Susol Low voltage circuit breakers

Susol Low voltage circuit breakers

Super Solution
Overview A-1
Main characteristics A-2
Accessories A-3
Technical information A-4
Mounting \& connectionA-5
Characteristics curves A-6
Dimensions A-7

Contents

Susol

Super Solution

For power distribution
> High breaking capacity

- Optimum coordination technique (Cascading \& discrimination)
- Powerful engineering tools

For protection of motor \& its control device

- Optimal overload protection
- Guaranteed Short Circuit Current Ratings

For controlling and disconnecting circuits

For extensive applications

- Wide range of optimized auxiliaries and accessories

Global Leading Products

Circuit breakers

For protection of power distribution

Molded Case Switch

For protecting and disconnecting circuits

Susol UL MCCB

Beyond the linits...

Susol UL TD and TS series

Susol MCCB

$■$ Simplified product range ■ Standards
■ Various trip units

■ High performance

UL 489 Listed Circuit Breakers Family TD/TS

65 kA at $480 \mathrm{VAC} / 8$ models in 4 frames

TD125U
In 15~125A
Icu: $35 \mathrm{kA}(\mathrm{NU}), 65 \mathrm{kA}(\mathrm{HU})$
$90(\mathrm{~W}) \times 164(\mathrm{H}) \times 86 \mathrm{~mm}(\mathrm{D})$

Enhanced high performance

NType-35kA, H Type - 65 kA
Maximum breaking capacity for all Ampere Frame is 65kA at 480VAC.

TS800U

TS400U

TS250U

In $300 \sim 400 \mathrm{~A}$
Icu: $35 \mathrm{kA}(\mathrm{NU}), 65 \mathrm{kA}(\mathrm{HU})$

In 150~250A
Icu: $35 \mathrm{kA}(\mathrm{NU}), 65 \mathrm{kA}(\mathrm{HU})$
$105(\mathrm{~W}) \times 178(\mathrm{H}) \times 86 \mathrm{~mm}(\mathrm{D})$

$140(\mathrm{~W}) \times 292(\mathrm{H}) \times 110 \mathrm{~mm}(\mathrm{D})$

リJCCB Accesories

A complete range of convenient internal and external accessories for Susol TD and TS series

Simplicity \& Flexibility

Various kinds of accessories for user convenience

Internal auxiliaries (AX, AL, SHT, UVT) are the same for all frame size. And trip units, Handles, Locking devices are the same for a given frame size.

Susol UL Circuit Breaker System Overview

Gusol U. MMCCB Internal accessories

■ Simplicity

The range of internal accessories of TD \& TS series circuit breakers is characterized by common use regardless of frame size and is allowing reduction of stocks.

Internal accessories

Common use to all Susol TD and TS circuit breakers

Electrical auxiliaries that are installed internally are common from 15A to 800A.

Alarm Switch (AL)

Alarm switches offer provisions for immediate audio or visual indication of a tripped breaker due to overload, shortcircuit, operation of shunt trip, or undervoltage trip conditions, operation of push button.
They are particularly useful in automated plants where operators must be signaled
about changes in the electrical distribution system. This switch features a closed contact when the circuit breaker is tripped automatically. In other words, this switch does not function when the breaker is operated manually. Its contact is open when the circuit breaker is reset.

Auxiliary Switch (AX)

Auxiliary switch is for applications requiring remote "ON" and "OFF" indication. Each switch contains two contacts having a common connection.

One is open and the other closed when the circuit breaker is open, and viceversa.

Undervoltage trip (UVT)

The undervoltage trip automatically opens a circuit breaker when voltage drops to a value ranging between 35% to 70% of the line voltage. The operation is instantaneous, and the
circuit breaker cannot be reclosed until the voltage returns to 85% of line voltage. Continuously energized, the undervoltage trip must be operating be fore the circuit breaker can be closed.

Shunt Trip (SHT)

The shunt trip opens the mechanism in response to an externally applied voltage signal. LS shunt trips include
coil clearing contacts that automatically clear the signal circuit when the mechanism has tripped.

Susol U/ N/CCD External accessories

\square Convenience

Wide range of external accessories provides convenient solution for easy installation.

External accessories

Extended rotary handle

There are 3 types of length
12/16/24inch

Flange handle (Cable operating handle)

There are 4 types of length
36/48/60/72inch at each AF

Locking device

- Fixed padlock
- Removable padlock

Mechanical interlocking device

Interlocks prevent connection to both sources
at the same time, even momentarily.

Susol UL MCCB wandiaracemics

Susol series circuit breakers are suitable for

- Protection of power distribution
- Controlling and disconnecting circuits

■ Optimum technical support for

(Cascading, Discrimination, Type 2 coordination) *

- Selecting economical protection system
- Quarantee safety of the installation
- Reducing the stress on components and damage
- Guarantee service continuity

TD \& TS MCCB Index

A-1. Overview

Range of Susol products A-1-1
Overview of TD/TS family A-1-3
Marking and configuration A-1-5
Overview of trip units A-1-7
Switching mechanism A-1-8

Range of Susol products

Susol

| For power
 distribution | Susol TD circuit breakers | |
| :--- | :---: | :---: | :---: |

A-1-1

Range of Susol products

Overview of TD/TS family

Susol

TD series

TD125U

125
$15,20,30,40,50,60,80,100,125$
2, 3
600

NU	HU
50	100
50	100
35	65
10	14
UL 489	

UL 489

	\bullet
	-
	\bullet

	\bullet
\bullet	
	\bullet
	\bullet
4,000	
4,000	
$2.65 / 1.2$	

A-1-3

Overview of TD/TS family

Susol

TS series

TS250U
250
150, 160, 175, 200, 225, 250

N

TS400U

Marking and configuration

Susol

Marking and configuration

Susol

Model (Rating and breaking capacity)

- TS: Series
- 250: Max. Ampere rating
- NU: Normal (Standard)
- HU: High

Standardized characteristics:

- Ui: Rated insulation voltage
- Uimp: Impulse withstand voltage
- Ue: Rated operational voltage

Interrupt Capacity:

Product: Molded Case Circuit Breaker

Upstream connections
Fixing hole
Certificate plate
Indication of closed (I/ON) position

Brand name

Operating handle

Indication of open (O/OFF) position

Company logo
"push to trip" button

Trip

Fixing hole
Downstream connections

Overview of trip units

MCCB frame type

Type of trip unit
TD125U
TS250U
TS400U
TS800U

Types of trip units

	FTU
	FMU
	ATU
	MTU
	MCS

On TD125U to TS800U circuit breakers, the thermal-magnetic is built in trip units
Some models of the TD\&TS series circuit breakers are UL Listed to be applied at up to 100% of their current rating. Because of the additional heat generated, the use of speciallydesigned enclosures and $90^{\circ} \mathrm{C}$ rated wire and the wire size are required when applying circuit
breakers at 100% of continuous current rating. Markings on the circuit breaker indicate the minimum enclosure size and ventilation required. The $90^{\circ} \mathrm{C}$ wire size shall be based on the ampacity of the $75^{\circ} \mathrm{C}$ wire as indicated on UL489. Circuit breakers with 100\% rating can also be used in applications requiring only 80% continuous loading.

Ampere ratings

Rated current, In[A]				
FTU	FMU	ATU	MTU	MCS
$15,20,30,40,50$, $60,80,100,125$	$40,50,60,80$, 100,125	-	-	125
$150,160,175$, $200,225,250$	$160,200,250$	$160,200,250$	$1.6,3.2,6.3,12,20,32$, $50,63,100,160,220$	250
300,350,400	300,400	300,400	-	400
$500,600,700,800$	$500,600,800$	$500,600,800$		800

Switching mechanism

Double contactor structure

Optimize

Repulsion force

Shape of contactor

- Induce easily the arc mobility to grid direction
- Rapidly redeploy the arc from moving contactor
- Prevent contact tip from erosion

Open speed \& contact force

Fig. 3 "ON" position

Fig. 4 "OFF" position

Fig. 5 "TRIP" position

ON position

- Unvarying contact force regardless of over travel
- Open speed of moving contact is rapid by optimized cam curve regardless of trip signal
- Function of trip free

OFF position

- Push to trip in OFF position
* Reset pin moment < Main spring moment
- Stability of endurance

TRIP position

- Enables tripping mechanically from outside, for confirming the operation of the accessory switches and the manual resetting function

A-2. Main characteristics

MCCBs for power distribution
Thermal magnetic trip
Overview A-2-3
FTU, FMU for TD125U A-2-5
FTU, FMU for TS250U, ATU for TS250U A-2-8
FTU, FMU, ATU for TS400U A-2-11
FTU, FMU, ATU for TS800U A-2-14
MCCBs for motor protection A-2-17
Molded case switch A-2-21

MCCBs for power distribution

Susol

Frame size		[AF]
No. of Poles		
Maximum voltage ratings		[V AC]
Switch ampere ratings		[A]
Magnetic override		[A]
Short circuit withstand ratings		
	120 V AC	
	240 V AC	
	480 V AC	
	600 V AC	

Catalog number of wire connector

MCCBs for power distribution

Susol

TS series

| |
| :--- | :--- | :--- |

MCCBs for power distribution

Thermal magnetic trip Overview

Susol TD \& TS series circuit breakers be installed with thermal magnetic trip units.

Some models of the TD\&TS series circuit breakers are UL Listed to be applied at up to 100% of their current rating. Because of the additional heat generated, the use of speciallydesigned enclosures and $90^{\circ} \mathrm{C}$ rated wire and the wire size are required when applying circuit breakers at 100% of continuous current rating.

Function

Protection of power distribution

- Overload protection: Thermal protection with a fixed or adjustable threshold
- Built-in trip units for TD \& TS series

Markings on the circuit breaker indicate the minimum enclosure size and ventilation required. The $90^{\circ} \mathrm{C}$ wire size shall be based on the ampacity of the $75^{\circ} \mathrm{C}$ wire as indicated on UL489. Circuit breakers with 100\% rating can also be used in applications requiring only 80\% continuous loading.

- Short-circuit protection: Magnetic protection with a fixed or adjustable pick-up

Operation

Thermal magnetic types

- Time-Delay operation

An overcurrent heats and warps the bimetal to actuate the trip bar by the bimetal characteristic.

- Instantaneous operation

If the overcurrent is excessive, the armature is attracted and the trip bar actuated by electromagnetic force.

Ratings

Thermal magnetic trip units(FTU/FMU/ATU)																					
15	20	30	40	50	60	80	100	125	150	160	175	200	225	250	300	350	400	500	600	700	800
-	-	\bullet	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	\bullet	\bullet	\bullet	\bullet

Note) Rated current 500A~800A is available for TS800UFTU.

