-2847	julie.lamberson@modot.mo.gov	Voting Member
	Todd Bennett	(573) 751-1045	todd.bennett@modot.mo.gov	✓ Voting Member
Montana				
	Anson Moffett, P.E.	(406) 444-5407	amoffett@mt.gov	Voting Member
	Craig Abernathy	(406) 444-6269	cabernathy@state.mt.us	Voting Member
	Ross Metcalfe, P.E.	(406) 444-9201	rmetcalfe@mt.gov	Voting Member
Nebraska				
	Mostafa Jamshidi	(402) 479-4750	Moe.Jamshidi@nebraska.gov	✓ Voting Member
Nevada				
	Roma Clewell	(775) 888-7894	RClewell@dot.state.nv.us	Voting Member
New Hampshire				
-	Alan D. Rawson	(603) 271-3151	arawson@dot.state.nh.us	Voting Member
	William Real	(603) 271-3151	wreal@dot.state.nh.us	✓ Voting Member
New Jersey				
·	Eileen Sheehy		eileen.sheehy@dot.state.nj.us	✓ Voting Member
	Richard Jaffe	(609) 530-5463	richard.jaffe@dot.state.nj.us	Voting Member
New Mexico				
	Ernest D. Archuleta	(505) 827-5525	ernest.archuleta@nmshtd.state.nm.us	✓ Voting Member
New York				
	Jim Curtis	(518) 457-4735	Jcurtis@dot.state.ny.us	✓ Voting Member
	Michael Stelzer	(518) 457-4595	mstelzer@dot.state.ny.us	Voting Member
	Patrick Galarza	(518) 457-4599	pgalarza@dot.state.ny.us	Voting Member
North Carolina				
	Chris Peoples	(919) 733-3532	cpeoples@ncdot.gov	✓ Voting Member
	Jack E. Cowsert	(919) 733-7088	jcowsert@ncdot.gov	Voting Member
	Randy Pace		rpace@ncdot.gov	Voting Member

NTPEP Committee

(updates found at www.ntpep.org)

Member Department Member/Delegate Phone Number Email Address **Voting Member** North Dakota rhorner@nd.us ✓ Voting Member Ron Horner (701) 328-6904 Scott Wutzke swwutzke@nd.gov Voting Member Ohio brad.young2@dot.state.oh.us ✓ Voting Member Brad Young (614) 351-2882 Lloyd M. Welker Jr. (614) 275-1351 Voting Member lloyd.welker@dot.state.oh.us Oklahoma Kenny R. Seward (405) 522-4999 kseward@odot.org ✓ Voting Member Voting Member Reynolds H. Toney (405) 521-2677 rtoney@odot.org Oregon Ivan Silbernagel, PE (503) 986-6213 Voting Member Ivan.p.silbernagel@odot.state.or.us Mike Dunning (503) 986-3059 mike.d.dunning@odot.state.or.us ✓ Voting Member Pennsylvania ✓ Voting Member David H. Kuniega (717) 787-3966 dkuniega@state.pa.us Tim Ramirez (717) 783-6714 tramirez@state.pa.us Voting Member **Puerto Rico** Orlando Diaz-Quirindong (787) 729-1592 oquirindongo@act.dtop.gov.pr ✓ Voting Member Rhode Island ✓ Voting Member Colin A. Franco, P.E. cfranco@dot.ri.gov (401) 222-3030 Voting Member Mark F. Felag, P.E. (401) 222-2524 mfelag@dot.ri.gov South Carolina Merrill Zwanka, P.E. (803) 737-6681 ZwankaME@scdot.org ✓ Voting Member South Dakota David L. Huft dave.huft@state.sd.us Voting Member (605) 773-3292 jason.humphrey@state.sd.us Voting Member Jason Humphrey (605) 773-3704 Joe J. Feller (605) 773-3401 joe.feller@state.sd.us ✓ Voting Member Tennessee Danny Lane (615) 350-4175 danny.lane@tn.gov ✓ Voting Member Heather Hall (615) 350-4150 heather.purdy.hall@tn.gov Voting Member Texas Robert Sarcinella RSARCIN@dot.state.tx.us ✓ Voting Member (512) 506-5933 Scott Koczman (512) 416-2073 skoczman@dot.state.tx.us Voting Member **USDOT - FHWA** Voting Member Michael Rafalowski (202) 366-1571 michael.rafalowski@dot.gov

NTPEP Committee

Member Department Member/Delegate Phone Number Email Address **Voting Member** Utah Ahmad Jaber ajaber@utah.gov Voting Member Ken Berg, P.E. (801) 965-4321 kenberg@utah.gov Voting Member Michael Fazio mfazio@utah.gov ✓ Voting Member Vermont William Ahearn ✓ Voting Member (802) 828-2561 bill.ahearn@state.vt.us Virginia C. Wayne Fleming cw.fleming@virginiadot.org Voting Member James R. Swisher (804) 328-3121 james.swisher@virginiadot.org ✓ Voting Member William R. Bailey III (804) 328-3106 bill.bailey@virginiadot.org Voting Member Washington Thomas Baker (360) 709-5401 bakert@wsdot.wa.gov ✓ Voting Member Tony Allen Voting Member (360) 709-5450 allent@wsdot.wa.gov West Virginia Aaron Gillispie aaron.c.gillispie@wv.gov ✓ Voting Member Bruce E. Kenney III, P.E. (304) 558-3044 Bruce.E.Kenney@wv.gov Voting Member Larry.R.Barker@wv.gov Voting Member Larry Barker (304) 558-3160 Wisconsin Peter J. Kemp ✓ Voting Member (608) 246-7953 peter.kemp@dot.wi.gov Wyoming ✓ Voting Member Louis Maillet (307) 777-4075 louis.maillet@dot.state.wy.us

