CANVAS KIT ${ }^{\text {TM }}$ INDIVIDUAL KIT MANUAL

For use with individual kits, alone or in small groups

CANVAS KIT ${ }^{\text {TM }}$ INDIVIDUAL KIT MANUAL

Getting Ready

Welcome! Let's get started 03
Practicing safe science 04
How will you learn? 05
Discover your Canvas Kit 06
The individual kit 07
The Group kit 08
Kit components 09
Unpacking \& storing kits 11
Technical specifications 11
Necessary equipment \& safety supplies 12
Timeline 13
Recommended pre-activities 14
2 key pitfalls to avoid 15

The Experiment

Prepare your space \& setup 16

1. Creating LB agar plates 17
Checkpoint 19
2. Growing bacteria paint 20
Checkpoint 22
3. Painting your art 23
4. See your results! 24
Storage, disposal and clean up 26
More information
Glossary 27
Troubleshooting

Welcome! Let's get started

This user guide was created to help you get the most out of your Amino Labs experience. Even if you are familiar with genetic engineering, science or other Amino Labs ${ }^{\text {™ }}$ products, please take the necessary time to read through this guide. This will ensure you practice safe science as well as store, use, and get the most out of your kit. It will also let you know what to do in case of a spill or accident.

In the first section, you will learn about your kit's components, how to store them before and during your experiment, as well as a few tips on activities to complete before you get your hands wet. The second section is procedural -these are the step by step instructions on how to run your experiment. Make sure to follow our tips to ensure your best success! The third section covers "what's next"; how to keep your creations, store or dispose of any leftover ingredients and general clean up instructions. The final section is there to help you -- a glossary, troubleshooting, and our contact information.

Amino Labs is excited to welcome you to the world of the genetic engineering with the Canvas Kit ${ }^{\text {Tm }}$, Engineer-it Kit ${ }^{\text {tm }}$ and our entire ecosystem of easy-to-use, easy-to-succeed at products! Following this guide will help ensure that you are getting the most out of your current and future experiences to keep on making new creations with DNA. Have fun!

Practicing safe science

Genetic engineering and life sciences are safe activities when you follow simple guidelines. Read on to ensure you adopt safe practices.

The kit in your hands contains only non-pathogenic ingredients. These are part of the biosafety Risk Group 1 (RG1) (Biosafety Level 1). This is the most benign level and therefore the safest: with these kits, no special containment or training is required in North America. But you must follow these safety guidelines for your safety and the success of your experiment(s)!

We recommend the system and kits for ages 12+, under adult supervision, and 14+ with or without supervision. We recommend that an adult empties the discard container. The cleaning instructions must be strictly followed for safety and experiment success. Make sure to store the kit per the instructions found in this booklet.

- Do not eat or drink near your experiments. Keep your experiment at least 10 feet from food, drinks, etc. Under no circumstances should you eat any of the kit's content.
- Immunocompromised persons: While the ingredients in these kits are non-pathogenic, some persons, such as immunocompromised persons, can be affected by large numbers of bacteria and should talk to their doctor before doing any experiment.
- Wash your hands before and after manipulating your experiment, or the hardware.
- Wear gloves, even when cleaning your station or handling the kit contents (petri plates, loops, etc). This will protect you from your experiment, and your experiment from you. Any latex, nitrile, or general purpose gloves you can find at the pharmacy will do. After you put your gloves on, be aware of what you touch. Try not to touch your face or scratch itches with your gloved hands!
- If using the DNA Playground ${ }^{T M}$ or BioExplorer ${ }^{T M}$ place it on a stable work surface. Keep it level at all times.
- Clean up your station, spills and work surface before and after use. Use a 10% solution of chlorinated bleach generously sprayed onto a paper towel and rub onto any contaminated surfaces. (Careful! This can discolor your clothes). A chlorinated spray cleaner also works.
- Find a container to hold the inactivation bag where you will discard used items. An old 1L yogurt container, large plastic cup or the like will do. Used items (in science, these are often called consumables) will be loops, tubes or used petri dish.
- Eye-wear is not provided but can be worn.

You can download a biosafety poster for your space from www.amino.bio/biosafetyinaction and complete a short safety quiz at www.amino.bio/biosafety-quiz

If you would like to do a short Online lab safety course for your edification, we recommend a Government of Canada course: www.amino.bio/biosafety

How will I learn?

Learning and prototyping with genetic engineering and cells is becoming accessible to newcomers ages $12+$ thanks to dedicated scientists and kits such as the one you are about to use!