MCCBs for power distribution

Thermal magnetic trip Overview

Characteristics

Fixed thermal, fixed magnetic trip units

FTU

- Fixed thermal

15A ... 800A rated currents

- Fixed magnetic

400A ... 8000A tripping currents

- Applicable to TD125U ... TS800U frames

Adjustable thermal, fixed magnetic trip units

FMU

- Adjustable thermal 40A ... 800A rated currents Adjustable : 0.8~1×In
- Fixed magnetic
 400A ... 8000A tripping currents
- Applicable to TD125U ... TS800U frames

Adjustable thermal, adjustable magnetic trip units
ATU

- Adjustable thermal 160A ... 800A rated currents Adjustable : 0.8~1 $\times \mathrm{In}$
- Adjustable magnetic 800A ... 8000A tripping currents

Adjustable : 5~10×In

- Applicable to TS250U ... TS800U frames

MCCBs for power distribution

Thermal magnetic trip FTU, FMU for TD125U

Configuration

TD125U FTU

- Fixed thermal \& magnetic trip unit

TD125U FMU

- Adjustable thermal \& fixed magnetic trip unit

TD125U FMU

MCCBs for power distribution

Thermal magnetic trip FTU, FMU for TD125U

Characteristics

Thermal magnetic trip units(FTU/FMU) ... TD125U

$*$	Rating(A)	at $40^{\circ} \mathrm{C} \ln$	15	20	30	40	50	60	80	100
	TD125U	\bullet								

Overload protection(thermal)

Current setting(A) Ir		
	FTU	Fixed
	FMU	Adjustable $0.8,0.9,1 \times \ln (3$ settings $)$

Short - circuit protection(magnetic)

Current setting(A) Im			
	FTU	Fixed 400A	Fixed $10 \times \ln$
	FMU	Fixed 400A	Fixed $10 \times \ln$

Catalogue numbering system

MCCBs for power distribution

Susol

Thermal magnetic trip FTU, FMU for TD125U

Setting details

Thermal overload protection

Setting Ir	Trip unit rating, $\ln (\mathrm{A})$										
	15	20	30	40	50	60	80	100	125		
Fixed	15	20	30	40	50	60	80	100	125		
0.8	-	-	-	32	40	48	64	80	100		
0.9	-	-	-	36	45	54	72	90	112.5		
1	-	-	-	40	50	60	80	100	125		

Magnetic short-circuit protection

Setting current, Ir	Setting current, Im		Trip unit rating, $\ln (\mathrm{A})$								
			15	20	30	40	50	60	80	100	125
	Fixed	$\ln \times 10$	400	400	400	400	500	600	800	1000	1250
$0.8 \times \mathrm{ln}$	Fixed	$\ln \times 10$	-	-	-	400	500	600	800	1000	1250
$0.9 \times \mathrm{ln}$	Fixed	$\ln \times 10$	-	-	-	400	500	600	800	1000	1250
$1.0 \times \mathrm{ln}$	Fixed	$\ln \times 10$	-	-	-	400	500	600	800	1000	1250

MCCBs for power distribution

Thermal magnetic trip FTU, FMU for TS250U ATU for TS250U

Configuration

TS250U FTU

- Fixed thermal fixed magnetic trip unit

TS250U FMU

- Adjustable thermal fixed magnetic trip unit

TS250U ATU

- Adjustable thermal adjustable magnetic trip unit

TS250U FMU

TS250U ATU

MCCBs for power distribution

Thermal magnetic trip
FTU, FMU for TS250U
ATU for TS250U

Characteristics

Thermal magnetic trip units(FTU/FMU) ... TS250U							
Rating(A)		FTU	FMU	FTU	FTU/FMU	FTU	FTU/FMU
	at $40^{\circ} \mathrm{C}$ In	150	160	175	200	225	250
	TS250U	\bullet	\bullet	\bullet	\bullet	\bullet	-

Overload protection(thermal)
Current setting(A) Ir

FTU	Fixed
FMU	Adjustable 0.8 to \times In
ATU	Adjustable 0.8 to $\times \mathrm{In}$

Short - circuit protection(magnetic)
Current setting(A) Im

FTU	Fixed $10 \times \ln$
FMU	Fixed $10 \times \ln$
ATU	Adjustable $5,6,7,8,9,10 \times \ln (6$ settings $)$

Catalogue numbering system

TS250U FTU	Trip unit function - FTU: Fixed thermal, fixed magnetic unit
	MCCB frame type - TS250U: TS250NU, TS250HU
TS250U FMU	
	Trip unit function - FMU: Adjustable thermal, fixed magnetic unit
	MCCB frame type - TS250U: TS250NU, TS250HU

TS250U ATU	Trip unit function - ATU: Adjustable thermal, adjustable magnetic unit
	MCCB frame type - TS250U: TS250NU, TS250HU

MCCBs for power distribution

Susol

Thermal magnetic trip FTU, FMU for TS250U ATU for TS250U

Setting details

Thermal overload protection

Setting	Trip unit rating, In (A)					
	150	160	175	200	225	250
Fixed	150	-	175	200	225	250
0.8	-	128	-	160	-	200
0.9	-	144	-	180	-	225
1	-	160	-	200	-	250
0.8	-	128	-	160	-	200
0.9	-	144	-	180	-	225
1	-	160	-	200	-	250

Magnetic short-circuit protection

Setting current, Ir	Setting current, Im		Trip unit rating, $\ln (\mathrm{A})$					
			150	160	175	200	225	250
	Fixed	$\ln \times 10$	1500	-	1750	2000	2250	2500
$0.8 \times \mathrm{ln}$	Fixed	$\ln \times 10$	-	-	-	2000	-	2500
$0.9 \times \mathrm{ln}$	Fixed	$\ln \times 10$	-	-	-	2000	-	2500
$1.0 \times \mathrm{ln}$	Fixed	$\ln \times 10$	-	-	-	2000	-	2500
$0.8 \times \mathrm{ln}$	Adjustable	$\ln \times 5$	-	800	-	1000	-	1250
		$\ln \times 6$	-	960	-	1200	-	1500
		$\ln \times 7$	-	1120	-	1400	-	1750
		$\ln \times 8$	-	1280	-	1600	-	2000
		$\ln \times 9$	-	1440	-	1800	-	2250
		$\ln \times 10$	-	1600	-	2000	-	2500
$0.9 \times \mathrm{ln}$	Adjustable	$\ln \times 5$	-	800	-	1000	-	1250
		$\ln \times 6$	-	960	-	1200	-	1500
		$\ln \times 7$	-	1120	-	1400	-	1750
		$\ln \times 8$	-	1280	-	1600	-	2000
		$\ln \times 9$	-	1440	-	1800	-	2250
		$\ln \times 10$	-	1600	-	2000	-	2500
$1.0 \times \mathrm{ln}$	Adjustable	$\ln \times 5$	-	800	-	1000	-	1250
		$\ln \times 6$	-	960	-	1200	-	1500
		$\ln \times 7$	-	1120	-	1400	-	1750
		$\ln \times 8$	-	1280	-	1600	-	2000
		$\ln \times 9$	-	1440	-	1800	-	2250
		$\ln \times 10$	-	1600	-	2000	-	2500

MCCBs for power distribution

Susol

Thermal magnetic trip FTU, FMU, ATU for TS400U

Configuration

TS400U FTU

- Fixed thermal fixed magnetic trip unit

TS400U FMU

- Adjustable thermal fixed magnetic trip unit

TS400U FMU

TS400U ATU

MCCBs for power distribution

Thermal magnetic trip FTU, FMU, ATU for TS400U

Characteristics

Thermal magnetic trip units(FTU/FMU/ATU) ... TS400U				
Rating(A)		FTU/FMU/ATU	FTU	FTU/FMU/ATU
	at $40^{\circ} \mathrm{C}$ In	300	350	400
	TS400U	-	-	\bullet

Overload protection(thermal)

Current setting(A)		
	FTU	In=Ir (Fixed)
	FMU	Adjustable $0.8,0.9,1 \times \ln (3$ settings $)$
	ATU	Adjustable $0.8,0.9,1 \times \ln (3$ settings)

Short - circuit protection(magnetic)

Current setting(A) Im		
	FTU	Fixed $10 \times \ln$
	FMU	Fixed $10 \times \ln$
	ATU	Adjustable $5,6,7,8,9,10 \times \ln (6$ settings)

Catalogue numbering system

TS400U ATU

Trip unit function

- FTU : Fixed thermal \& magnetic unit
- FMU : Adjustable thermal \& fixed magnetic unit
- ATU : Adjustable thermal \& adjustable magnetic unit

MCCB frame type

- TS400U : TS400NU, TS400HU

MCCBs for power distribution

Thermal magnetic trip FTU, FMU, ATU for TS400U

Setting details

Thermal overload protection

Setting	Trip unit rating, $\ln (\mathrm{A})$		
	300	350	400
Fixed	300	350	400
0.8	240	-	320
0.9	270	-	360
1	300	-	400
0.8	240	-	320
0.9	270	-	360
1	300	-	400

Magnetic short-circuit protection

Setting current, Ir	Setting current, Im		Trip unit rating, $\ln (\mathrm{A})$		
			300	350	400
	Fixed	$\ln \times 10$	3000	3500	4000
$0.8 \times \mathrm{ln}$	Fixed	$\ln \times 10$	3000	-	4000
$0.9 \times \mathrm{ln}$	Fixed	$\ln \times 10$	3000	-	4000
$1.0 \times \mathrm{ln}$	Fixed	$\ln \times 10$	3000	-	4000
$0.8 \times \mathrm{ln}$	Adjustable	$\ln \times 5$	1500	-	2000
		$\ln \times 6$	1800	-	2400
		$\ln \times 7$	2100	-	2800
		$\ln \times 8$	2400	-	3200
		$\ln \times 9$	2700	-	3600
		$\ln \times 10$	3000	-	4000
$0.9 \times \ln$	Adjustable	$\ln \times 5$	1500	-	2000
		$\ln \times 6$	1800	-	2400
		$\ln \times 7$	2100	-	2800
		$\ln \times 8$	2400	-	3200
		$\ln \times 9$	2700	-	3600
		$\ln \times 10$	3000	-	4000
$1.0 \times \mathrm{ln}$	Adjustable	$\ln \times 5$	1500	-	2000
		$\ln \times 6$	1800	-	2400
		$\ln \times 7$	2100	-	2800
		$\ln \times 8$	2400	-	3200
		$\ln \times 9$	2700	-	3600
		$\ln \times 10$	3000	-	4000

MCCBs for power distribution

Thermal magnetic trip FTU, FMU, ATU for TS800U

Configuration

TS800U FTU

- Fixed thermal fixed magnetic trip unit

TS800U FMU

- Adjustable thermal fixed magnetic trip unit

TS8000 ATU

- Adjustable thermal adjustable magnetic trip unit

ATU	טגנם		
			$\begin{gathered} 800 \mathrm{~A} \\ 40^{\circ} \mathrm{C} \\ 3 \mathrm{P} \end{gathered}$

TS800U FMU

TS800U ATU

MCCBs for power distribution

Thermal magnetic trip FTU, FMU, ATU for TS800U

Characteristics

Thermal magnetic trip units(FTU/FMU/ATU) ... TS800U					
				FTU/FMU/ATU	FTU/FMU/ATU
Rating(A)	at $40^{\circ} \mathrm{C}$ In	500	600	FTU	FTU/FMU/ATU
	TS800U	\bullet	\bullet	700	800

Overload protection(thermal)
Current setting(A) Ir

FTU	Fixed
FMU	Adjustable $0.8,0.9,1 \times \ln (3$ settings $)$
ATU	Adjustable $0.8,0.9,1 \times \ln (3$ settings $)$

Short - circuit protection(magnetic)

Current setting(A) Im		
	FTU	Fixed $10 \times \ln$
	FMU	Fixed $10 \times \ln$
	ATU	Adjustable $5,6,7,8,9,10 \times \ln (6$ settings $)$

Catalogue numbering system

TS800U ATU	Trip unit function - FTU : Fixed thermal \& magnetic unit - FMU : Adjustable thermal \& fixed magnetic unit - ATU : Adjustable thermal \& adjustable magnetic unit
	MCCB frame type - TS800U : TS800NU, TS800HU

MCCBs for power distribution

Susol

Thermal magnetic trip FTU, FMU, ATU for TS800U

Setting details

Thermal overload protection
Trip unit type

TS800U FTU
TS800U FMU
TS800U ATU

Setting	Trip unit rating, In (A)			
	500	600	700	800
Fixed	500	600	700	800
0.8	400	480	-	640
0.9	450	540	-	720
1	500	600	-	800
0.8	400	480	-	640
0.9	450	540	-	720
1	500	600	-	800