NTPEP Committee

Appendix B: Product Geometric and Production Details

B.1 Product Geometric Information

	Machine Direction (MD) Ribs							
Style	Wie	lth (in)	Spac	cing (in)	Apertur	e Size (in)	Rib Th	ickness (in)
	Typical Values	As Measured	Typical Values	As Measured	Typical Values	As Measured	Typical Values	As Measured
2XT	N/A	0.095* 0.093*	N/A	1.118* 1.113**	0.875	0.830* 0.815**	N/A	0.057* 0.052**
3XT	N/A	0.144*	N/A	1.113*	1.0	1.260*	N/A	0.060*
5XT	N/A	0.196*	N/A	1.127*	1.2	1.245*	N/A	0.059*
7XT	N/A	0.223*	N/A	1.121*	1.3	1.214*	N/A	0.057*
8XT	N/A	0.285* 0.265**	N/A	1.237* 1.072**	1.3	1.148* 1.514**	N/A	0.057* 0.053**
10XT	N/A	0.297*	N/A	1.096*	1.3	1.315*	N/A	0.072*
20XT	N/A	0.373*	N/A	1.001*	1.5	5.806*	N/A	0.084*
22XT	N/A	0.471*	N/A	1.003*	1.4	5.796*	N/A	0.101*
24XT	N/A	0.519* 0.492**	N/A	1.006* 0.972**	1.4	5.740* 5.712**	N/A	0.094* 0.101**

Table B-1. Typical and measured MD geogrid geometry for the Miragrid XT product line.

(Conversions: 1 in = 25.4 mm)

*Average of 5 readings obtained during NTPEP qualification testing.

**Average of 5 readings obtained during NTPEP verification testing. Full test results in Tables B-5

through B-7.

Table B-2. Typical and measured XD geogrid geometry for the Miragrid XT product line.

Cross-Machine Direction (XD) Ribs										
Style	Width (in)		Spacing (in)		Aperture Size (in)		Rib Thickness (in)			
	Typical Values	As Measured	Typical Values	As Measured	Typical Values	As Measured	Typical Values	As Measured		
2XT	N/A	0.114* 0.107**	N/A	0.944* 0.922**	1.0	1.023* 1.019**	N/A	0.061* 0.051**		
3XT	N/A	0.126*	N/A	1.385*	1.0	0.969*	N/A	0.061*		
5XT	N/A	0.108*	N/A	1.354*	1.0	0.931*	N/A	0.053*		
7XT	N/A	0.115*	N/A	1.330*	0.9	0.898*	N/A	0.062*		
8XT	N/A	0.117* 0.107**	N/A	1.354* 1.621**	0.9	0.863* 0.807**	N/A	0.058* 0.068**		
10XT	N/A	0.116*	N/A	1.431*	0.8	0.799*	N/A	0.062*		
20XT	N/A	0.265*	N/A	6.071*	0.6	0.628*	N/A	0.059*		
22XT	N/A	0.256*	N/A	6.053*	0.6	0.532*	N/A	0.073*		
24XT	N/A	0.258* 0.224**	N/A	5.998* 5.937**	0.5	0.487* 0.480**	N/A	0.067* 0.064**		

(Conversions: 1 in = 25.4 mm)

*Average of 5 readings obtained during NTPEP qualification testing.

**Average of 5 readings obtained during NTPEP verification testing. Full test results in Tables B-5

through B-7.

Style	Junction Thickness (in)						
Style	Typical Values	As Measured*	As Measured**				
2XT	Not tested	0.058*	0.054**				
3XT	Not tested	0.066*					
5XT	Not tested	0.060*					
7XT	Not tested	0.065*					
8XT	Not tested	0.069*	0.065**				
10XT	Not tested	0.078*					
20XT	Not tested	0.101*					
22XT	Not tested	0.115*					
24XT	Not tested	0.119*	0.129**				

Table B-3. Typical and measured geogrid junction thickness for the Miragrid XT product line.

(Conversions: 1 in = 25.4 mm)

*Average of 5 readings obtained during NTPEP qualification testing.

**Average of 5 readings obtained during NTPEP verification testing. Full test results in Tables B-5 through B-7.

Table B-4. Typical and measured geogrid unit weight for the Miragrid XT product line.

Geogrid Style/Type	Typical Weight (oz/yd ²)	Measured Weight, per ASTM D5261 (oz/yd ²)*	Measured Weight, per ASTM D5261 (oz/yd ²)**
2XT	7.50	7.21*	7.00**
3XT	8.17	7.98*	
5XT	9.00	8.85*	
7XT	10.21	9.09*	
8XT	11.42	11.23*	11.14**
10XT	14.31	13.26*	
20XT	22.12	18.45*	
22XT	30.50	24.79*	
24XT	38.02	30.27*	31.26**

(Conversion: 1 oz/ $yd^2 = 33.9 \text{ g/m}^2$)

*Average of 5 readings obtained during NTPEP qualification testing.

**Average of 5 readings obtained during NTPEP verification testing. Full test results in Tables B-5

through B-7.

Table B-5. Geogrid geometric measurements for 2XT

TRI Log #: E2378-12-06

PARAMETER	TEST REPL	ICATE NUM	IBER			MEAN	STD. DEV.
	1	2	3	4	5		
Mass/Unit Area (ASTM D 5261)							
Specimen Width (in) 8.9							
Specimen Length (in) 8.2							
Mass(g)	11.21	11.08	11.22	11.13	11.27		
Mass/unit area (oz/sq.yd)	7.02	6.93	7.02	6.97	7.05	7.00	0.05
Mass/unit area (g/sq.meter)	238	235	238	236	239	237	2
Aperature Size (Calipers)							
MD - Aperature Size (in)	0.846	0.814	0.778	0.814	0.823	0.815	0.024
MD - Aperature Size (mm)	21.5	20.7	19.8	20.7	20.9	20.7	0.6
TD - Aperature Size (in)	1.019	1.033	1.006	1.020	1.018	1.019	0.010
TD - Aperature Size (mm)	25.9	26.2	25.6	25.9	25.9	25.9	0.2
Rib Width (Calipers)							
MD - Width (in)	0.096	0.093	0.095	0.092	0.091	0.093	0.002
MD - Width (mm)	2.44	2.36	2.41	2.34	2.31	2.37	0.05
TD - Width (in)	0.107	0.104	0.106	0.105	0.113	0.107	0.004
TD - Width (mm)	2.72	2.64	2.69	2.67	2.87	2.72	0.09
Rib Thickness (Calipers)							
MD - Thickness (in)	0.05	0.05	0.054	0.056	0.051	0.052	0.003
MD - Thickness (mm)	1.27	1.27	1.37	1.42	1.30	1.33	0.07
TD - Thickness (in)	0.05	0.053	0.054	0.05	0.047	0.051	0.003
TD - Thickness (mm)	1.27	1.35	1.37	1.27	1.19	1.29	0.07
Node/Junction Thickness (Calip	oers)						
Thickness (in)	0.052	0.054	0.057	0.055	0.052	0.054	0.002
Thickness (mm)	1.32	1.37	1.45	1.40	1.32	1.37	0.05