One of the easiest ways to learn a new science, hobby or topic is by trying it hands-on. Amino Labs kits make it easy to do science by following the instructions in this booklet. Everything you need is included; each ingredient in the kit is pre-measured and labeled for a beginner-friendly experience. Our all-in-one DNA Playground minilab (mini-laboratory) decreases setup time, mess, guesswork and the need to collect and calibrate multiple machines. The included instructions should be easy-to-follow for everyone but may contain some new terms for which we have added a glossary at the end. Don't hesistate to flip to it during or before your experiment.

We also have additional resources to help you go further:

An essential addition to our ecosystem are the free Virtual Bioengineer ${ }^{m m}$ simulations developed with the educators at the Biobuilder Educational Foundation. These simulations are 20 minutes guided experiences that make it easy to practice using a DNA Playground ${ }^{\text {m/ }}$ and experiment kits beforehand. The simulations includes additional information on the manipulations and a more in-depth look into the kit components. We recommend them strongly! Complete online at www.amino.bio/vbioengineer.

View Real-time tutorials videos at youtube.com/AminoLabs.

Would you like for an Amino Labs team member to guide you through your journey? Try the Virtual Tutoring or Teacher Professional Development, a multi-day experience completed via video conferencing.
https://amino.bio/collections/virtual-sessions

Are you interested in the theory behind the experiment? In going deeper on the science, learning pro-tips and eventually moving onto advanced genetic engineering? The Zero to Genetic Engineering Hero book is for you. Find out more at www.amino.bio/book

Discover your Canvas Kit ${ }^{\text {TM }}$

The Canvas Kit ${ }^{\text {Tw }}$ lets you use colored bacteria to create living paintings! By following the instructions on the next pages, you will create selective agar petri dish to use as your art "canvases", grow colorful bacteria on a petri dish to use as a painting palette and finally use the sterile bacteria 'paintbrushes' included to create your living art which you then incubate over 24 to 48 hours to let your masterpiece grow!

The Canvas Kit comes in Individual Size or Group Size. These different kit sizes contain the same ingredients, in different quantities. This individual or small group-specific manual is aimed at learners using the individu-al-sized version of the Canvas kit. If you are a small group or an individual using parts of the group-sized kit that is ok too! Store the rest in the refrigerator to use at a later time.

If you are teaching or doing the exercise as a large group or classroom, we have a separete manual available for you. Visit www.amino.bio/instructions to download the Classroom version of the manual for the Canvas kit.

Individual Kit Size

The Canvas Kit ${ }^{\text {TM }}$ Individual size lets you create 3 different living art pieces. You will notice that you have 4 Petri dishes in your bag. That is because you will use one petri dish to grow your bacteria paint so that you may have a "painter's palette". This kit can be used alone or in a small group. Make sure you have parent supervision if you are under 16.

How many living paintings will be created?

3 art pieces are possible with the Individual-sized kit.

If you are using a Group kit on your own or with a small group

The Canvas Kit ${ }^{\text {tw }}$ for groups contains 8 individually-wrapped student packs and one shared resources bag containting the bacteria paint, some pre-made art stencils and the inactivation bags which are shared by everyone. With these 8 student packs, you can create up to 31 paintings if they all share one painting palette! Take the number of student packs you need and refrigerate the rest.

Remember to keep your bacteria paint by closing the tubes and placing them back in a refrigerator after using them! In the next pages, you will find descriptions of the kit's content.

Kit Components

Sterile Water: Sterility is critical when genetic engineering. This Sterile water bottle contains distilled water sterilized in an autoclave to ensure there are no contaminating organisms present. This 50 mL volume, when used with LB agar powder is enough to make 5 LB agar plates. ${ }^{1}$

Inoculating Loops: Inoculating loops can be used to streak (spread) cells onto the surface of the agar. They can also be used for transferring liquids or cells from tube to tube or tube to petri dish. In this way, they replace costly traditional pipettes. Different loop colors will hold different quantities of liquid.

Petri Dish / Plate: A Petri dish is a transparent lidded dish that scientist and students use to grow cells in. Petri dish will be filled with a solid media that the cells can eat and grow on. The container is named after its inventor, German bacteriologist Julius Richard Petri. 6 cm Petri dishes are large enough for this lab experiment and help save on the cost of reagents and reduce waste.

Image stencil: These stencils can be used as your bioart image. Place the stencil under the petri dish to trace.

Blank stencil: These stencils can be used to draw your bioart image before tracing it on the agar. Place the stencil under the petri dish to trace.