Magnetic short-circuit protection

Setting current, Ir	Setting current, Im		Trip unit rating, $\ln (\mathrm{A})$			
			500	600	700	800
	Fixed	$\ln \times 10$	5000	6000	7000	8000
$0.8 \times \mathrm{ln}$	Fixed	$\ln \times 10$	5000	6000	-	8000
$0.9 \times \mathrm{ln}$	Fixed	$\ln \times 10$	5000	6000	-	8000
$1.0 \times \mathrm{ln}$	Fixed	$\ln \times 10$	5000	6000	-	8000
$0.8 \times \mathrm{ln}$	Adjustable	$\ln \times 5$	2500	3000	-	2000
		$\ln \times 6$	3000	3600	-	4800
		$\ln \times 7$	3500	4200	-	5600
		$\ln \times 8$	4000	4800	-	6400
		$\ln \times 9$	4500	5400	-	7200
		$\ln \times 10$	5000	6000	-	8000
$0.9 \times \mathrm{ln}$	Adjustable	$\ln \times 5$	2500	3000	-	2000
		$\ln \times 6$	3000	3600	-	4800
		$\ln \times 7$	3500	4200	-	5600
		$\ln \times 8$	4000	4800	-	6400
		$\ln \times 9$	4500	5400	-	7200
		$\ln \times 10$	5000	6000	-	8000
$1.0 \times \mathrm{ln}$	Adjustable	$\ln \times 5$	2500	3000	-	2000
		$\ln \times 6$	3000	3600	-	4800
		$\ln \times 7$	3500	4200	-	5600
		$\ln \times 8$	4000	4800	-	6400
		$\ln \times 9$	4500	5400	-	7200
		$\ln \times 10$	5000	6000	-	8000

MCCBs for motor protection

Susol

MCCBs for motor protection

Susol

Frame size		[AF]
No. of Poles		
Maximum voltage ratings		[V AC]
Rated current		[A]
Short circuit withstand ratings		
	120 V AC	
	240 V AC	
	480 V AC	
	600 V AC	

Note) TS250U, Rated Currnet 1.6~63A products will provide only the NU Type

MCCBs for motor protection

Intantaneous trip circuit break (ICB) MTU for TS250U

For the protection of motors from 1.6 to $250 \mathrm{~kW}(400 \mathrm{~V})$, TS250U circuit Breakers must be equipped with a special trip unit MTU adjustable thresholds.

Configuration

Catalogue numbering system

MCCBs for motor protection

Susol

Intantaneous trip circuit break (ICB) MTU for TS250U

Characteristics

Magnetic trip units(MTU) ${ }^{\text {Note) }}$

TS250U										
1.6	3.2	6.3	12	20	32	50	63	100	160	220
\bullet										

Short - circuit protection(magnetic)

setting

$$
6 . .12 \times \ln \text { (} 6 \text { Point) }
$$

Note) TS250U, Rated Currnet 1.6~63A products will provide only the NU Type

Setting details

In	Trip unit rating, $\ln (\mathrm{A})$						In	Trip unit rating, $\ln (\mathrm{A})$					
1.6	10	12	14	16	18	20	50	300	360	420	480	540	600
3.2	20	24	28	32	36	40	63	400	480	560	640	720	800
6.3	40	48	56	64	72	80	100	600	720	840	960	1080	1200
12	70	84	98	112	126	140	160	960	1152	1344	1536	1728	1920
20	120	144	168	192	216	240	220	1320	1584	1848	2112	2376	2640
32	190	228	266	304	342								

TS250U MTU

Molded case switch

Susol

The Molded case switch are different from the circuit-breakers in the absence of the conventional protection unit. They keep the overall dimensions, connection systems and accessories unchanged from the
corresponding circuit-breakers Installation standards require upstream protection. However, thanks to their high-set magnetic release, TD125U ... TS800U MCS are self protected.

Frame size		
Conventional thermal current, lth	[A]	
No. of poles		$[\mathrm{V}]$
Rated operational voltage, Ue	AC	
Ampare ratings		
Short-circuit withstand ratings	240V AC	
	480 V AC	
Catalog-number of wire connector	3-pole	
Basic dimensions, $\mathrm{W} \times \mathrm{H} \times \mathrm{D}$	3-pole	$[\mathrm{mm}]$
Weight	3-pole	
Reference standard		

TD125NA
125
125
600
125
100
65
Sameries as MCCB
Same as MCCB
UL 489

Molded case switch

Susol

TS series

TS250NA

TS400NA
400800
400

A-3. Accessories

Electrical auxiliaries
Undervoltage release, UVT A-3-1
Shunt release, SHT A-3-2
Auxiliary switch (AX), Alarm switch (AL) A-3-3
Possible configuration of electrical auxiliaries A-3-4
Rotary handles
Extended handles A-3-5
Flange Handle A-3-5
Locking devices
Removable locking device A-3-6
Fixed locking device A-3-7
Interlock
Mechanical interlocking device A-3-8

Accessories

Susol

UVT

Electrical auxiliaries

The following devices are installed into all TD \& TS circuit breakers regardless of frame size. And, the electrical auxiliaries can be easily
installed in the accessory compartment of the circuit breakers which is cassette type.

Undervoltage release, UVT

The undervoltage release automatically opens a circuit breaker when voltage drops to a value ranging between 35% to 70% of the line voltage. The operation is instantaneous, and after tripping, the circuit breaker cannot be reclosed again until the voltage returns to 85% of line voltage.

Continuously energized, the undervoltage release must be operating before the circuit breaker can be closed. The undervoltage release can be easily installed in the left accessory compartment of the Susol TD and TS circuit-breakers.

- Range of tripping voltage: $0.35 \sim 0.7 \mathrm{Vn}$
- MCCB making is possible voltage: 0.85 Vn (exceed)
- Frequency (only AC): $45 \mathrm{~Hz} \sim 65 \mathrm{~Hz}$

Technical data

Power consumption	Control voltage (V)	Consumption			Applicable MCCBs	
		AC (VA)	DC (W)	mA		
	AC/DC 24 V	0.64	0.65	27	TD125U, TS250U, TS400U, TS800U	
	AC/DC 48V	1.09	1.10	23		
	AC/DC 110~130V	0.73	0.75	5.8		
	AC 200~240V/DC 250 V	1.21	1.35	5.4		
	AC 380~440V	1.67	-	3.8		
	AC 440~480V	1.68	-	3.5		
Max.opening time (ms)		50				
Tightening torque of terminal screw		$8.2 \mathrm{kgf} \cdot \mathrm{cm}$				
Transformer operating voltage (V) - Drop (Circuit breaker trips) - Rise (Circuit breaker can be switched on)		$\begin{gathered} 0.7 \sim 1.35 \mathrm{Vn} \\ \sim 0.85 \mathrm{Vn} \end{gathered}$				

Accessories

Electrical auxiliaries

SHT

Shunt release, SHT

The shunt release opens the mechanism in response to an externally applied voltage signal. The releases include coil clearing contacts that automatically clear the signal circuit when the mechanism has tripped.

- Range of operational voltage: $0.7 \sim 1.1 \mathrm{Vn}$
- Frequency (only AC): $45 \mathrm{~Hz} \sim 65 \mathrm{~Hz}$

The shunt release can be installed in the left accessory compartment of the Susol TD \& TS circuit-breakers

Technical data

Power consumption	Control voltage (V)	Consumption			Applicable MCCBs
		AC (VA)	DC (W)	mA	
	DC 12V	-	0.36	30	TD125U, TS250U, TS400U, TS800U
	AC/DC 24 V	0.58	0.58	24	
	AC/DC 48 V	1.22	1.23	25	
	AC/DC 110~130V	1.36	1.37	10.5	
	AC 220~240V/DC250V	1.80	1.88	7.5	
	AC 380~500V	1.15	-	2.3	
Max.opening time (ms)		50			
Tightening torque of terminal screw		$8.2 \mathrm{kgf} \cdot \mathrm{cm}$			

Accessories

Electrical auxiliaries

AX

AL

Auxiliary switch (AX), Alarm switch (AL)

Auxiliary switch (AX)

Auxiliary switch is for applications requiring remote "ON" and "OFF" indication. Each switch contains two contacts having a

Alarm switch (AL)

Alarm switches offer provisions for immediate audio or visual indication of a tripped breaker due to overload, short circuit, shunt trip, or undervoltage release conditions.
They are particularly useful in automated plants where operators must be signaled about changes in the electrical distribution system.
common connection.
One is open and the other closed when the circuit breaker is open, and vice-versa.

This switch features a closed contact when the circuit breaker is tripped automatically. In other words, this switch does not function when the breaker is operated manually.
Its contact is open when the circuit breaker is reset.

Contact operation

MCCB	ON	OFF	TRIP
Position of $A X$	$A X C 1-\overbrace{0-}^{a} A X b 1$		
Position of AL	AXc1		$A X c 1-A X C 1$

Technical data

Conventional thermal current Ith	5A			TD125U, TS250U, TS400U, TS800U
Rated operational current le with rated operational voltage Ue	Voltage	le		
		Resistance	Inductance	
- Altemating current $50 / 60 \mathrm{~Hz} \mathrm{AC}$	125 V	5	3	
	250 V	3	2	
	500 V	-	-	
- Direct current DC	30 V	4	3	
	125 V	0.4	0.4	
		0.2	0.2	

Accessories

Susol

Electrical auxiliaries

Possible configuration of electrical auxiliaries

Maximum possibilities

Phase	Accessory	TD125U	TS250U	TS400U	TS800U
	AX	-	1	3	3
	AL	1	1	-	-
	SHT or UVT	1	1	1	1
T (Right)	AX	2	1	-	-
	AL	-	-	1	2

Accessories

Susol

Rotary handles

operated for its own flexibility And, also can be selected various length (4 types) at each frames.

Flange handle (Cable operating handle)

MCCB	Extended Handle
TD125U	EHU1
TS250U	EHU2
TS400U	EHU3
TS800U	EHU4

Flange Handle

The flange hanle is operated by cable and can be applied on the compartment door.
This device is designed to easily installed and

Extended handles

The rotary handle operating mechanism is available in either the direct version or in the extended version on the compartment door.

MCCB	Flange Handle
TD125U	FH1
TS250U	FH2
TS400U	FH3
TS800U	FH4

Accessories

Susol

Locking devices

Removable locking device

Removable locking device is available for all TD \& TS circuit breakers.
The locking device is designed to be easily attached to the circuit-breaker.

This device allows the handle to be locked in the "OFF" position.
Locking in the OFF position guarantee isolation according to UL489 File E223241.

The locking device for the toggle handle can be installed in 2-pole and 3-pole circuit-breakers. Maximum three (3) padlocks with shackle diameters ranging from 0.2~0.3inch(5~8mm) may be used. (Padlocks are not supplied)

Removable locking device

MCCB	Padlockable device	Function
TD125U	PL1	
TS250U	PL2	"OFF" position
TS400U	PL3	
TS800U	PL4	

Locking devices

Fixed locking device

Fixed locking device is available for all TD \& TS circuit breakers.
This device allows the handle to be locked in the "ON" and "OFF" position. Locking in the OFF position guarantee isolation according to UL489 File E223241.