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

Table B-6. Geogrid geometric measurements for 8XT

TRI Log #: E2378-12-06

							STD.
PARAMETER	1EST REPL	ICATE NUN	BER 3	4	5	MEAN	DEV.
Mass/Unit Area (ASTM D 5261)		2	3	4	5		
Specimen Width (in) 8.8							
Specimen Length (in) 9.3							
Mass(g)	20.08	19.67	19.88	19.79	20.38		-
Mass/unit area (oz/sq.yd)	11.21	10.98	11.09	11.04	11.37	11.14	0.16
Mass/unit area (g/sq.meter)	380	372	376	374	386	378	5
Aperature Size (Calipers)							
MD - Aperature Size (in)	1.659	1.536	1.398	1.235	1.744	1.514	0.204
MD - Aperature Size (mm)	42.1	39.0	35.5	31.4	44.3	38.5	5.2
TD - Aperature Size (in)	0.848	0.835	0.762	0.762	0.827	0.807	0.042
TD - Aperature Size (mm)	21.5	21.2	19.4	19.4	21.0	20.5	1.1
	21.0	2112	10.1	10.1	21.0	2010	
Rib Width (Calipers)							
MD - Width (in)	0.253	0.266	0.270	0.266	0.271	0.265	0.007
MD - Width (mm)	6.43	6.76	6.86	6.76	6.88	6.74	0.18
TD - Width (in)	0.116	0.104	0.106	0.110	0.099	0.107	0.006
TD - Width (mm)	2.95	2.64	2.69	2.79	2.51	2.72	0.16
Rib Thickness (Calipers)							
MD - Thickness (in)	0.050	0.052	0.054	0.055	0.053	0.053	0.002
MD - Thickness (mm)	1.27	1.32	1.37	1.40	1.35	1.34	0.05
TD - Thickness (in)	0.084	0.060	0.051	0.065	0.081	0.068	0.014
TD - Thickness (mm)	2.13	1.52	1.30	1.65	2.06	1.73	0.36
Node/Junction Thickness (Calip	ers)						
Thickness (in)	0.066	0.065	0.064	0.067	0.061	0.065	0.002
Thickness (mm)	1.68	1.65	1.63	1.70	1.55	1.64	0.06

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

Table B-7. Geogrid geometric measurements for 24XT

TRI Log #: E2378-12-06

PARAMETER		ICATE NUN				MEAN	STD. DEV.
FARAWETER	11231 KEFL	2	3	4	5		DEV.
Mass/Unit Area (ASTM D 5261)	•	-	Ū	•	Ū		
Specimen Width (in) 8.9							
Specimen Length (in) 6							
Mass(g)	36.35	35.97	36.22	37.19	36.98		
Mass/unit area (oz/sq.yd)	31.09	30.77	30.98	31.81	31.63	31.26	0.44
Mass/unit area (g/sq.meter)	1054	1043	1050	1078	1072	1060	15
Aperature Size (Calipers)							
MD - Aperature Size (in)	5.655	5.742	5.735	5.690	5.739	5.712	0.038
MD - Aperature Size (mm)	143.6	145.8	145.7	144.5	145.8	145.1	1.0
TD - Aperature Size (in)	0.493	0.564	0.410	0.452	0.483	0.480	0.057
TD - Aperature Size (mm)	12.5	14.3	10.4	11.5	12.3	12.2	1.4
Rib Width (Calipers)							
(Calipers)							
MD - Width (in)	0.488	0.515	0.476	0.497	0.483	0.492	0.015
MD - Width (mm)	12.40	13.08	12.09	12.62	12.27	12.49	0.38
TD - Width (in)	0.224	0.227	0.230	0.221	0.220	0.224	0.004
TD - Width (mm)	5.69	5.77	5.84	5.61	5.59	5.70	0.11
Rib Thickness (Calipers)							
MD - Thickness (in)	0.094	0.101	0.103	0.103	0.104	0.101	0.004
MD - Thickness (mm)	2.39	2.57	2.62	2.62	2.64	2.57	0.10
TD - Thickness (in)	0.066	0.058	0.066	0.068	0.062	0.064	0.004
TD - Thickness (mm)	1.68	1.47	1.68	1.73	1.57	1.63	0.10
	1.00	1.47	1.00	1.75	1.57	1.05	0.10
Node/Junction Thickness (Calip	oers)						
Thickness (in)	0.124	0.128	0.136	0.126	0.132	0.129	0.005
Thickness (mm)	3.15	3.25	3.45	3.20	3.35	3.28	0.12

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

Appendix C: Tensile Strength Detailed Test Results

.