Inactivation Bag: A heavy duty bag to put all of the kit waste in. After your experiment, add bleach and water to the bag to inactivate all the samples and practice safe science as per Storage, disposal \& clean up Instructions.

Paintbrushes: Sterile swabs and picks to help you paint your bacteria on the agar.

Day 1 bag

Agar Powder: This LB agar powder is industry standard. Each tube of LB agar powder can make 45 mL of molten LB agar (3.5% weight/volume). Agar is both the surface the bacteria grow on and the food they eat to grow. ${ }^{1}$

Antibiotics/Selection Marker: Amino Labs' proprietary antibiotic delivery system helps stabilize antibiotics for shipping and long-term storage. These capsules have a measured amount of antibiotics for 45 mL of molten LB agar. In such small quantities, these antibiotics are very safe, even if ingested by accident. Do not ingest them, however! ${ }^{1}$

Bacteria paint bag

Colored bacteria paint: These bacteria are engineered to be colorful and are non-pathogenic.

Unpacking and storing kits

For a better shelf life and successful experiments, place your Engineer-it Kit ${ }^{\text {TM }}$ in a standard refrigerator at around $4^{\circ} \mathrm{C}$.

Once refrigerated upon arrival, your kit will be best by the date found on the 'Best by' sticker on the outer packaging of the kit. The Date on the sticker is in Month/Year format. After the month on your sticker is over, the bacteria may not grow as well, as fast.

If your refrigerator is not a science-only refrigerator, we recommend placing your science experiments inside a sealed plastic container before placing them in the refrigerator, especially once your kit is open.

Do Not Freeze your kit!

Technical specs

Growth plates: 6 cm petri dishes
Selection/Antibiotic: variable

LB agar powder (1.6 g) 50 mL sterile water

Colored bacteria stabs: variable
Paintbrushes \& Loops

Necessary Equipment

For Best results:

- DNA Playground ${ }^{\text {TM }}$ or $37^{\circ} \mathrm{C}$ incubator
- Microwave
- Permanent marker (like a Sharpie)

Alternative solution:

- Microwave

- DIY Incubator/ thermometer or warm environment: This will replace the Incubator set to "37". If you do not have an incubator (biology or egg one, as long as they set to $37^{\circ} \mathrm{C}$), you can create one using our online tutorial: https://www.youtube.com/watch? v=LEsv0Qvbczs
- If you have neither incubator or DIY version, you can try incubating your petri dishes in a resealable bag in a warm environment. Note that it will take a few more days to see results at room temperature and the bacteria colors will not be as bright.

Necessary safety supplies

Disposable container 500 ml -1L

to hold tubes, loops and other contaminated waste (e.g., yogurt container, plastic cup).

Latex or nitrile gloves like the ones found at a pharmacy. 1 pairs/person if you will keep \& reused each day, or 4 pairs/person if not saved \& reused.

Chlorinated bleach spray
1 regular bottle (or you can mix a 10% solution: 1 part bleach to 9 parts water in
a spray bottle)

Bleach~250 mL
to inactivate all the experiment materials at the end of the experiment.

Timeline

Canvas Kit

Day 1

Create painting palette(s)

Each student group or individual makes LB agar plates with antibiotics (selective plates) and streaks each of the colored bacteria paints from the tubes included in the kit onto one of these selective plates. This amplifies the colorful bacteria so there is enough to paint with. Incubate it so that it becomes the painting palette.
(60 minutes)

Day 2

Paint your bioart

Each student or individual can use a blank stencil to draw their picture that will become the bioart. Set the stencil under the petri dish in order to trace it using the bacteria paintbrushes and the painting palette. Incubate the petri dish(es). (30+ minutes)

Day 3

See your bioart

View the living art grow and change color over the next 24-72 hours. Use natural and UV light to see the different colors and photographs! (10+ minutes)

The Canvas Kit ${ }^{\text {tw }}$ takes 2 days of hands-on activity to complete, and 24 to 72 hours to see results. 4 activities make up the Canvas Kit experiment:

1. Make selective LB agar plates

Day 1, 20-35 minutes
2. Streak your colored cells to make enough paint Day 1, 20 minutes, incubate 16-48 hrs
*If you need to incubate your bacteria paint for longer than 48 hrs (ex: over the weekend) you can incubate it at $30^{\circ} \mathrm{C}$ instead of $37^{\circ} \mathrm{C}$.
This is only okay in the Canvas kit! *
3. Stencil your art on paper

Day 2, variable time
4. Paint with your Bacteria

Day 2, 20+ minutes, 24-72 hrs incubation

Recommended pre-labs

Amino Labs has many resources that you should use before they complete the hands-on experiment to maximize your understanding and success. These pre-labs are meant to ensure you know, understand, and complete all the experiment steps.