The locking device for the toggle handle can be installed in 2-pole and 3-pole circuit-breakers. Maximum three (3) padlocks with shackle diameters ranging from $0.2 \sim 0.3 \mathrm{inch}(5 \sim 8 \mathrm{~mm}$) may be used. (Padlocks are not supplied)

Fixed locking device

MCCB	Padlockable device	Function
TD125U	PHL1	
TS250U	PHL2	
TS400U	PHL3	
TS800U	PHL4	

Padlock dimensions

How to use

The locking device for the toggle handle is designed to be easily attached to
the front of circuit-breaker.
(1) Please set the toggle handle in the position of "On" or "Off".
(2) Install the lock device onto the front of auxiliary cover of circuit breaker.
(3) Folding the wings of lock device as shown in picture 3.
(4) The padlock to be used shall be that which is commercially available with the nominal dimension.
(1.2inch (30 mm), nominal dimension, $0.2 \sim 0.3$ inch ($5 \sim 8 \mathrm{~mm}$) diameter)

Accessories

Interlock

Operation

Left MCCB: ON/OFF is possible Right MCCB: Off lock

Left MCCB: Off lock
Right MCCB: ON/OFF is possible

Both MCCBs are of locked

Mechanical interlocking device

The mechanical interlock (MIT) can be applied on the front of two breakers mounted side by side, in either the 3-pole version and prevents simultaneous closing of the two breakers.

Fixing is carried out directly on the cover of the breakers.

The front interlocking plate allows installation of a padlock in order to fix the position. (possibility of locking in the O-O position as well)

This mechanical interlocking device is very useful and simple for consisting of manual source-changeover system.

MCCB		Interlock
Frame type	Pole	
TD125U	3-pole	MIT23
TS250U	3-pole	MIT33
TS400U	3-pole	MIT43
TS800U	3-pole	

A-4. Technical information

Temperature derating A-4-1
Power dissipation / Resistance A-4-2
Application
Primary use of transformer A-4-3
Protection of lighting \& heating circuits A-4-5
Use of circuit-breakers for capacitor banks A-4-8
Circuit breakers for 400 Hz networks A-4-9
Protection of several kinds of loads A-4-10
Protective coordination
Discrimination \& Cascading A-4-12
Cascading, network 240V A-4-13
Cascading, network 480V A-4-14
Cascading, network 600V A-4-15
Protection discrimination table, Discrimination A-4-16
Protective coordination, SCCR A-4-19
How to calculate short-circuit current value
Various short-circuit A-4-22
With percent impedance A-4-24
With a simple formula A-4-26
Calculation example A-4-28
Combination of transformer and impedance A-4-32
Various short-circuit A-4-33
Calculation example A-4-34
Calculation graph A-4-35
Installation instruction A-4-37

Temperature derating

A derating of the rated operational current of the Susol TD and TS molded case circuit breaker is necessary if the ambient temperature is greater than $40^{\circ} \mathrm{C}$. Namely, when the ambient temperature is greater than $40^{\circ} \mathrm{C}$, overload-protection characteristics are slightly modified.

Electronic trip units are not affected by variations in temperature.
But, the maximum permissible current in the circuit breaker depends on the ambient temperature.

Susol TD \& TS series MCCB with thermal-magnetic trip units

MCCB	Rating (A)	Fixed MCCB (c/w Thermal-magnetic trip unit)							
		$\begin{aligned} & 50^{\circ} \mathrm{F} \\ & 10^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 68^{\circ} \mathrm{F} \\ & 20^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 86^{\circ} \mathrm{F} \\ & 30^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} 104^{\circ} \mathrm{F} \\ 40^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 113^{\circ} \mathrm{F} \\ 45^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} 122^{\circ} \mathrm{F} \\ 50^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & 140^{\circ} \mathrm{F} \\ & 60^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 158^{\circ} \mathrm{F} \\ & 70^{\circ} \mathrm{C} \end{aligned}$
TD125U	15	15	15	15	15	15	14	13	12
	20	20	20	20	20	19	19	18	16
	30	30	30	30	30	29	28	26	24
	40	40	40	40	40	39	38	35	33
	50	50	50	50	50	48	47	44	41
	60	60	60	60	60	58	56	53	49
	80	80	80	80	80	78	75	71	66
	100	100	100	100	100	97	94	88	82
	125	125	125	125	125	121	117	110	103
TS250U	150	150	150	150	150	145	140	131	121
	160	160	160	160	160	155	150	141	131
	175	175	175	175	175	170	165	156	146
	200	200	200	200	200	194	188	176	164
	225	225	225	225	225	219	213	201	189
	250	250	250	250	250	242	234	220	205
TS400U	300	300	300	300	300	291	281	264	246
	350	350	350	350	350	341	331	314	296
	400	400	400	400	400	388	375	353	328
TS800U	500	500	500	500	500	484	469	441	410
	600	600	600	600	600	580	571	525	487
	700	700	700	700	700	680	661	625	587
	800	800	800	800	800	775	750	705	656

Technical information

Susol

Power dissipation / Resistance

Susol TD \& TS series MCCB with thermal-magnetic trip units

	AF	TD125U (2P \& 3P)								
	Rating (A)	15	20	30	40	50	60	80	100	125
Fixed MCCB	R (m m)	5.60	5.60	3.80	1.84	1.34	1.10	0.91	0.70	0.61
	Watt single pole	1.43	2.24	3.89	2.94	3.35	4.37	5.82	7.00	9.53
	Watt three poles	4.30	6.72	11.67	8.83	10.05	13.10	17.47	21.00	28.59

	AF		TS250U (2P \& 3P)					
	Rating (A)	150	160	175	200	225	250	
	$\mathrm{R}(\mathrm{m} \Omega)$	0.62	0.62	0.52	0.52	0.25	0.25	
MCCB	Watt single pole	13.95	15.87	15.93	20.80	12.66	15.79	
	Watt three poles	41.85	47.62	47.78	62.40	37.97	47.38	

	AF	TS400U(2P \& 3P)		
	Rating (A)	300	350	400
	$\mathrm{R}(\mathrm{m} \Omega)$	0.30	0.30	0.30
MCCB	Watt single pole	26.82	36.75	47.68
	Watt three poles	80.46	110.25	143.04

	AF	TS800U (2P \& 3P)			
	Rating (A)	500	600	700	800
	$R(\mathrm{~m} \Omega)$	0.49	0.49	0.12	0.12
MCCB	Watt single pole	122.50	176.40	58.80	76.80
	Watt three poles	367.50	529.20	176.40	230.40

- Power dissipated per pole (P/pole): Watts (W).
- Resistance per pole (R/pole): Milliohms (m Ω) (measured cold).
- Total power dissipation is the value measured at $\ln , 50 / 60 \mathrm{~Hz}$, for a 3 pole circuit breaker (Power= $=31^{2} \mathrm{R}$)

Application

Primary use of transformer

Application for transformer protection

Transformer excitation surge current may possibly exceed 10 times rated current, with a danger of nuisance tripping of the MCCB. The excitation surge current will vary depending upon the supply phase angle at the time of switching, and also on the level of core residual magnetism.

So, it's recommended to select proper circuit breakers according to the continuous current carrying capacity of transformer. It requires to consider separately whether transformer is single phase or three phase. The below table indicates the proper molded case circuit breaker suitable for each transformer.

AC240V

Capacity of 3 phase transformer (kVA)	Below 1500	Below 1500	Below 2000	
Capacity of single phase transformer (kVA)	Below 300			
Breaking capacity (kA) (sym)		50		
	125	TD125NU	TD125HU	
	250	TS250NU	TS250HU	
	400	TS400NU	TS400HU	
	800	TS800NU	TS800HU	

AC480V

Capacity transfor	phase kVA)	Below 2000		Below 3000
Breaking capacity (kA) (sym)		35		65
Frame (A)	125	TD125NU	TD125HU	
	250	TS250NU	TS250HU	
	400	TS400NU	TS400HU	
	800	TS800NU	TS800HU	

Technical information

Susol

Application

Primary use of transformer

Application for transformer protection (MCCBs for Transformer-Primary Use)

Transformers are used to change in the supply voltage, for both medium and low voltage supplies.
The choice of the protection devices should be considered transient insertion phenomena, during which the current may reach values higher than the rated full load current; the phenomenon decays in a few seconds.

The peak value of the first half cycle may reach values of 15 to 25 times the effective rated current. For a protective device capable of protecting these units this must be taken into account. Manufacturers data and tests have indicated that a protective device feeding a transformer must be capable of carrying the following current values without tripping.

TD125U, TS250U~800U equipped with Thermal magnetic trip units

Transformer ratings (kVA)			MCCB rated current (A)	Trip unit
1 phase 240 V	3 phase 240 V 1 phase 415 V	3 phase 415V		
3 to 4	5 to 6	8 to 10	15	FTU FMU
4 to 5	6 to 8	10 to 14	20	
5 to 7	9 to 12	14 to 21	30	
7 to 9	13 to 16	21 to 28	40	
9 to 12	16 to 20	28 to 35	50	
12 to 14	20 to 24	35 to 43	60	
14 to 19	24 to 32	43 to 57	80	
19 to 24	32 to 41	57 to 71	100	
24 to 30	41 to 51	71 to 89	125	
30 to 36	51 to 62	89 to 107	150	FTU FMU ATU
36 to 42	62 to 72	107 to 125	175	
42 to 48	72 to 83	125 to 143	200	
48 to 54	83 to 93	143 to 161	225	
54 to 60	93 to 103	161 to 179	250	
60 to 72	103 to 124	179 to 215	300	
72 to 84	124 to 145	215 to 251	350	
84 to 96	145 to 166	251 to 287	400	
96 to 120	166 to 207	287 to 359	500	
120 to 144	207 to 249	359 to 431	600	
144 to 168	249 to 290	431 to 503	700	
168 to 192	290 to 332	503 to 575	800	

Application
 Protection of lighting \& heating circuits

In the lighting \& heating circuits, switchingsurge magnitudes and times are normally not sufficient to cause serious tripping problems. But, in some cases, such as incandescent lamps, mercury arc lamps, metal halide and sodium vapour, or other large starting-current equipment, the proper selection should be considered.

Upon supply of a lighting installation, for a brief period an initial current exceeding the rated current (corresponding to the power of the
lamps) circulates on the network. This possible peak has a value of approximately $15 \div 20$ times the rated current, and is present for a few milliseconds; there may also be an inrush current with a value of approximately $1.5 \div 3$ times the rated current, lasting up to some minutes. The correct dimensioning of the switching and protection devices must take these problems into account. Generally, it is recommended to make the maximum operating current not to exceed 80% of the related current.

AC220V

Technical information

Susol

Application

Protection of lighting \& heating circuits

AC480V

The maximum operating current (A)	The rated current of MCCB (A)	Breaking capacity (kA) sym	35		65
12	15	TD125NU		TD125HU	
16	20				
24	30				
32	40				
40	50				
48	60				
64	80				
80	100				
100	125				
120	150	TS250NU		TS250HU	
140	175				
160	200				
180	225				
200	250				
240	300	TS400NU		TS400HU	
280	350				
320	400				
400	500	TS800NU		TS800HU	
480	600				
560	700				
640	800				

Technical information

Application

Protection of resistance welding circuits

Short circuit protection for resistance welding devices can be obtained by applying molded case circuit breaker properly. These breakers permit normally high welding currents, but trip
instantaneously if a short circuit develops. It's recommended to select proper circuit breaker according to the characteristics of welding devices as the follow table.

Characteristics of welding device		Applied circuit breaker (MCCB 2P)	
Capacity (kVA)	Maximum input (kVA)	240 V (Single phase)	415 V (Single phase)
15	35	TD125NU/HU 125A	TD125NU/HU 50A
30	65	TS250NU/HU 150A	TD125NU/HU 125A
55	140	TS250NU/HU 250A	TD125NU/HU 125A

Technical information

Susol

Application Use of circuit-breakers for capacitor banks

Capacitor circuit

Usual connection diagram

Application for protection of capacitor circuit

In order to reduce system losses (less than $0.5 \mathrm{~W} / \mathrm{kvar}$ in low voltage) and voltage drops in the power distribution system, reactive power compensation or power factor correction is generally undertaken. As a result, the power fed into the system is used as active power and costs will be saved through a reduction in

Examples of equipment which consume reactive energy are all those receivers which require magnetic fields or arcs in order to operate, such as:

- Asynchronous motors: An asynchronous motor is a large consumer of inductive reactive energy. The amount of reactive power consumed is between 20% and 25% of the rated power of the motor (depending on its speed).
- Power Transformers: Power transformers are normally always connected. This means that reactive energy is always consumed. Also, as a consequence of its inductive nature, the reactive energy increases when the transformer is loaded.
- Discharge lamps, Resistance-type soldering machines, Dielectric type heating ovens, Induction heating ovens, Welding equipments, Arc furnaces
the capacitive and inductive power factors. The compensation can be carried out by the fixed capacitors and automatic capacitor banks. However, the disadvantages of installing capacitors are sensitivity to over-voltages and to the presence of nonlinear loads.