Table C-1. Geogrid wide width tensile test results for 2XT

TRI Log #: E2387-12-06

							STD.	
PARAMETER	TEST RE	PLICAT	E NUM BE	R		MEAN	DEV.	MARV
	1	2	3	4	5			
Wide Width Tensile Properties (ASTM D6	637, Met	hod B)					
MD Number of Ribs per Specimen:	8							
MD Number of Ribs per foot:	10.71							
MD Ultimate Strength (lbs)	2045	2087	2090	2019	2050	2058	30	
MD Ultimate Strength (lbs/ft)	2739	2795	2799	2704	2745	2756	40	2,000
MD Ultimate Strength (kN/m)	40.0	40.8	40.9	39.5	40.1	40.2	0.6	
MD Strength @ 2% Strain (lbs)	365	375	511	422	358	406	64	
MD Strength @ 2% Strain (lbs/ft)	489	502	684	565	479	544	85	
MD Strength @ 2% Strain (kN/m)	7.1	7.3	10.0	8.3	7.0	7.9	1.2	
MD Strength @ 5% Strain (lbs)	904	949	1044	952	886	947	61	
MD Strength @ 5% Strain (lbs/ft)	1211	1271	1398	1275	1186	1268	82	
MD Strength @ 5% Strain (kN/m)	17.7	18.6	20.4	18.6	17.3	18.5	1.2	
MD Strength @ 10% Strain (lbs)	2010	2067	2077	1983	1817	1991	105	
MD Strength @ 10% Strain (lbs/ft)	2692	2768	2781	2655	2433	2666	140	
MD Strength @ 10% Strain (kN/m)	39.3	40.4	40.6	38.8	35.5	38.9	2.0	
MD Break Elongation (%)	10.4	10.3	10.3	10.4	9.7	10.2	0.3	

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

Table C-2. Geogrid wide width tensile test results for 8XT

TRI Log #: E2387-12-06

							STD.	
PARAMETER	TEST R	PLICAT	E NUM BE			MEAN	DEV.	MARV
	1	2	3	4	5			
Wide Width Tensile Properties (ASTM D 6	637, Met	hod B)					
MD Number of Ribs per Specimen:	8							
MD Number of Ribs per foot:	10.90							
MD Ultimate Strength (lbs)	6027	5943	6035	6267	5996	6054	125	
MD Ultimate Strength (lbs/ft)	8212	8097	8223	8539	8170	8248	170	7,400
MD Ultimate Strength (kN/m)	119.9	118.2	120.1	124.7	119.3	120.4	2.5	
MD Strength @ 2% Strain (lbs)	1194	1141	1134	1341	1277	1217	90	
MD Strength @ 2% Strain (lbs/ft)	1627	1555	1545	1827	1740	1659	122	
MD Strength @ 2% Strain (kN/m)	23.8	22.7	22.6	26.7	25.4	24.2	1.8	
MD Strength @ 5% Strain (lbs)	2221	2132	2241	2324	2242	2232	68	
MD Strength @ 5% Strain (lbs/ft)	3026	2905	3053	3166	3055	3041	93	
MD Strength @ 5% Strain (kN/m)	44.2	42.4	44.6	46.2	44.6	44.4	1.4	
MD Strength @ 10% Strain (lbs)	5463	5648	5523	5897	5733	5653	172	
MD Strength @ 10% Strain (lbs/ft)	7443	7695	7525	8035	7811	7702	235	
MD Strength @ 10% Strain (kN/m)	108.7	112.4	109.9	117.3	114.0	112.4	3.4	
MD Break Elongation (%)	11.0	10.6	11.7	11.2	10.6	11.0	0.5	