1. Virtual Bioengineer Simulator - Canvas Kit Edition
 www.amino.bio/pages/vbioengineer_canvas

This free simulator walks youthrough the entire Engineer-it Kit's materials and procedure. The simulator takes approximately 25 minutes to complete.

2. Canvas Kit experiment procedure - a quick test

www.amino.bio/canvas-pre-test
After you read through the manual steps to familiarize yourself with them, you can complete a short activity to see whether you are ready to start the experiment.

2 key pitfalls to avoid!

In the next pages are detailed, step-by-step instructions to complete the experiment. These include instructions to prepare the classroom and the students' instructions. Please make sure the students read all the steps before starting the hands-on manipulation; some steps will be done in rapid sequence. The best way to ensure students success is by having students complete the recommended pre-labs on the previous page.

While all the steps outlined in the experiment protocol are important and should be followed as described, the MOST IMPORTANT considerations for success are:

1. In Step 1: When making the LB agar, make sure that the water is boiling before adding the agar powder. Students have to see the water bubbling! Caution, the bottles will be hot!
2. In Step 3: Before painting the art or flipping the painted petri dish upside down for incubation, make sure the agar is dry and there is no condensation. Otherwise, the bacteria paint may touch the condensation/water on the surface of the agar and spread around the agar. This means the painting will turn out very blury!

Experiment Protocol

O. Prepare your space

Goal Set yourself up for sucess.

Materials from the kit

(1) Inactivation bag

Materials not in your kit

(1) 1L discard container

Chlorinated bleach spray or wipes

Paper towels
(1/person) Pair of gloves

Make sure you have the necessary materials as explained on page 15, including gloves, microwave, and cleaner before you start.
0.1 Put on your gloves, and if you have one, your lab coat or apron.
0.2 Set your inactivation bag inside your disposable 1L yogurt-type container. You will use your inactivation bag to dispose of:

- your tubes of cells if you are not saving them for a future experiment*,
- any used inactivation loops,
- bacteria paint palette once it is used (unless you are saving it to paint your other canvases later)*
- any empty tubes like the agar, buffer and selection tubes,
- any gloves that have touched bacteria.

You can dispose of paper and plastic packaging in the regular garbage can, as well as gloves if you have not accidentally touched bacteria.
0.3 Wipe down your work surface with the chlorinated bleach spray or wipes.
0.4 Set down your DNA Playground, BioExplorer, or other personal lab equipment (it is recommended you use an incubator for this experiment) on or near your work surface. Make sure it is level and on a stable surface. Refer to the instruction manual to make sure you know how to use your equipment safely.

* If you are saving the tubes of cells or your painting palette for a future experiment, place them back in their ziploc bag after use and store them in a refrigerator. We recommend you use a sealed plastic container to store all your experiment materials inside a refrigerator if you also use this to store food or drinks. *

Goal Create selective LB agar plates.

Materials from your kit	(1) antibiotic pill	Materials not in your kit
(1) 50 mL sterile water (1) LB agar powder (4) 6 cm petri dishes		

Prepare
1.1 Label each petri dish with a sharpie-type pen. Make sure to label the bottom of the petri dishes (the bottom is the part that has the smaller diameter of the two: the bottom fits inside the lid). Label 4 x S. (for selective) + Add [your initials] if doing this in groups with multiple kits.

Mix the Agar

1.2 Unscrew the lid from the sterile water bottle and keep it loosely on top of the bottle to prevent any contaminants from entering the water, but allowing air to escape. This will prevent pressure build-ups.
1.3 Place the bottle in the microwave and heat the water until you see it boil. You can use 45 seconds as your starting time but you have to see a rolling boil where many bubbles are rising constantly before you continue to the next step. Careful, the bottle will be hot! !! If the water does not boil, the agar powder will not dissolve and your plates will not solidfy!!
1.4 Add the tube of agar powder to the boiling water. Careful, the water is hot! Some agar powder may "clump" around the lip of the tube due to the water evaporation. This is okay, we have accounted for this possible loss.
1.5 Microwave the water and agar powder in 4 seconds intervals until you see it boil again. Instead of a rolling boil, you will see more of a foam forming above the molten LB agar liquid. Careful, the liquid will boil over if you microwave in more than $4 \mathbf{s e c}$. increments. After you see the liquid foaming, swirl to mix for 10 seconds. Try not to shake vigorously as this will create bubbles in your agar and make the surface of your agar uneven.