At the instant of closing a switch to energize a capacitor, the current is limited only by the impedance of the network upstream of the capacitor, so that high peak values of current will occur for a brief period, rapidly falling to normal operating values.

According to the relevant standards IEC 60831-1/IEC 70, capacitors must function under normal operating conditions with the current having a RMS value up to 1.3 times the rated current of the capacitor. Additionally, a further tolerance of up to 15% of the real value of the power must be taken into consideration. The maximum current with which the selected circuit-breaker can be constantly loaded, and which it must also be able to switch, is calculated as follows:

Maximum expected rated current $=$ Rated current of the capacitor bank $\times 1.5$ (RMS value)

Application

Circuit breakers for 400 Hz networks

When circuit breakers are used at high frequencies, the breakers in many cases require to be derated as the increased resistance of the copper sections resulting from the skin effect produced by eddy currents at 400 Hz .

- Standard production breakers can be used with alternating currents with frequencies other than $50 / 60 \mathrm{~Hz}$ (the frequencies to which the rated performance of the device refer, with alternating current) as appropriate derating coefficients are applied.

Thermal magnetic trip

Thermal trip

As can be seen from the data shown in below, the tripping threshold of the thermal element (In) decreases as the frequency increases because of the reduced conductivity of the

Instantaneous trip

The magnetic threshold increases with the increase in frequency.
materials and the increase of the associated thermal phenomena.
Rated current (A) at $400 \mathrm{~Hz}=\mathrm{K} 1 \times$ rated current (A) at $50 / 60 \mathrm{~Hz}$

Thermal magnetic trip units

TD and TS series performance table at 400 Hz

Rated current (A) $\text { in } 400 \mathrm{~Hz}$	Applied circuit breaker (MCCB)	Trip unit	Multiplier factors (K1, K2)	
			(Thermal trip units)	(Magnetic trip units)
15	TD125NU, TD125HU	$\begin{aligned} & \text { FTU } \\ & \text { FMU } \end{aligned}$	0.8	2
20			0.8	2
30			0.8	2
40			0.8	2
50			0.8	2
60			0.8	2
80			0.8	2
100			0.8	2
125			0.8	2
150	TS250NU, TS250HU	FTU FMU ATU	0.8	2
160			0.8	2
175			0.8	2
200			0.8	2
225			0.8	2
250			0.8	2
300	TS400NU, TS400HU		0.8	2
350			0.8	2
400			0.8	2
500	TS800NU, TS800HU		0.8	2
600			0.8	2
700			0.8	2
800			0.8	2

[^0]K2-Multiplier factor of instantaneous current due to the induced magnetic fields
FTU-Fixed Thermal and magnetic trip unit
FMU \times Adjustable thermal and fixed magnetic trip unit

Technical information

Susol

Application
 Protection of several kinds of loads

Application for protection of several kinds of loads

It requires to select proper circuit breakers according to the operating current and the capacity of loads in total so as to select characteristics of loads when they are installed to protect the rated current of breakers. several kinds of loads. It's needed to consider the maximum

Selection of circuit breaker protecting the several loads simultaneously

The kind of loads (Im: motors, IL: others)		Permissible current in cable or wire: Iw	The rated current of circuit breaker: lo
In case of, $\Sigma \mathrm{lm} \leq \boldsymbol{\Sigma} \mathrm{l}$		$\mathrm{lm} \geq \mathrm{E}$ lm $+\Sigma \mathrm{l}$ L	Choose the low value among two formulas:
In case of, $\begin{aligned} & \Sigma \mathrm{IM}>\Sigma \mathrm{lL}, \\ & \Sigma \mathrm{IM} \leq 50 \mathrm{~A} \end{aligned}$		$\mathrm{lm} \geq 1.25 \Sigma \mathrm{~lm}+\Sigma \mathrm{lL}$	$\mathrm{lb} \geq 3 \Sigma \mathrm{~lm}+\Sigma \mathrm{lL}$. and $\mathrm{lb} \leq 2.5 \mathrm{lw}$ It's permitted to select the above value
In case of, $\begin{aligned} & \Sigma \text { Ім }>\Sigma \mathrm{IL}, \\ & \Sigma \mathrm{IM}>50 \mathrm{~A} \end{aligned}$		$\mathrm{lw} \geq 1.1 \Sigma \mathrm{~lm}+\Sigma \mathrm{lL}$	only if Iw (above 100A) isn't subject to the rated current of circuit breaker.

The rated current of breakers as the main circuit of 3 phase inductive loads (AC 220V)

		Capacity of the highest motor (HP/ A) $1 \mathrm{kw}=1.3405 \mathrm{hp}$															
loads In total (below kW)	operating current (below A)	$\begin{gathered} 1.005 \\ 4.8 \end{gathered}$	$\begin{gathered} 2.01 \\ 8 \end{gathered}$	$\begin{gathered} 2.950 \\ 11.1 \end{gathered}$	$\begin{aligned} & 4.96 \\ & 17.4 \end{aligned}$	$\begin{gathered} 7.37 \\ 26 \end{gathered}$	$\begin{gathered} 10.05 \\ 34 \end{gathered}$	$\begin{gathered} 14.75 \\ 48 \end{gathered}$	$\begin{gathered} 20.10 \\ 65 \end{gathered}$	$\begin{gathered} 24.80 \\ 79 \end{gathered}$	$\begin{gathered} 29.49 \\ 93 \end{gathered}$	$\begin{gathered} 40.21 \\ 125 \end{gathered}$	$\begin{gathered} 49.60 \\ 160 \end{gathered}$	$\begin{gathered} 60.32 \\ 190 \end{gathered}$	$\begin{gathered} 73.73 \\ 230 \end{gathered}$	$\begin{gathered} 100.53 \\ 310 \end{gathered}$	$\begin{gathered} 120.64 \\ 360 \end{gathered}$
3	15	20	30	30													
4.5	20	40	40	40	50												
6.3	30	40	40	40	50	80											
8.2	40	50	50	50	50	80	100										
12	50	80	80	80	80	80	100										
15.7	75	100	100	100	100	100	100	125	160								
19.5	90	100	100	100	100	100	100	125	160	200							
23.2	100	125	125	125	125	125	125	125	160	200	200						
30	125	160	160	160	160	160	160	160	160	200	250						
37.5	150	200	200	200	200	200	200	200	200	200	250	300					
45	175	200	200	200	200	200	200	200	200	200	250	300	400				
52.5	200	250	250	250	250	250	250	250	250	250	250	300	400	500			
63.7	250	300	300	300	300	300	300	300	300	300	300	300	400	500	500		
75	300	400	400	400	400	400	400	400	400	400	400	400	400	500	500		
86.2	350	400	400	400	400	400	400	400	400	400	400	400	400	500	500	630	
97.5	400	500	500	500	500	500	500	500	500	500	500	500	500	500	500	630	700
112.5	450	500	500	500	500	500	500	500	500	500	500	500	500	500	500	700	700
125	500	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700
150	600	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	800
175	700	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800	800

Technical information

Susol

Application

Protection of several kinds of loads

The rated current of breakers as the main circuit of 3 phase inductive loads (AC 440V)

		Capacity of the highest motor (HP/ A) $1 \mathrm{kw} \doteqdot 1.3405 \mathrm{hp}$																
of loads In total (below kW)	operating current (below A)	$\begin{gathered} 1.005 \\ 4.8 \end{gathered}$	$\begin{gathered} 2.01 \\ 8 \end{gathered}$	$\begin{gathered} 2.950 \\ 11.1 \end{gathered}$	$\begin{aligned} & 4.96 \\ & 17.4 \end{aligned}$	$\begin{gathered} 7.37 \\ 26 \end{gathered}$	$\begin{gathered} 10.05 \\ 34 \end{gathered}$	$\begin{gathered} 14.75 \\ 48 \end{gathered}$	$\begin{gathered} 20.10 \\ 65 \end{gathered}$	$\begin{gathered} 24.80 \\ 79 \end{gathered}$	$\begin{gathered} 29.49 \\ 93 \end{gathered}$	$\begin{gathered} 40.21 \\ 125 \end{gathered}$	$\begin{gathered} 49.60 \\ 160 \end{gathered}$	$\begin{gathered} 60.32 \\ 190 \end{gathered}$	$\begin{gathered} 73.73 \\ 230 \end{gathered}$	$\begin{gathered} 100.53 \\ 310 \end{gathered}$	$\begin{gathered} 120.64 \\ 360 \end{gathered}$	$\begin{gathered} 147.45 \\ 220 \end{gathered}$
3	7.5	20	20	20														
4.5	10	20	20	20	40													
6.3	15	20	20	20	40	40												
8.2	20	40	40	40	40	40	50											
12	25	40	40	40	40	40	50											
15.7	38	50	50	50	50	50	50	80	80									
19.5	45	50	50	50	50	50	50	80	80	100								
23.2	50	80	80	80	80	80	80	80	80	100	125							
30	63	80	80	80	80	80	80	80	80	100	125							
37.5	75	100	100	100	100	100	100	100	100	100	125	160						
45	88	100	100	100	100	100	100	100	100	100	125	160	200					
52.5	100	125	125	125	125	125	125	125	125	125	125	160	200	250				
63.7	125	160	160	160	160	160	160	160	160	160	160	160	200	250	250			
75	150	200	200	200	200	200	200	200	200	200	200	200	200	250	250			
86.2	175	200	200	200	200	200	200	200	200	200	200	200	200	250	300	400		
97.5	200	250	250	250	250	250	250	250	250	250	250	250	250	250	300	400	400	500
112.5	225	250	250	250	250	250	250	250	250	250	250	250	250	250	300	400	400	500
125	250	300	300	300	300	300	300	300	300	300	300	300	300	300	300	400	400	500
150	300	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	500
175	350	400	400	400	400	400	400	400	400	400	400	400	400	400	400	400	500	700
200	400	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	500	700
250	500	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	800
300	600	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	700	800

Notes) The above mentioned technical data is defined under the usage conditions as follows ;

1. The circuit breaker is tripped within 10 seconds in 600% of the current of the fully operating loads
2. The start-up input current is set within 1700% of the current of the fully operating loads
3. The capacity of highest motor is also applied when several loads starts up simultaneously.

Technical information

Susol

Protective coordination Discrimination \& Cascading

The primary purpose of a circuit protection system is to prevent damage to series connected equipment and to minimize the area and duration of power loss.
The first consideration is whether an air circuit

Discrimination

Total discrimination (total selectivity)

Over-current discrimination where, in the presence of two over-current protective devices in series, the protective device on the

Partial discrimination (partial selectivity)
Over-current discrimination where, in the presence of two over-current protective devices in series, the protective device on the

No discrimination

In case of a fault, main and branch circuit breakers open.