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

Table C-3. Geogrid wide width tensile test results for 24XT

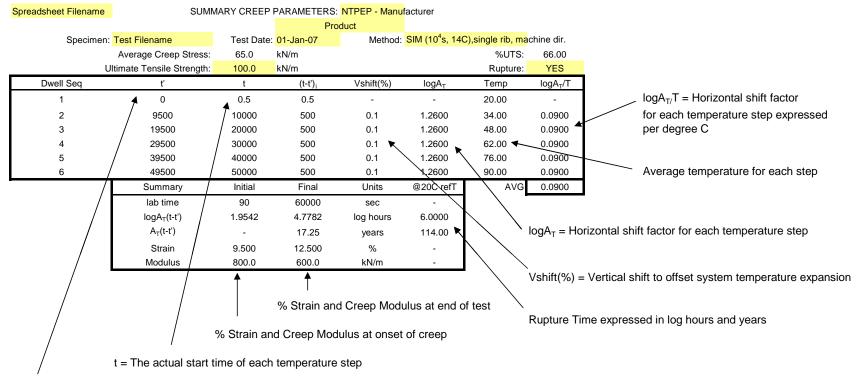
TRI Log #: E2387-12-06

							STD.	
TEST RE	PLICAT	-				MEAN	DEV.	MARV
1	2	3	4	5				
ASTM D6	637, Met	hod B)						
9								
12.15								
21204	20619	21311	21455	21392		21196	336	
28625	27836	28770	28964	28879		28615	454	27,415
417.9	406.4	420.0	422.9	421.6		417.8	6.6	
3263	3201	3041	3495	3637		3327	238	
4405	4321	4105	4718	4910		4492	321	
64.3	63.1	59.9	68.9	71.7		65.6	4.7	
5082	4943	4912	5204	5287		5086	162	
6861	6673	6631	7025	7137		6866	219	
100.2	97.4	96.8	102.6	104.2		100.2	3.2	
10208	8982	9266	10692	11409		10111	1003	
13781	12126	12509	14434	15402		13650	1353	
201.2	177.0	182.6	210.7	224.9		199.3	19.8	
16.3	15.9	17.3	16.4	15.7		16.3	0.6	
	1 9 12.15 21204 28625 417.9 3263 4405 64.3 5082 6861 100.2 10208 13781 201.2	1 2 (ASTM D 6637, Met) 9 12.15 21204 20619 28625 27836 417.9 406.4 3263 3201 4405 4321 64.3 63.1 5082 4943 6861 6673 100.2 97.4 10208 8982 13781 12126 201.2 177.0	1 2 3 (ASTM D 6637, Method B) 9 9 12.15 21204 20619 21311 28625 27836 28770 417.9 406.4 420.0 3263 3201 3041 4405 4321 4105 64.3 63.1 59.9 5082 4943 4912 6861 6673 6631 100.2 97.4 96.8 10208 8982 9266 13781 12126 12509 201.2 177.0 182.6	9 12.15 21204 20619 21311 21455 28625 27836 28770 28964 417.9 406.4 420.0 422.9 3263 3201 3041 3495 4405 4321 4105 4718 64.3 63.1 59.9 68.9 5082 4943 4912 5204 6861 6673 6631 7025 100.2 97.4 96.8 102.6 10208 8982 9266 10692 13781 12126 12509 14434 201.2 177.0 182.6 210.7	1 2 3 4 5 (ASTM D 6637, Method B) 9 12.15 21204 20619 21311 21455 21392 28625 27836 28770 28964 28879 417.9 406.4 420.0 422.9 421.6 3263 3201 3041 3495 3637 4405 4321 4105 4718 4910 64.3 63.1 59.9 68.9 71.7 5082 4943 4912 5204 5287 6861 6673 6631 7025 7137 100.2 97.4 96.8 102.6 104.2 10208 8982 9266 10692 11409 13781 12126 12509 14434 15402 201.2 177.0 182.6 210.7 224.9	1 2 3 4 5 (ASTM D 6637, Method B) 9 9 12.15 21204 20619 21311 21455 21392 28625 27836 28770 28964 28879 417.9 406.4 420.0 422.9 421.6 3263 3201 3041 3495 3637 4405 4321 4105 4718 4910 64.3 63.1 59.9 68.9 71.7 5082 4943 4912 5204 5287 6861 6673 6631 7025 7137 100.2 97.4 96.8 102.6 104.2 10208 8982 9266 10692 11409 13781 12126 12509 14434 15402 201.2 177.0 182.6 210.7 224.9	1 2 3 4 5 (ASTM D 6637, Method B) 9 12.15 21204 20619 21311 21455 21392 21196 28625 27836 28770 28964 28879 28615 417.8 3263 3201 3041 3495 3637 4405 4321 4105 4718 4910 64.3 63.1 59.9 68.9 71.7 65.6 5082 4943 4912 5204 5287 5086 68661 6673 6631 7025 7137 6586 100.2 97.4 96.8 102.6 104.2 10111 13781 12126 12509 14434 15402 1111 13781 12126 12509 14434 15402 199.3	TEST REPLICATE NUMBER MEAN DEV. 1 2 3 4 5 ASTM D 6637, Method B) 9 12.15 21204 20619 21311 21455 21392 21196 336 28625 27836 28770 28964 28879 417.8 6.6 3263 3201 3041 3495 3637 4492 321 64.3 63.1 59.9 68.9 71.7 65.6 4.7 5082 4943 4912 5204 5287 6866 162 6861 6673 6631 7025 7137 65.6 14.7 100.2 97.4 96.8 102.6 104.2 10111 1003 13781 12126 12509 14434 15402 13650 1353 201.2 177.0 182.6 210.7 224.9 199.3 193.3

MD - Machine Direction TD - Transverse/Cross Machine Direction NP - Not Provided

Appendix D: Installation Damage Detailed Test Results

Table D-1. Laboratory installation damage (ISO/EN 10722) tensile test results for 2XT


TRI Log #: E2387-12-06

TECT DE			п			-		PERCE
-	-	-		5	IVIE	AN DEV	VARI.	RETAIN
-	_	5	-	5				
	•	/EN 1031	9)					
8								
10.71								
2001	2116	2116	2078	2100	203	32 48	2	
2680	2834	2834	2783	2812	27	88 64	2	
39.1	41.4	41.4	40.6	41.1	40	.7 0.9	2.3	
1992	1997	2027	2019	2006	20	08 15	1	
2668	2674	2714	2704	2686	26	39 20	1	96
38.9	39.0	39.6	39.5	39.2	39	.3 0.3	0.7	
9.87	10.8	10.3	11.2	9.90	10	.4 0.6	5.5	
11.3	9.69	8.83	9.79	9.83	9.8	9 0.9	9.0	95
	1 ISO/EN 10 e w idth ter 2001 2680 39.1 1992 2668 38.9 9.87	1 2 ISO/EN 10722) e e width tensile (ISO 8 10.71 2001 2116 2680 2834 39.1 41.4 1992 1997 2668 2674 38.9 39.0 9.87 10.8	1 2 3 ISO/EN 10722) a a a width tensile (ISO/EN 1031) b b a width tensile (ISO/EN 1031) b b a width tensile (ISO/EN 1031) b b b width tensile (ISO/EN 1031) b c c width tensile (ISO/EN 1031) c c c width tensile (ISO/EN 101) c c c width tensile (ISO/EN 101) c c c width tensile (ISO/EN 1031) c c	ISO/EN 10722) e w idth tensile (ISO/EN 10319) 8 10.71 2001 2116 2116 2078 2680 2834 2834 2783 39.1 41.4 41.4 40.6 1992 1997 2027 2019 2668 2674 2714 2704 38.9 39.0 39.6 39.5 9.87 10.8 10.3 11.2	1 2 3 4 5 ISO/EN 10722) ISO/EN 10722) ISO/EN 10319) ISO/EN 10319) a 10.71 2001 2116 2116 2078 2100 2680 2834 2834 2783 2812 39.1 41.4 41.4 40.6 41.1 1992 1997 2027 2019 2006 2668 2674 2714 2704 2686 38.9 39.0 39.6 39.5 39.2 9.87 10.8 10.3 11.2 9.90 9.90	1 2 3 4 5 ISO/EN 10722) ISO/EN 10722) ISO/EN 10319) ISO/EN 10319) 8 10.71 2001 2116 2116 2078 2100 200 2680 2834 2834 2783 2812 274 39.1 41.4 41.4 40.6 41.1 40 1992 1997 2027 2019 2006 200 2668 2674 2714 2704 2686 38.9 39.0 39.6 39.5 39.2 39 9.87 10.8 10.3 11.2 9.90 10 10	TEST REPLICATE NUMBER MEAN DEV. 1 2 3 4 5 ISO/EN 10722) ISO/EN 10722) ISO/EN 10319) ISO/EN 10319) ISO/EN 10319) 8 10.71 2001 2116 2116 2078 2100 2082 48 2680 2834 2834 2783 2812 64 0.9 1992 1997 2027 2019 2006 2008 15 2668 2674 2714 2704 2686 2689 20 38.9 39.0 39.6 39.5 39.2 10.4 0.6	TEST REPLICATE NUMBER MEAN DEV. VARI. 1 2 3 4 5 ISO/EN 10722) ISO/EN 10722) ISO/EN 10319) ISO/EN 10319) ISO/EN 10319) 8 10.71 ISO/EN 2116 2078 2100 ISO/EN 2082 48 2 2001 2116 2116 2078 2100 ISO/EN 2082 48 2 2680 2834 2834 2783 2812 64 2 39.1 41.4 41.4 40.6 41.1 0.9 2.3 1992 1997 2027 2019 2006 2008 15 1 2668 2674 2714 2704 2686 2689 20 1 38.9 39.0 39.6 39.5 39.2 10.4 0.6 5.5