Note: If you've done the Engineer-it Kit before, note that you will not be making a non-selective plate. All 4 plates will be selective agar.

Make selective (S.) plates
1.6 Add the antibiotic pill to the bottle of agar and gently swirl for a few minutes until the contents of the pill have dissolved. Do not introduce bubbles into the LB agar: don't swirl too vigorously. The gelatin capsule may not fully dissolve. The important thing is that the contents of the capsule do dissolve.
1.7 Once the antibiotic pill is dissolved, pour the molten LB agar into the bottom half of the 4 petri dishes. Place the lids $3 / 4$ of the way back on so that the agar can cool and dry (solidify).

Pro-tip: If there are water droplets on the surface of the LB agar, this can disrupt your art. Bacteria that you will be painting with can enter a droplet and spread throughout the droplet therefore 'smudging' your art. To avoid this
θ

make sure the lid is partially over top to allow for evaporation and a dry LB agar surface.
1.8 Let the LB agar harden. This can take up to 20 minutes depending on how warm and humid your environment is. You will use 1 plate in the next step. You can store the remaining 3 plates in the ziploc bag in the refrigerator for day 2.

Troubleshooting tip
If your plates do not solidify after 30 minutes it is very likely that the water was not boiled enough to dissolve the agar powder. As a 'hack', you can pour all of the petri dish content back into the water bottle and microwave until you see it boil. Swirl to mix and re-pour your plates.

Checkpoint - Agar Plates

Use this guide to check if you are ready to move onto the next step.

A perfect Agar plate is completely clear and solid - if you set it 4" above some image or text, you should be able to read it / see it clearly.

Move on to the next step!

An agar plate that is cloudy and/or bumpy and/or soft is not ideal - if you set your plate 4 " above some text or image and cannot see clearly through it, it means you needed more boiling or mixing.

[^0]Unfortunately, if the agar does not solidify, this means you need to halt your experiment and complete the troubleshooting guide and follow the instructions at www.amino.bio/troubleshoot

2. Create your painting palette Day $1,25-45$ minutes +24 hours wait time

Goal Create bacteria paint painting palettes.
Materials from your kit Shared resources (1) Selective agar plates (3) Yellow loops Tubes of bacteria paint

Prepare

2.1 If you have an incubator, turn it on to $37^{\circ} \mathrm{C}$.

Streak
2.2 Using a permanent marker like a sharpie, divide up the bottom of your petri dish into 3 sections since you have 3 bacteria paint colors: Magenta, Cyan and Purple. Divide the petri dish like you would divide a pie.
2.3 Use the marker to assign one paint color per section. The order does not matter, as long as each color has a section.
2.4 Open one of the yellow loop by holding the straight end of it, not the loop end. Remove from the packaging. Don't let the loop end touch anything yet!
2.5 Open one of your colored bacteria tube and dip the circular end of the yellow loop into the stab of colored bacteria.
2.6 Open your petri dish, and find the section assigned to this color. Using the end of the loop you dipped in the colored bacteria, trace a zigzag line across the section. You can print the stencil on the next page and place your petri dish on top to trace it if you want.
2.7 Discard the loop in your discard container.
2.8 Using a new yellow loop each time, repeat steps 2.5-2.8 for the other 2 colors of paint.

2.9 Close your tubes of bacteria and return them to the group sharing area.

If you don't have an incubator, it can take up to 3 days for you to see the paint grow and color. Note that the colors will be more pastel if you are incubating at room temperature.
*If you need to incubate your bacteria paint for longer than 48 hrs in an incubator (ex: over the weekend) you can incubate it at $30^{\circ} \mathrm{C}$ instead of $37^{\circ} \mathrm{C}$.

Checkpoint - Bacteria Paint

Use this guide to check if you are ready to move onto the next step.

A perfect painting palette has lots of brightly colored bacteria after incubation. This suggests that you have made your LB agar petri dishes properly and have the right amount of antibiotics.

If you are incubating at room temperature, your bacteria will not become as bright as the examples below That's ok! Proceed to the next page.

A painting palette showing lightly colored bacteria after incubation requires more time to grow if you are using at $37^{\circ} \mathrm{C}$ incubator. At room temperature, the bacteria will stay pastel colors. You can continue incubating, checking every 12 hrs, until the colors are bright or if you are short on time, you can continue ahead with the experiment.