Cascading

This is an economical approach to the use of circuit breakers, whereby only the main (upstream) breaker has adequate interrupting capacity for the maximum available fault current.
The MCCBs downstream cannot handle this maximum fault current and rely on the opening of the upstream breaker for protection.
The advantage of the cascade back-up
breaker or molded case circuit breaker is the most suitable. The next is the type of system to be used.
The two major types are: Discrimination and cascading.
load side effects the protection without causing the other protective device to operate.
load side effects the protection up to a given level of over-current, without causing the other protective device to operate.
approach is that it facilitates the use of low cost, low fault level breakers downstream, thereby offering savings in both the cost and size of equipment.
As Susol TD \& TS circuit breakers have a very considerable current limiting effect, they can be used to provide this 'cascade back-up' protection for downstream circuit breakers.

Technical information

Protective coordination

Cascading, network 240V

Complementary technical information

Main: Susol UL TD Branch: Susol UL TD, TS

Branch breaker		Main breaker	TD125NU	TD125HU	TS250NU	TS250HU
		Rated breaking capacity (kArms)	50	100	50	100
Susol	TD125NU	50	-	75	-	75
	TD125HU	100	-	-	-	-
	TS250NU	50	-	75	-	75
TD	TS250HU	100	-	-	-	-
\&	TS400NU	50	-	75	-	75
TS	TS400HU	100	-	-	-	-
	TS800NU	50	-	75	-	75
	TS800HU	100	-	-	-	-

Branch breaker		Main breaker	TS400NU	TS400HU	TS800NU	TS800HU
		Rated breaking capacity (kArms)	50	100	50	100
Susol	TD125NU	50	-	75	-	75
	TD125HU	100	-	-	--	
	TS250NU	50	-	75	-	75
TD	TS250HU	100	-	-	-	-
\&	TS400NU	50	-	75	-	75
TS	TS400HU	100	-	-	-	-
	TS800NU	50	-	75	-	75
	TS800HU	100	-	-	-	-

Technical information

Susol

Protective coordination

Cascading, network 480V

Complementary technical information
Main: Susol UL TD Branch: Susol UL TD, TS

Branch breaker		Main breaker	TD125NU	TD125HU	TS250NU	TS250HU
		Rated breaking capacity (kArms)	35	65	35	65
$\begin{gathered} \text { Susol } \\ \text { TD } \\ \& \\ \text { TS } \end{gathered}$	TD125NU	35	-	50	-	50
	TD125HU	65	-	-	-	-
	TS250NU	35	-	50	-	50
	TS250HU	65	-	-	-	-
	TS400NU	35	-	50	-	50
	TS400HU	65	-	-	-	-
	TS800NU	35	-	50	-	50
	TS800HU	65	-	-	-	-

Branch breaker		Main breaker	TS400NU	TS400HU	TS800NU	TS800HU
		Rated breaking capacity (kArms)	35	65	35	65
SusolTD\&TS	TD125NU	35	-	50	-	50
	TD125HU	65	-	-	-	-
	TS250NU	35	-	50	-	50
	TS250HU	65	-	-	-	-
	TS400NU	35	-	50	-	50
	TS400HU	65	-	-	-	-
	TS800NU	35	-	50	-	50
	TS800HU	65	-	-	-	-

Technical information

Protective coordination

Cascading, network 600V

Complementary technical information

Main: Susol UL TD Branch: Susol UL TD, TS

Branch breaker		Main breaker	TD125NU	TD125HU	TS250NU	TS250HU
		Rated breaking capacity (kArms)	10	14	10	18
$\begin{gathered} \text { Susol } \\ \text { TD } \\ \& \\ \text { TS } \end{gathered}$	TD125NU	10	-	12	-	14
	TD125HU	14	-	-	-	16
	TS250NU	10	-	12	-	14
	TS250HU	18	-	-	-	-
	TS400NU	14	-	-	-	16
	TS400HU	20	-	-	-	-
	TS800NU	18	-	-	-	-
	TS800HU	25	-	-	-	-

Branch breaker		Main breaker	TS400NU	TS400HU	TS800NU	TS800HU
		Rated breaking capacity (kArms)	14	20	18	25
Susol	TD125NU	10	12	15	14	17
	TD125HU	14	-	17	16	19
	TS250NU	10	12	15	14	17
TD	TS250HU	18	-	19	-	21
\&	TS400NU	14	-	17	16	19
TS	TS400HU	20	-	-	-	22
	TS800NU	18	-	19	-	21
	TS800HU	25	-	-	-	-

Technical information

Susol

Protective coordination
 Protection discrimination table, Discrimination

Complementary technical information

Main: TD125U/TS250U (Thermal magnetic) Branch: TD125U/TS250U (Thermal magnetic)

Branch breaker		Main breaker	
		Rating (A)	
$\begin{gathered} \text { Susol } \\ \text { TD } \\ \& \\ \text { TS } \end{gathered}$	N	Trip unitsThermal magnetic	15
			20
			30
			40
			50
			60
			80
			100
			125
	H		15
			20
			30
			40
			50
			60
			80
			100
			125
$\begin{gathered} \text { Susol } \\ \text { TD } \\ \& \\ \text { TS } \end{gathered}$	N	Trip unitsThermal magnetic	150
			160
			175
			200
			225
			250
	H		150
			160
			175
			200
			225
			250

TD125NU/HU									TS250NU/HU					
Trip units-Thermal magnetic									Trip units-Thermal magnetic					
15	20	30	40	50	60	80	100	125	150	160	175	200	225	250
			0.5kA	0.5kA	0.5 kA	0.63 kA	0.8kA	2kA	2kA	2kA	T	T	T	T
				0.5kA	0.5 kA	0.63kA	0.8kA	2kA	2kA	2kA	T	T	T	T
					0.5 kA	0.63 kA	0.8kA	2kA	2kA	2kA	T	T	T	T
						0.63 kA	0.8kA	2kA	2kA	2kA	T	T	T	T
						0.63 kA	0.8kA	2kA	2kA	2kA	T	T	T	T
							0.8kA	2kA	2kA	2kA	T	T	T	T
								1.25 kA	2kA	2kA	T	T	T	T
									1.6kA	1.6 kA	T	T	T	T
										1.25 kA	1.25 kA	4kA	4kA	5kA
			0.5kA	0.5kA	0.5 kA	0.63 kA	0.8 kA	2kA	T	T	T	T	T	T
				0.5kA	0.5 kA	0.63 kA	0.8kA	2kA	T	T	T	T	T	T
					0.5 kA	0.63 kA	0.8kA	2kA	50kA	50kA	50kA	50kA	50kA	50kA
						0.63 kA	0.8 kA	2kA	50kA	50kA	50kA	50kA	50kA	50kA
						0.63 kA	0.8kA	2kA	50kA	50kA	50kA	50kA	50kA	50kA
							0.8 kA	2kA	50kA	50kA	50kA	50kA	50kA	50kA
									50kA	50kA	50kA	50kA	50kA	50kA
									50kA	50kA	50kA	50kA	50kA	50kA
									1.25 kA	1.25 kA	1.25 kA	4 kA	4kA	5kA
														2.5 kA
													1.25 kA	2.5 kA
														2.5 kA

Technical information

Susol

Protective coordination
 Protection discrimination table, Discrimination

Complementary technical information
Main: TS400U/TS800U (Thermal magnetic) Branch: TD125U/TS250U (Thermal magnetic)

Branch breaker		Main breaker Rating (A)		TS400NU/HU			TS800NU/HU					
		Trip units-Thermal magnetic	Trip units-Thermal magnetic									
		300	350	400	500	600	700	800				
$\begin{gathered} \text { Susol } \\ \text { TD } \\ \& \\ \text { TS } \end{gathered}$	N			Trip unitsThermal magnetic	15	T	T	T	T	T	T	T
				20	T	T	T	T	T	T	T	
		30	T		T	T	T	T	T	T		
		40	T		T	T	T	T	T	T		
		50	T		T	T	T	T	T	T		
		60	T		T	T	T	T	T	T		
		80	T		T	T	T	T	T	T		
		100	T		T	T	T	T	T	T		
		125	T		T	T	T	T	T	T		
	H	15	T		T	T	T	T	T	T		
		20	T		T	T	T	T	T	T		
		30	T		T	T	T	T	T	T		
		40	T		T	T	T	T	T	T		
		50	T		T	T	T	T	T	T		
		60	T		T	T	T	T	T	T		
		80	T		T	T	T	T	T	T		
		100	T		T	T	T	T	T	T		
		125	T		T	T	T	T	T	T		
N Susol TD \& 		Trip unitsThermal magnetic	150		T	T	T	T	T	T	T	
		160			5 kA	T	T	T	T			
		175			5 kA	T	T	T	T			
		200				T	T	T	T			
		225				T	T	T	T			
		250					T	T	T			
		150			5 kA	T	T	T	T			
		160			5 kA	T	T	T	T			
		175				T	T	T	T			
		200				T	T	T	T			
		225				T	T	T	T			
		250					T	T	T			

Technical information

Susol

Protective coordination

Protection discrimination table, Discrimination

Complementary technical information
Main: TS400U/TS800U (Thermal magnetic) Branch: TS400U/TS800U (Thermal magnetic)

Branch breaker		Main breaker	
		Rating (A)	
TS400	N	Trip unitsThermal magnetic	300
			350
			400
	H		300
			350
			400
TS800	N	Trip unitsThermal magnetic	500
			600
			700
			800
	H		500
			600
			700
			800

TS400NU/HU			TS800NU/HU			
Trip units-Thermal magnetic			Trip units-Thermal magnetic			
300	350	400	500	600	700	800
			8kA	8kA	8kA	T
				8kA	8kA	10kA
				8kA	8kA	10kA
			8kA	8kA	8kA	T
				8kA	8kA	10kA
				8kA	8kA	10kA
				8kA	8kA	10kA
						10kA
				8kA	8kA	10kA
						10kA

Technical information

Susol

Protective coordination SCCR

Motor		MCCB		Contactor	Thermal overload relay	
hp (kW)	A	Type	Rating Ir (A)	Type	Type	Setting range (A)
$\begin{gathered} 0.49 \\ (0.37) \end{gathered}$	1.8	TD125U	15	MC-9	MT-32	1.6-2.5
$\begin{aligned} & 0.737 \\ & (0.55) \end{aligned}$	2.75	TD125U	15	MC-32	MT-32	2.5-4
$\begin{aligned} & 1.005 \\ & (0.75) \end{aligned}$	3.5	TD125U	15	MC-32	MT-32	2.5-4
$\begin{gathered} 1.474 \\ (1.1) \end{gathered}$	4.4	TD125U	15	MC-40	MT-63	4-6
$\begin{aligned} & 2.01 \\ & (1.5) \end{aligned}$	6.1	TD125U	15	MC-40	MT-63	5-8
$\begin{aligned} & 2.95 \\ & (2.2) \end{aligned}$	8.7	TD125U	15	MC-40	MT-63	9-13
4.02 (3)	11.5	TD125U	15	MC-40	MT-63	9-13
$\begin{gathered} 4.959 \\ (3.7) \end{gathered}$	13.5	TD125U	15	MC-40	MT-63	12-18
5.36 (4)	14.5	TD125U	15	MC-40	MT-63	12-18
$\begin{aligned} & 7.37 \\ & (5.5) \end{aligned}$	20	TD125U	20	MC-40	MT-63	16-22
10.05 (7.5)	27	TD125U	30	MC-40	MT-63	24-36
12.06 (9)	32	TD125U	40	MC-85	MT-95	28-40
13.41 (10)	35	TD125U	40	MC-85	MT-95	28-40
14.745 (11)	39	TD125U	40	MC-85	MT-95	34-50
20.11 (15)	52	TD125U	60	MC-85	MT-95	45-65