MD - Machine Direction TD - Transverse/Cross Machine Direction

Appendix E: Creep Rupture Detailed Test Results

Table E-1. Explanation/Key for Individual Creep Test Data Tables/Figures

Accelerated Creep Rupture via SIM - ASTM D 6992

t' = The theoritical start time of each temperature step

REGEO-2015-01-002

			8	XT			
Specimen:	126-n2m-8XT-sim71	Test Dat	te: 29-Sep-15	Method:	SIM (10 ⁴ s, 14C),sin	gle rib, machine dir.	
A	verage Creep Stress:	6119	lb/ft			%UTS:	70.40
Ultim	ate Tensile Strength:	8691	lb/ft			Rupture:	YES
Dwell Seq	ť	t	(t-t') _i	Vshift(%)	logA _T	Temp	logA _T /T
1	0	0.5	0.5	-	-	19.67	-
2	9600	10020	420	0.12	1.3760	33.66	0.0983
3	19500	20010	510	0.115	1.3084	47.75	0.0929
4	29600	30001	401	0.08	1.4173	61.90	0.1002
5	39200	39990	790	0.12	1.1176	76.33	0.0774
6							
	Summary	Initial	Final	Units	@20C refT	AVG	0.0921
ſ	lab time	44.6	42331	sec	-		
	logA _T (t-t')	1.6488	8.7150	log hours	5.1258		
	A _T (t-t')	-	16.44	years	15.24		
	Strain	8.82	11.675	%	-		
	Modulus	71337.7	52468.6	lb/ft	-		

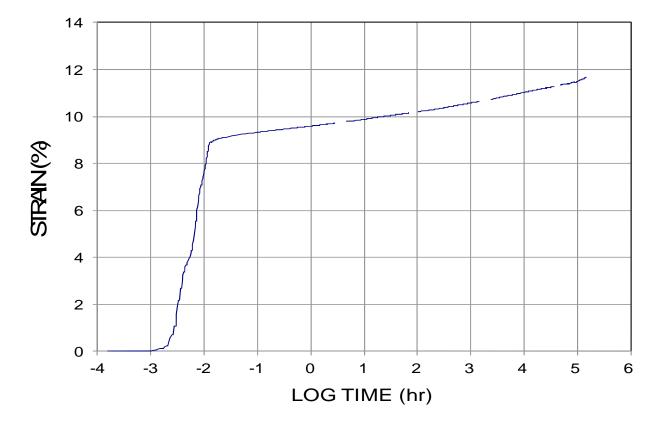


Figure E-1. SIM/Creep data/curve for 8XT at load level of 70.40% UTS.

			8	XT			
Specimen:	126-n2m-8XT-sim71b	Test Dat	te: 30-Sep-15	Method:	: SIM (10 ⁴ s, 14C),sin	gle rib, machine dir.	
А	verage Creep Stress:	6149	lb/ft			%UTS:	70.75
Ultim	nate Tensile Strength:	8691	lb/ft			Rupture:	YES
Dwell Seq	ť	t	(t-t') _i	Vshift(%)	logA _T	Temp	logA _T /T
1	0	0.5	0.5	-	-	19.66	-
2	9600	10020	420	0.13	1.3758	33.70	0.0980
3	19600	20010	410	0.16	1.4029	47.79	0.0996
4	29500	30001	501	0.15	1.3162	61.94	0.0930
5	39200	39991	791	0.12	1.1215	76.62	0.0764
6							
	Summary	Initial	Final	Units	@20C refT	AVG	0.0916
	lab time	52.0	40591	sec	-		
	logA _T (t-t')	1.7160	8.3597	log hours	4.7700		
	A _T (t-t')	-	7.25	years	6.72		
	Strain	8.43	10.560	%	-		
	Modulus	73266.9	58276.4	lb/ft	-		

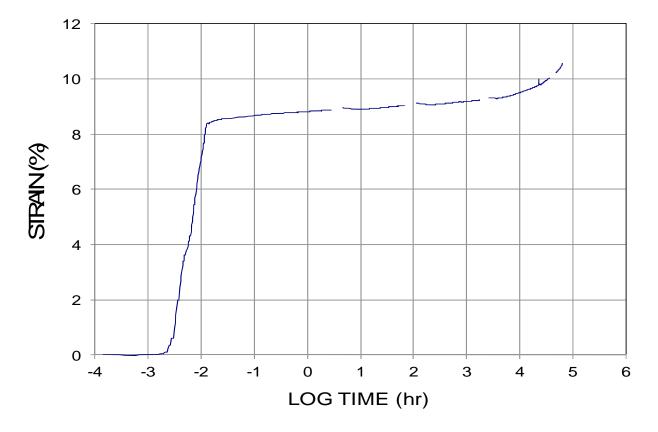


Figure E-2. SIM/Creep data/curve for 8XT at load level of 70.75% UTS.