If your bacteria are not changing color you might have forgotten to add the antibiotics, or you had to re-microwave your agar once you added the antibiotics. This could have which degraded the antibiotics. Contact help@amino.bio

If you see no growth on your plate:

1. If your incubator was not at $37^{\circ} \mathrm{C}$ or is homemade, incubate for another 24 hrs .
2. If you are certain you incubated at $37^{\circ} \mathrm{C}$, or incubated for 48 hrs and still have no colonies, you might not have had cells on your loop when you streaked. Repeat Step 2: Grow your bio paint on the plate.
3. If you still have no colonies after repeating Step 2, contact us at help@amino.bio, and we will help you succeed.

What can you expect the colors to look like?

Under regular light

Under UV/blacklight

Prepare
3.1 Make sure you have colored bacteria on your painting palette petri dish from the prior day. If colors have not appeared yet, wait longer, up to 48 hours. Once you have colors, take your painting palette petri dish with your colored bacteria paint from the incubator.

3.2 If you have an incubator, turn it on to $37^{\circ} \mathrm{C}$.

Paint!

3.3 Using the blank stencils in your kit, sketch an art piece for each petri dish your are painting. You can also use the canvas stencil that already has an image included in the kit.
3.4 Set one of your selective petri dish canvas on top of your sketched stencil or the image stencil from the kit and open the lid of the petri dish.
3.5 Take your sterile bacteria paintbrushes and open the painting palette lid. You'll paint your art by dipping the end of the paintbrush in the colored bacteria of the painting palette and gently tracing your image, gliding on top of the agar on the selective petri dish. The agar is like a soft Jell-O, be careful not to puncture it as you paint.

Note: Assign a bacteria color to each paintbrush as you only have a few of these. Set them down on the edge of the bacteria painting palette when you are not using them until you have completed your art.
You will not see the bacteria appear right away, but you may be able to see a "wet" trace where you have painted on the agar. You only need to dip into the colored bacteria on the painting palette once to collect bacteria paint.
3.6 If you still have any unused petri dishes, keep them and the painting palette in a ziplock bag and refrigerate until you are ready to make more art.

Incubate

3.7 Flip your petri dish upside down and incubate it upside down at $\sim 37^{\circ} \mathrm{C}$ for 24 to 48 hours*. If you have Amino Labs' minilab, remember to put the humidity chamber on top of your plate and close and lock the incubator door.

If you don't have an incubator, it can take up to 3 days for you to see the paint grow and color. Note that the colors will be more pastel if you are incubating at room temperature.
*If you need to incubate your bacteria paint for longer than 48 hrs in an incubator (ex: over the weekend) you can incubate it at $30^{\circ} \mathrm{C}$ instead of $37^{\circ} \mathrm{C}$..

You should see your living painting appear over the next 24 to 72 hours! Keep an eye out, and your camera ready to document. Congratulations!

If there are any unused petri dishes left you can repeat steps 3.2-3.7 for those canvases or keep them in a bag in the reefrigerator for up to a month. If you see any unexpected growth on these, follow the inactivation instructions.

Note:
If you cannot see any growing cells at all after 48 hours of incubation at 37 C , your experiment may have failed. See our troubleshooting guide at the end of the manual, compare results with your group, if applicable, or contact us with photos of your result and any documentation of your process so that we can help you succeed in the future. Make sure, if possible, to also review the video tutorials on the youtube channel (youtube.com/c/ aminolabs) to see if you missed any steps!

Don't forget to look at your art under blacklight or UV light to see it fluoresce!

You have now joined the global community of bioartists! Happy with your artwork? There are many opportunities to share it online, exhibit it in your community and even participates in contests and artist communities on the web!

Share your results with friends and our growing community. Find us on Instagram, Twitter, and Facebook @ aminobiolab

Don't forget, you can preserve your bioart with our Keep-it Kit ${ }^{T M}$. For now, let's make sure you dispose of and store your remaining material correctly.