Technical information

Susol

Protective coordination SCCR

Performance: Ue= 480 V			MC
MCCB	NU	HU	
TD125U	50kA	100kA	

Motor		MCCB		Contactor	Thermal overload relay	
hp (kW) 0.49 (0.37)	A	Type	Rating Ir (A)	Type	Type	Setting range (A)
0.737 (0.55)	1.6	TD125U	15	MC-9	MT-32	$1-1.6$
1.005 (0.75)	2	TD125U	15	MC-9	MT-32	$1-1.6$
1.474 (1.1)	2.6	TD125U	15	MC-32	MT-32	$2.5-4$
2.01 (1.5)	3.5	TD125U	15	MC-32	MT-32	$2.5-4$
2.95 (2.2)	5	TD125U	15	MC-40	MT-63	$4-6$
4.02 (3)	6.6	TD125U	15	MC-40	MT-63	$5-8$
4.959 (3.7)	7.7	TD125U	15	MC-40	MT-63	$6-9$
5.36 (4)	8.5	TD125U	15	MC-40	MT-63	$7-10$
7.37 (5.5)	11.5	TD125U	15	MC-40	MT-63	$9-13$
10.05 (7.5)	15.5	TD125U	15	MC-40	MT-63	$12-18$
12.06 (9)	18.5	TD125U	20	MC-40	MT-63	$16-22$
13.41 (10)	20	TD125U	20	MC-40	MT-63	$16-22$
14.745 (11)	22	TD125U	30	MC-40	MT-63	$16-22$
20.11 (15)	30	TD125U	40	MC-85	MT-95	$24-36$
24.80 (18.5)	37	TD125U	40	MC-85	MT-95	$28-40$
29.49 (22)	44	TD125U	50	MC-85	MT-95	$34-50$
33.51 (25)	52	TD125U	80	MC-85	MT-95	$45-65$

Technical information

Susol

Protective coordination SCCR

Motor		MCCB		Contactor	Thermal overload relay	
hp (kW)	A	Type	Rating $\operatorname{lr}(\mathrm{A})$	Type	Type	Setting range (A)
$\begin{gathered} 0.49 \\ (0.37) \end{gathered}$	0.6	TD125U	15	MC-9	MT-32	0.4-0.63
$\begin{aligned} & 0.737 \\ & (0.55) \end{aligned}$	0.9	TD125U	15	MC-9	MT-32	0.63-1
$\begin{aligned} & 1.005 \\ & (0.75) \end{aligned}$	1.1	TD125U	15	MC-9	MT-32	1-1.6
$\begin{gathered} 1.474 \\ (1.1) \end{gathered}$	1.5	TD125U	15	MC-9	MT-32	1-1.6
$\begin{aligned} & 2.01 \\ & (1.5) \end{aligned}$	2	TD125U	15	MC-32	MT-32	1.6-2.5
$\begin{aligned} & 2.95 \\ & (2.2) \end{aligned}$	2.8	TD125U	15	MC-32	MT-32	2.5-4
4.02 (3)	3.8	TD125U	15	MC-32	MT-32	2.5-4
$\begin{aligned} & 4.959 \\ & (3.7) \end{aligned}$	4.4	TD125U	15	MC-40	MT-63	4-6
5.36 (4)	4.9	TD125U	15	MC-40	MT-63	4-6
$\begin{aligned} & 7.37 \\ & (5.5) \end{aligned}$	6.6	TD125U	15	MC-40	MT-63	5-8
$\begin{gathered} 10.05 \\ (7.5) \end{gathered}$	8.9	TD125U	15	MC-40	MT-63	7-10
12.06 (9)	10.6	TD125U	15	MC-85	MT-95	9-13
14.745 (11)	11.5	TD125U	15	MC-85	MT-95	9-13
$\begin{gathered} 20.11 \\ (15) \\ \hline \end{gathered}$	14	TD125U	15	MC-85	MT-95	12-18
$\begin{aligned} & 24.80 \\ & (18.5) \end{aligned}$	17.3	TD125U	20	MC-85	MT-95	16-22
$\begin{gathered} 29.49 \\ (22) \end{gathered}$	21.3	TD125U	25	MC-85	MT-95	18-25
$\begin{gathered} 33.51 \\ (25) \end{gathered}$	25.4	TD125U	32	MC-85	MT-95	24-36

How to calculate short-circuit current value Various short-circuit

The purpose of calculating short circuit values

- Selection of circuit breakers, fuse.
- Adjusting metering devices
- Consideration for mechanical resistance
- Consideration for thermal resistance

Various value of short-circuit current should be applied to the tests for upper factors.
Symmetrical current for AC and asymmetrical current for DC are used for classifying short circuit current.
Their differences should be essentially considered in the basic step of making network plan.

Symmetrical short-circuit current real value

Short-circuit current is composed of AC and DC as it shows on <Fig.1>. The short-circuit which indicates the real value of AC is called as symmetrical short-current real value, I (rms)sym. This current is the essential factor of selecting MCCB, ACB, fuse.

<Fig.1> Composition of short-circuit current

Maximum asymmetrical short-circuit current real value: I (rms)asym

The short-circuit which indicates the real value of DC is called as asymmetrical short-circuit current real value.
And this current value is changeable upon the short-circuit closing phase.
This current value is treated for checking the thermal resistant strength of wrings, CT and etc.
With symmetrical short-circuit current real value and short-circuit power factor, we can achieve the value, α from <Fig. $5>$.
and maximum asymmetrical short-circuit current real value is calculated with this formula.

3-phases average asymmetrical shortcircuit current real value: I (rms)ave
Each phase is different in its input current value in 3 phases circuit. So that AC rate for 3 phases is different. This value is the average of asymmetrical short-circuit current of 3 phases.
And with symmetrical short-circuit current real value and short-circuit power factor, we can achieve the value, β, and 3 -phases average asymmetrical short circuit current real value is calculated with this formula.

$$
\text { I (rms)ave }=\beta \text { I (rms)sym }
$$

Maximum asymmetrical short-circuit current instantaneous value: Imax

Each phase has different instantaneous current value. And when asymmetrical short-circuit current shows its maximum instantaneous value, the current value is called as maximum asymmetrical short-circuit current instantaneous value. This current is to test the mechanical strength of serial equipments.
And with symmetrical short-circuit current real value and short-circuit power factor, we can achieve the value, γ and maximum asymmetrical short-circuit current instantaneous value is calculated with this formula.

$$
\operatorname{lmax}=\gamma \mid(\mathrm{rms}) \text { sym }
$$

Network impedance for calculating shortcircuit current value

Bellows should be considered for the calculation as the impedance components affecting circuit to trouble spot from shortcircuit power.
a. Primary part impedance of incoming transformer It's calculated from the shortcircuit current data which is provided by power supplier. Calculated value can be regarded as reactance.
b. Impedance of incoming transformer Its amount is upon the capacity of transformer and primary voltage. Generally this impedance can be regarded as reactance and refer to <Table.4>, <Table.5>.

Technical information

How to calculate short-circuit current value Various short-circuit

c. Reactance of motor

Motor works as generator and supply short circuit current in the condition of an accident circuit such as <Fig.2>.
Generation factor of firm motor should be considered in a low voltage circuit where a circuit breaker operates quickly and in a high voltage circuit for the selection of fuse. Reactance of motor can be regarded in the range of 25% normally.
d. Distribution impedance Impedance of cable and busduct do control short-circuit remarkably in low voltage network. Refer to <Table.5>, <Table.6>.
e. Others

MCCB, ACB CT are equipments for the network of low voltage.
The impedance of these equipment which is calculated from short-circuit current value should be considered.
Generally, the impedance of those equipment is that of rated current (normal condition), if operators apply that impedance value, bigger reactance value may be applied to calculated short-circuit current value.

<Fig.2> Short-circuit of motor

Technical information

How to calculate short-circuit current value With percent impedance

Ohm formula (Ω), percent impedance formula (\%), unit formula (per unit) can be applied to calculate short-circuit current value.

Ohm formula [Ω]

Short-circuit current value is calculated by converting into ohm value [Ω]

Percent impedance formula (\%) Each impedance is converted into the impedance of base value and base voltage.
And the required amount for electric demand should be shown as percent unit.
And apply that value in ohm formula.

Unit formula

The base value equals 1.0. and all value of network shows in the way of decimal system. Applying any of upper calculation formulas to achieve short-circuit current value, it shows equal value. To select a certain formula for doing it, operator can select one of those formula which is proper to oneself. Below is percent impedance formula.

Finding base value

The rated current of transformer shall be the base value.

Base capacity $\mathrm{P}_{\mathrm{B}}=\mathrm{P}_{\mathrm{T}}[\mathrm{kVA}]$
Base voltage $\mathrm{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{T}}[\mathrm{V}]$
Base current $I_{B}=I_{T}=\frac{\mathrm{P}_{\mathrm{T}}}{\sqrt{3 \mathrm{~V}_{\mathrm{T}}}} \times 10^{3}[\mathrm{~A}]$
Base impedance $Z_{B}=\frac{V_{B}{ }^{2}}{\mathrm{P}_{\mathrm{B}} \times 10^{3}}=\frac{\mathrm{V}_{\mathrm{T}}{ }^{2}}{\mathrm{P}_{\mathrm{T}} \times 10^{3}}[\Omega]$

<Fig.3> Base value

Converting impedance into base value

a. Primary part impedance of transformer: \% X
$\% X_{1}=\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{Q} \times 10^{3}} \times 100[\%]$
Q: Primary part short-circuit capacity
b. Impedance of transformer: \%ZT

It generally indicates as percent impedance. If base capacity is equal to transformer capacity, \%ZT can be used as it is. When base capacity is not equal to transformer capacity, convert values by this formula.
$\frac{P_{T}}{\%_{\mathrm{T}}}=\frac{\mathrm{P}_{\mathrm{B}}}{\%_{\mathrm{B}}}$
\%: value converted by base value
1 phase transformer should converted into the value of 3 phase transformer, And the percent impedance is equal to $\frac{\sqrt{3}}{2} \times$
calculated urgent value.
c. Reactance of motor: \%Xm

Transformer capacity shows the value in kW, so it is converted into unit, kVA.
(kVA value) $\fallingdotseq 1.5 \times$ (Output of motor, kW)
\%Xm=25\% Converting it from base capacity
$\frac{\mathrm{P}_{\mathrm{m}}}{\% \mathrm{Xm}}=\frac{\mathrm{P}_{\mathrm{B}}}{\% \mathrm{Xm}}$
(Converting formula for different capacity)
d. Impedance of busduct, cable

Cable: Area of cross-section \& length
Busduct: Rated current
In <Fig.5>, <Fig.6>
$Z_{\mathrm{c}}=(\Omega$ per each unit length $) \times($ length $)[\Omega]$
Convert this value into \% value.
$\%_{Z_{c}}=\frac{Z_{c}}{Z_{\mathrm{B}}}$
(\% converting formula)
2cables in same dimension, it's recommendable to divide the length by 2.

Technical information

How to calculate short-circuit current value

Preparing a impedance map

Prepare impedance map according to the impedance value from (2). Various electricity suppliers like source, motor have same electric potential in impedance map.
As you find it on <Fig.4> (a), extend it from the unlimited bus to fault point, draw impedance map.