				8XT			
Specimen:	126-n2m-8XT-sim71	Test Da	te: 02-Oct-15	Method:	SIM (10 ⁴ s, 14C),sin	gle rib, machine dir.	
A	verage Creep Stress:	6165	lb/ft			%UTS:	70.93
Ultim	nate Tensile Strength:	8691	lb/ft			Rupture:	YES
Dwell Seq	ť	t	(t-t') _i	Vshift(%)	logA _T	Temp	logA _T /T
1	0	0.5	0.5	-	-	19.63	-
2	9500	10021	521	0.095	1.2832	33.62	0.0917
3	19500	20010	510	0.15	1.3126	47.65	0.0936
4	29500	30000	500	0.12	1.3206	61.72	0.0938
5	39300	39991	691	0.13	1.1804	76.06	0.0824
6							
	Summary	Initial	Final	Units	@20C refT	AVG	0.0903
	lab time	52.0	42091	sec	-	-	
	logA _T (t-t')	1.7160	8.5424	log hours	4.9525		
	A _T (t-t')	-	11.05	years	10.23		
	Strain	8.21	10.268	%	-		
	Modulus	75401.1	60005.0	lb/ft	-		

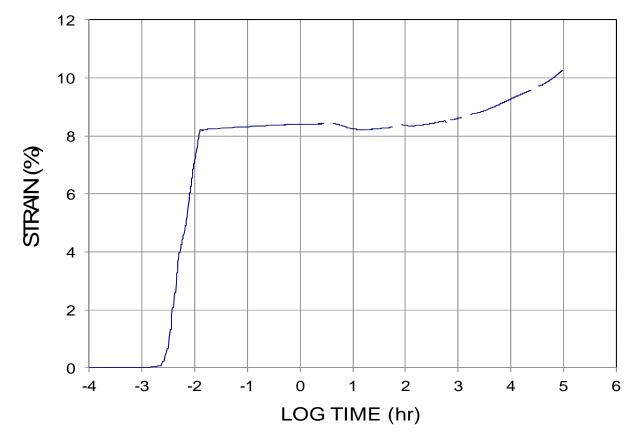


Figure E-3. SIM/Creep data/curve for 8XT at load level of 70.93% UTS.

			8	XT			
Specimen:	126-n2m-8XT-sim79	Test Dat	te: 07-Oct-15	Method:	SIM (10 ⁴ s, 14C),sin	gle rib, machine dir.	
Av	verage Creep Stress:	6855	lb/ft			%UTS:	78.88
Ultim	ate Tensile Strength:	8691	lb/ft			Rupture:	YES
Dwell Seq	ť	t	(t-t') _i	Vshift(%)	logA _T	Temp	logA _T /T
1	0	0.5	0.5	-	-	19.58	-
2	8900	10020	1120	0.1	0.9503	33.76	0.0670
3	18100	20011	1911	0.12	0.7634	48.00	0.0536
4	28700	30000	1300	0.1	0.9605	62.49	0.0663
5							
6							
	Summary	Initial	Final	Units	@20C refT	AVG	0.0623
	lab time	50.1	32640	sec	-		
	logA _T (t-t')	1.6994	6.2696	log hours	2.6852		
	A _T (t-t')	-	0.06	years	0.06		
	Strain	9.23	11.791	%	-		
	Modulus	76183.5	58149.5	lb/ft	-		

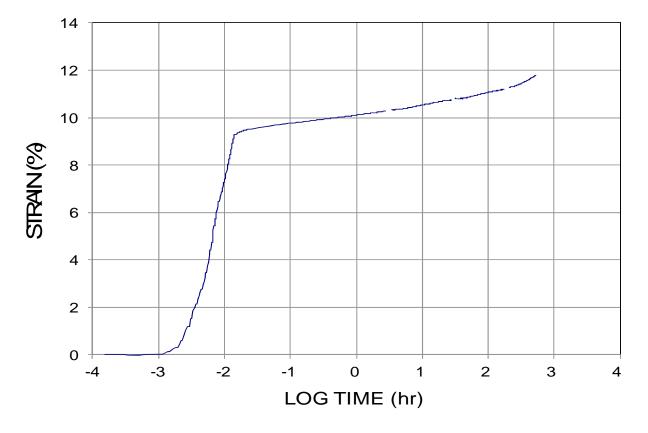


Figure E-4. SIM/Creep data/curve for 8XT at load level of 78.88% UTS.

Statistical Evaluation of Qualification Creep Data: The 8XT verification creep test results were obtained to perform a check on the qualification data for the primary product (8XT) to confirm the acceptability of using the qualification data to establish the composite creep curve for the product line. The verification check of the 8XT creep rupture data is shown in Figure E-5. This figure illustrates that the 95% single-sided lower confidence limit per R69-15 is met by the test data.

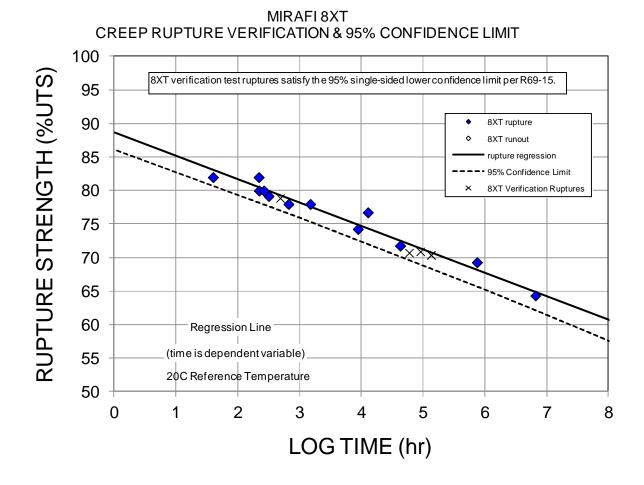
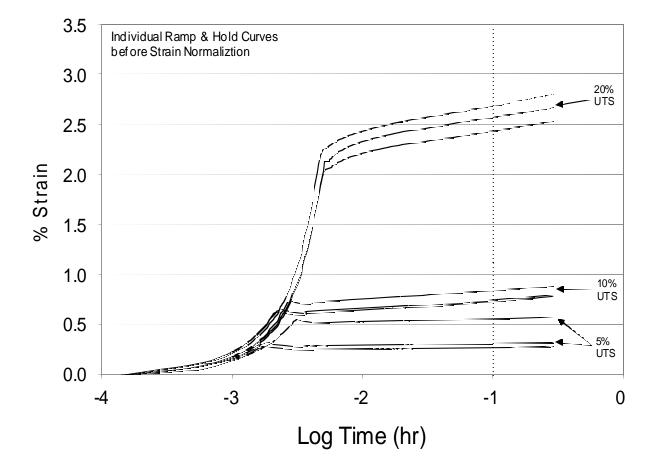


Figure E-5. Comparison of NTPEP verification 8XT creep rupture test results to 95% confidence limit for qualification creep rupture data.