After you sees your results, all experiment Petri dishes, tubes of cells and loops should be in the inactivation bag in your discard container. Disposing of experiment materials is an integral part of the experiment. Always wear gloves for cleanup!
A. Preserving Petri dishes: If you want to preserve the living paintings or experiment results in Petri dishes instead of disposing of them, use one of our Keep-it kits. This will help you maintain the petri dish by pouring a special resin on top. If you do not have Keep-it Kits on hand but will be getting one soon, keep the Petri dishes you want to preserve in a ziploc bag in a cool area and out of sunlight in the meantime. You can refrigerate it to keep it "fresh" for up to a month.
B. Reusable materials: If you have DNA in your kit, it can last up to 6 months when stored in a refrigerator. If you wish to keep it, store it in a ziploc bag inside a sealed plastic container in a refrigerator away from food items. If you do not wish to keep it, add to an inactivation bag. Make sure the lids are separate from the tubes so that the inactivating liquid can get inside. If you see any mold or unknown bacteria growing on any material at any point, immediately inactivate them by using a solution of bleach water. Follow the inactivation instructions below. If you are out of inactivation bags, use a sturdy ziploc type bag or disposable container with a lid. Always wear gloves when handling experiment materials and cleaners!
C. Unused ingredients: If you did not use all the agar Petri dishes you poured, store these for later use. Store them in their ziploc bag within a sealed container in the refrigerator for up to a few months. Keep them away from food items. If you see any mold or unknown bacteria growing inside, then you should always immediately inactivate the Petri dishes.
D. Inactivation: Make sure all bacteria, agar, tubes, loops, paintbrushes, Petri dishes, contaminated gloves, and other non-paper material you are not keeping are in the inactivation bag. Remember that any paper packaging like loop wrappers, plastic bags, and gloves that have not touched bacteria go in the regular garbage or recycling.

Make sure all the tubes have their lids off once in the inactivation bag and add a solution of 1 part bleach to 4 to 6 parts water to the inactivation bag. Close the bag and let sit for 24 to 48 hours before discarding the liquid in the toilet and the solids \& bags in the garbage. Step-by-step instructions are on the inactivation bag and in an Inactivation video on youtube; youtube.com/c/AminoLabs.

Spray some chlorinated bleach cleaner in the discard container once emptied if it has become contaminated by experiment materials. Let it sit for an hour before wiping down. You can wait to wipe it down until you empty out your inactivation bags the next day.
E. Clean your workspace: Use a chlorinated spray cleaner, wipes, or a solution of 1 part chlorinated bleach to 9 parts water to wipe down your work area and equipment. You can wipe down the minilabs with this solution and follow it with an eyeglass or window cleaner to remove the inevitable streaking from the bleach cleaner. Never use rubbing alcohol (isopropyl alcohol) on the DNA Playgrounds.

Agar: is a Jello-like substance that serves as a growth media for bacteria. It is mixed with our bacteria's favorite food: Lysogeny broth (LB). LB is made up of yeast, vitamins, and minerals. LB can also be found liquid-form.

Antibiotics: When you transform bacteria, they will become resistant to a type of antibiotics no longer used in hospitals. This antibiotic will be mixed in with the agar and LB so that, as you incubate your culture, only transformed bacteria will grow. This is called a "selection marker".

Autoclave: An autoclave is a machine used to carry out industrial and scientific processes requiring elevated temperature and pressure in relation to ambient pressure/temperature. In life science, autoclaves are used to sterilize equipment and supplies by subjecting them to pressurized saturated steam at high temperatures (around $250{ }^{\circ} \mathrm{F}$) for several minutes, up to an hour. Autoclaves are similar to some baby bottle sterilizers which you might be familiar with.

Buffers: Buffers are saline solutions that help, in this case, open up the cell membranes so that they may take up new DNA.

Cells: Cells are tiny, living units that function like mini-factories. Bacteria are single-celled organisms (unicellular) microorganisms. They are different from plant and animal cells because they don't have a distinct, membrane-enclosed nucleus containing genetic material. Instead, their DNA floats in a tangle inside the cell. Individual bacteria can only be seen with a microscope, but they reproduce so rapidly that they often form colonies that we can see. Bacteria reproduce when one cell splits into two cells through a process called binary fission. Fission occurs rapidly, in as little as 20 minutes.

Competent Cells: Since DNA is a very hydrophilic molecule, it won't normally pass through a bacterial cell's membrane. In order to make bacteria take in the DNA plasmid, the cells must first be made "competent" to take up DNA. This is done by creating small holes in the bacterial cells by suspending them in a solution with a high concentration of calcium (the transformation buffer). DNA can then be forced into the cells by incubating the cells and the DNA together on ice, placing them briefly at $42^{\circ} \mathrm{C}$ (heat shock), and then putting them back on ice. This causes the bacteria to take in the DNA and is called "Transformation".

DNA: The DNA is the set of instructions that tell the cell how to function like a computer program tells your computer what to do. DNA stands for Deoxyribonucleic acid.