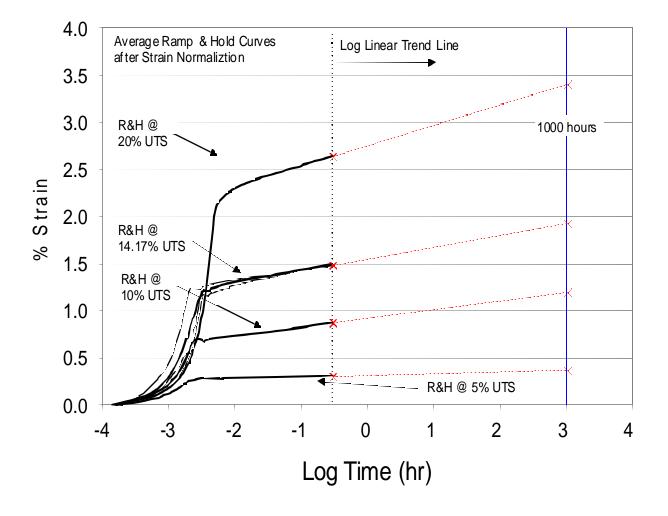
Appendix F: Durability Detailed Test Results

Table F-1. Yarn test results to evaluate susceptibility to hydrolysis Material: Polyester Yarn Product Identification: Uncoated 2XT TRI Log #: E2387-12-06 STD. PARAMETER **TEST REPLICATE NUMBER** MEAN DEV. 1 2 3 Carboxyl End Group (CEG) Count (Test Method: GRI GG7) mmol/Kg 22.0 23.3 21.0 22.1 1.2 Molecular Weight (Test Method: GRI GG8) Mn (Number average molecular weight) **30,570** 3,102 27,051 31,752 32,907 The testing herein is based upon accepted industry practice as well as the test method listed. Test results reported herein do not apply to samples other than those tested.


							STD.	PE
PARAMETER	TEST R	EPLICA	-	BER		MEAN	DEV.	RET
	1	2	3	4	5			
UV Resistance (ASTM D 4355)								
Strength Retained measured via sir	igle strip to	ensile (A	STM D 6	637, Met	hod A, mod.)			
MD - Number of Ribs per foot:	10.71							
MD - Tensile Strength (lbs) - B	269.4	267.4	275.4	270.9	272.4	271.1	3.0	
MD - Tensile Strength (lb/ft) - B	2886	2865	2950	2902	2918	2904	32	
MD - Tensile Strength (kN/m) - B	42.1	41.8	43.1	42.4	42.6	42.4	0.5	
MD - Tensile Strength (lbs) - E	226.0	218.5	219.3	204.8	242.0	222.1	13.5	
MD - Tensile Strength (lb/ft) - E	2421	2341	2349	2194	2593	2380	145	
MD - Tensile Strength (kN/m) - E	35.3	34.2	34.3	32.0	37.9	34.7	2.1	<u> </u>
MD - Elong. @ Max. Load (%) - B	10.5	10.0	10.9	10.1	10.6	10.4	0.4	
MD - Elong. @ Max. Load (%) - E	9.25	9.06	9.66	7.62	10.2	9.16	0.96	
							_	
B - Baseline Unexposed	D 4055 0							
E - Exposed for 500 hours of ASTM	D 4355 C	ycle						

Miragrid XT Series Style	Mean Baseline Tensile Strength (lb/ft)	Standard Deviation (lb/ft)	Mean Exposed Tensile Strength (lb/ft)	Standard Deviation (lb/ft)	% Strength Retained
2XT	2,678	31	2,280	30	85
2XT Verification	2,904	32	2,380	145	82

Table F-3 Summary of UV	resistance test results for Miragid XT geogrid.
Tuble I 5 Summary of CV	resistance test results for minusia 201 Scogna.


(Conversion: 1 lb/ft = 0.0146 kN/m)

Appendix G: Creep Stiffness Detailed Test Results

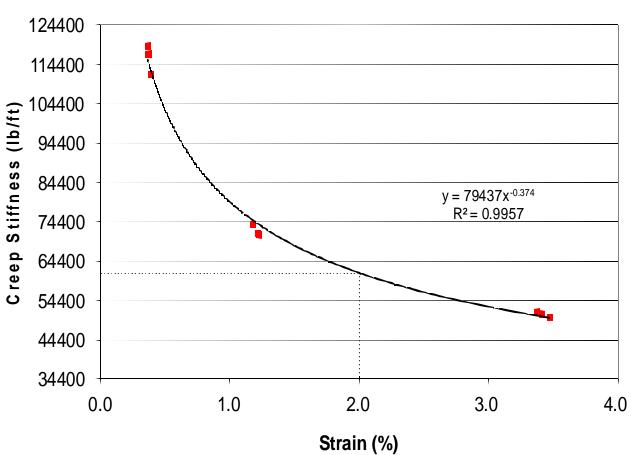

Low Strain Ramp and Hold Test Results Product: 8XT

Figure H-4. Low strain ramp and hold tests for 8XT, before strain normalization.

Low Strain Ramp and Hold Test Results Product: 8XT

Figure H-5. Low strain ramp and hold tests for 8XT, after strain normalization.

Creep Stiffness @ 1000 hours Product: 8XT

Figure H-6. Creep stiffness versus strain at 1,000 hours for 8XT.

"The National Transportation Product Evaluation Program (NTPEP) was established by the American Association of State Highway and Transportation Officials (AASHTO) in early 1994. The program pools the professional and physical resources of the AASHTO member departments in order to test materials, products and devices of common interest. The primary goals of the program are to provide cost-effective evaluations for the states by eliminating duplication of routine testing by the states; and to reduce duplication of effort by the manufacturers who produce and market commonly used proprietary, engineered products." ଚ∞ NTPEP ୶

-- Rick Smutzer (IN), former NTPEP Chairman

call 1.202.624.5800 fax 1.800.525.5469 online <u>www.NTPEP.ORG</u>

ITEM: NTPEP Report 2015-01-002