DNA plasmid: A plasmid is a small circular piece of DNA (about 2,000 to 10,000 base pairs) that contains essential genetic information for the growth of bacteria. Bacteria share vital information by passing it among themselves in the form of genes in plasmids. By inserting a new plasmid in our bacteria, we can get them to produce things for us,can get them to produce things for us, ike mini-factories. In this case, we have a plasmid that encodes for the creation of colorful pigments.

Genome: a genome is all genetic material of an organism. It consists of DNA. Learn more about genomes in the What is DNA? simulator on amino.bio

Heatshock: is when the cells are moved from icecold to warm temperature, typically $42^{\circ} \mathrm{C}$, to take in DNA plasmids more efficiently.

Inoculation: is when you introduce bacteria into a medium suitable for its growth.

Inoculating Loops: are used to transfer liquids, cells, and DNA from one vial to the next instead of tradi-
tional lab pipettes, making your job easier, and less costly. They come in different pre-calibrated sizes, so you do not need to worry about minuscule liquid volumes. They are also used to spread bacteria on an agar surface without puncturing the soft agar.

Non-Selective: A non-selective plate means that any cells/bacteria put on this agar will grow as long as they are oxygen-loving organisms (called aerobic bacteria).

Plates (or Petri dish): A petri dish is a small plastic container used to culture (grow) bacteria in a controlled environment.

Recovery period: is the period after the heat shock in which the cells develop their antibiotics resistance and start dividing.

Selective: A selective plate means it contains antibiotics. When you insert a new DNA program into cells to make them create pigments, or anything else, you also put a "selective marker" (antibiotics resistance) inside the code. This means that only the cells that have taken up the new program will be able to grow on a plate that has the antibiotics mixed in. You only get the cells you transformed!

Transformation: See competent cells.

Troubleshooting

Here are some possible common issues:

Your agar is too wet/ doesn't solidify:

When done correctly, the agar will be the consistency of Jell-O. If it is not:

1. You likely did not heat (boil) the water before, or after adding the LB agar powder
2. You might not have added all the powder from the tube, resulting in too much water vs. LB agar powder.
3. You may not have fully dissolved the powder, meaning it cannot turn into a gel and will look cloudy. You can practice by making Jell-O! Next time heat and swirl longer to ensure the powder is fully dissolved.

You don't have any colonies and its been 24+ hours:

Don't worry, every scientist has experienced this, and it can take some practice before success.

1. Double check that your incubator is on at $37^{\circ} \mathrm{C}$. If it is not, or if you are growing at room temperature, then it can take much longer to see the bacteria colonies. Keep waiting!

If you kept the second half of your recovered cells, you can pour them on your plate after 48 hours of seeing no engineered colonies grow and keep incubating.
2. You may need to try again to hone your skills. See our Youtube videos for tips and tricks on how to improve your chances of success.

Your colonies of bacteria grew, but they are the wrong color or there is mold on your petri dish:

Danger! If at the end of, or during, the incubation period your resulting bacteria/plate is: a)not the right color; b)is black when it shouldn't be, this is a sign that your culture is NOT YOUR ENGINEERED BACTERIA. You should immediately inactivate it and clean your space and unit.

To inactivate it, either add it to the inactivation bag or pour 100\% chlorinated bleach into the dish, put the lid on and let it sit for 24 hours before throwing it out: The strong oxidizing environment degrades any living organisms. After 24 hours, if there are still organisms present add more concentrated bleach until it is almost full, and let stand for a further 24 hours.

There may be mold in your environment. We recommend, getting a small air purifier with a HEPA filter for the room.
Always be aware that concentrated bleach is a strong oxidizing agent and if poured on the skin can cause irritation, and on clothes remove color. Follow the safety and handling protocol on the manufacturer's label.

Find an interactive troubleshooter online at

amino.bio/troubleshoot. We recommend using it for tips, tricks and to claim your Success Guarantee Kit if you need of one.

All Amino Labs products, from the hardware to the DNA, are invented, designed, manufactured and shipped by us, in our laboratory- workshop in Canada and we'd love to hear your feedback and suggestions to continue to make our products better and Made in conda fitting to your needs. Answers to your questions and help are also just an email away

Help and General inquiries: help@amino.bio
Feedback, Suggestions, Comments: info@amino.bio

www.amino.bio

[^0]: Troubleshooting tip
 f your plates do not solidify after 30 minutes it is very likely that the water was not boiled enough to dissolve the agar powder. As a 'hack', you can pour all of the petri dish content back into the water bottle and microwave until you see it boil. Swirl to mix and re-pour your plates.