Calculating impedance

Calculate impedance as <Fig. 4 (b)> in impedance map < Fig. 4 (a)> $\% Z=\% R+j \% X$
$\% Z=\sqrt{(\% R)^{2}+(\% X)^{2}}$

Calculating symmetrical short-circuit current real value

<Fig.4> Base value

Calculating various short-circuit current

 value$\mathrm{IF}(3 \varnothing)=\mathrm{IF}(\mathrm{rms}) \operatorname{sym}(3 \varnothing)$

$$
\begin{aligned}
& =\frac{P_{B} \times 10^{3}}{\sqrt{3} V_{B} \cdot \% Z} \times 100 \\
& =\frac{I_{B}}{\% Z} \times 100[A]
\end{aligned}
$$

Calculate various short-circuit current value with α, β, γ values from <Fig. $5>$ like short-circuit power factor $\cos \varnothing=\frac{\% R}{\% Z}$
3 phases average asymmetrical real value $\mathrm{I}_{\mathrm{F}}(\mathrm{rms})$ ave $=\beta \mathrm{I}_{\mathrm{F}}(\mathrm{rms})$ sym Maximum average asymmetrical real value $\mathrm{I}_{\mathrm{F}}(\mathrm{rms})$ asym $=\Omega \mathrm{I}_{\mathrm{F}}(\mathrm{rms})$ sym Maximum asymmetrical instantaneous value $l_{\text {F }} \max =\gamma \|_{F}(\mathrm{rms})$ sym

In case of 1 phase short-circuit

Current value from (5) multiplied by $\frac{\sqrt{3}}{2}$ Each short-circuit current value $(1 \varnothing)=\frac{\sqrt{3}}{2}$ (3phases short-circuit current) $\times \alpha$ (or γ)

<Fig.5>

Technical information

How to calculate short-circuit current value With a simple formula

For its special cases, calculating exact value should be needed, in the other hand, for the practical use, we recommend simple formula.

Finding a base value

It shall be the rated current of transformer.
$\mathrm{P}_{\mathrm{B}}=\mathrm{PT}[\mathrm{kVA}]$
$\mathrm{V}_{\mathrm{B}}=\mathrm{VT}$ [V]
$\mathrm{I}_{\mathrm{B}}=\mathrm{IT}[\mathrm{A}]$
$\mathrm{Z}_{\mathrm{B}}=\frac{\mathrm{VT}_{\mathrm{B}}[\Omega]}{\mathrm{PT} \times 103}$

<Fig.6> Base value

Short-circuit current from incoming circuit

Disregard the impedance value of primary part of transformer. Calculate short-circuit current value according to <Fig.7>.
(If the impedance value of primary part of transformer is considered, calculate the current value as below formula)
$I_{A}(R)=\frac{I_{B}}{\sqrt{\left(\% R_{T}\right)^{2}+\left(\% X_{1}+\% X_{T}\right)^{2}}} \times 100[A]$
$\% X_{1}=\frac{\mathrm{P}_{\mathrm{B}}}{\mathrm{Q} \times 10^{3}} \times 100[\%]$
If the value of $\% \mathrm{R}_{\mathrm{T}}$ is not clear, $\% \mathrm{Z}_{T} \fallingdotseq \% \mathrm{~T}_{T}$
$I_{A}(R)=\frac{I_{B}}{\% X_{1}+\%_{T}} \times 100[A]$

Ref 1) Calculation in the random voltage E Voltage line which is mostly close to E shall be selected to calculate it .
i.e. in case of 220 V , (200 V line value) $\div 200 / 220$

Ref 2) Calculation for a certain impedance Zt (\%) Impedance line which is mostly close to Zt (\%) shall be selected to calculate it. i.e. $420 \mathrm{~V}, \mathrm{Zt}=4.5 \%$
$\% Z=4 \%$ Line value (or 5% line) $\times 4$ (or 5)/4.5
Ref 3) When the value is out of lines or over 200VA or below 100 kA , multiply 10 times to the calculated values.
<Fig.7> Transformer capacity and short-circuit current

Short-circuit current to motor

$I_{A}(M)=4 \times \Sigma$ (Rated current of motor)

Symmetrical short-circuit current at point A

 $I_{A}=I_{A}(R)+I_{A}(M)$
Decreasing coefficient caused by busduct

Obtaining the value of $\frac{l \cdot I_{\mathrm{A}}}{10 \mathrm{VT}}$
Calculate decreasing coefficient from <Fig.10>

Decreasing short-circuit current by reactance

When there's 1 phase transformer in a certain circuit, calculate it in the base of reactance.
Regarding the reactance as pre-impedance at source part at point of <Fig.8>,
$X_{c}=\frac{E_{B}}{\sqrt{3} l_{c}}$
Reactance C~D: $\mathrm{X}_{\mathrm{D}}[\Omega]$ (impedance of $1 \varnothing \mathrm{~T}$)

How to calculate short-circuit current value

Calculating the value of X_{D} / X_{C} and decreasing coefficient d from the reactance of <Fig.9>.
Current at point $D l_{o}=d \cdot I_{c}$
Impedance of 1 phase transformer $X_{D}=X(1 \varnothing) \frac{1}{2}$ a. Short-circuit current at Ec voltage base lo (rms)sym $3 \varnothing=\mathrm{d} \cdot \mathrm{Ic}(\mathrm{rms}) \mathrm{sym} \cdot 3 \varnothing$
b. Short-circuit current at Eo voltage base lo (rms)sym $\cdot 3 \varnothing=\mathrm{d} \cdot \mathrm{Ic}_{\mathrm{c}}(\mathrm{rms})$ sym $\cdot 3 \varnothing \times \mathrm{Ec}_{\mathrm{c}} / \mathrm{ED}_{\mathrm{o}}$

<Fig.9> Decreasing coefficient of short-circuit current by reactance: d

Coefficient d for cables

Calculating the value of $\frac{l \mathrm{lo}}{10 \mathrm{~V}_{T}}$
Decreasing coefficient b value is calculated from <Fig.13>. For insulator drawn wrings, we can find the value directly from <Fig.13>.

Calculating symmetrical short-circuit current real value

$I_{F}(\mathrm{rms})$ sym $=\mathrm{b} \times \mathrm{lo}_{\mathrm{o}}[\mathrm{D}]$

Various short-circuit current

In case of having short-circuit current power factor, find α, β, γ from <Fig.5>, If not find 3 values from <Table.1>

- 3 phases short-circuit asymmetrical current average value
$\mathrm{I}_{\mathrm{F}}(\mathrm{rms})$ ave $=\beta \mathrm{I}_{\mathrm{F}}(\mathrm{rms})$ sym
- Maximum asymmetrical real value $I_{F}(\mathrm{rms})$ ave $=\alpha \mathrm{l}_{\mathrm{F}}(\mathrm{rms}) \mathrm{sym}$
- Maximum asymmetrical instantaneous value $I_{F}(\mathrm{rms})$ ave $=\gamma \mathrm{l}_{\mathrm{F}}(\mathrm{rms})$ sym
<Table.2> α, β, γ values when short circuit power factor value is not definite.

Symmetrical short-circuit real value (A)	Variables		
	Maximum asymmetrical real value	3 phases short-circuit asymmetrical current average value	Maximum asymmetrical instantaneous value
2500	1.0	1.0	1.48
$2501 \sim 5000$	1.03	1.02	1.64
$5001 \sim 1000$	1.13	1.07	1.94
$1001 \sim 15000$	1.18	1.09	2.05
$15001 \sim 25000$	1.25	1.13	2.17
25000	1.33	1.17	2.29

1 phase short-circuit

(Each current) $=\frac{\sqrt{3}}{2} \times 3$ phases short-circuit current $\times \gamma($ or $\alpha)$

Busduct Ratings (A) Material		General busduct			
		$\begin{gathered} \text { Size }[\mathrm{mm}] \\ {[\Omega / \mathrm{m}]} \end{gathered}$	Resistance R [Ω / m]	$\begin{gathered} \text { Reactance } \\ \text { X } \\ {[\Omega / \mathrm{m}]} \end{gathered}$	$\begin{gathered} \text { Impedance } \\ \mathrm{Z} \\ {[\Omega / \mathrm{m}]} \end{gathered}$
Cu	200	3×25	2.41×10^{-4}	1.312×10^{-4}	2.74×10^{-4}
	400	6×40	0.751×10^{-4}	1.02×10^{-4}	1.267×10^{-4}
	600	6×50	0.607×10^{-4}	0.91×10^{-4}	1.094×10^{-4}
	800	6×75	0.412×10^{-4}	0.72×10^{-4}	0.830×10^{-4}
	1000	6×100	0.315×10^{-4}	0.60×10^{-4}	0.678×10^{-4}
	1200	6×125	0.261×10^{-4}	0.516×10^{-4}	0.578×10^{-4}
	1500	6×150	0.221×10^{-4}	0.449×10^{-4}	0.500×10^{-4}
	2000	$6 \times 125 \times 2$	0.129×10^{-4}	0.79×10^{-4}	0.800×10^{-4}

<Fig.10> Decreasing coefficient of general busduct (Cu)

<Fig.11> Decreasing coefficient b in cable (600V IV)

<Fig.12> Decreasing coefficient b in cable (600V IV)

Technical information

Susol

How to calculate short-circuit current value Calculation example

Calculation1) Short-circuit current value will be achieved by simple formula and percent impedance formula for <Fig.13>

<Fig.13>

Percent impedance formula

(1) Base value
$\mathrm{P}_{\mathrm{B}}=750 \mathrm{kVA} \quad \mathrm{V}_{\mathrm{B}}=420 \mathrm{~V}$
$\mathrm{I}_{\mathrm{B}}=1031 \mathrm{~A} \quad \mathrm{Z}_{\mathrm{B}}=0.237 \Omega$
(2) Each impedance
a. Reactance at primary part of transformer

$$
\% X_{1}=\frac{750}{1000 \times 10^{3}} \times 100=0.075[\%]
$$

b. Impedance of transformer
\%RT= 1.4%
$\% X_{T}=4.8 \%$
c. $1 \varnothing$ Tr impedance

$$
\begin{aligned}
& \%_{R_{T 1}}=\frac{1.15 \times 750}{20} \times \frac{1}{2}=21.6[\%] \\
& \% X_{T 1}=\frac{1.68 \times 750}{20} \times \frac{1}{2}=31.5[\%]
\end{aligned}
$$

d. Reactance of transformer
$\% X_{m 1}=\frac{750}{120 \times 1.5} \times 25=104[\%]$
$\% X_{m 2}=\frac{750}{140 \times 1.5} \times 25=89[\%]$
$\% X_{m 3}=\frac{750}{100 \times 1.5} \times 25=125[\%]$
$\% X_{m 4}=\frac{750}{115 \times 1.5} \times 25=108.7[\%]$
e. Impedance of cable

Converting impedance of whole metal tube
$\left[\begin{array}{ll}2 \times 100 \mathrm{~mm}^{2} & 10 \mathrm{~m}\end{array}\right]$
$\% R_{c 1}=\frac{0.00018 \times 10}{0.237} \times \frac{1}{2} \times 100=0.38[\%]$
$\% \mathrm{Xc}_{\mathrm{c} 1}=\frac{0.00013 \times 10}{0.237} \times \frac{1}{2} \times 100=0.27[\%]$
[125mm 20m]
$\% R_{\mathrm{c} 2}=\frac{0.00014 \times 20}{0.237} \times 100=1.18[\%]$
$\% X_{c 2}=\frac{0.00013 \times 20}{0.237} \times 100=1.09[\%]$
[250mm² 50m]
$\% R_{c 3}=\frac{0.00007 \times 50}{0.237} \times 100=1.47[\%]$
$\% X_{c 3}=\frac{0.00013 \times 50}{0.237} \times 100=2.74$ [\%]
[14mm $\left.{ }^{2} \quad 30 \mathrm{~m}\right]$
$\%_{\mathrm{R}_{\mathrm{c} 4}}=\frac{0.00013 \times 30}{0.237} \times 100=16.45[\%]$
$\% X_{c 4}=\frac{0.00015 \times 30}{0.237} \times 100=1.88[\%]$

How to calculate short-circuit current value

(3) Preparing a impedance map

Connect short-circuit supplier to the unlimited bus.

<Fig.14>

Calculating impedance

Calculate it in serial/parallel type formula

<Fig.15>

(5) Calculation of asymmetrical short-circuit current
a. Fault point F_{1}
$I_{\text {F1 }}(\mathrm{rms})$ sym $=\frac{1031}{6.1} \times 100=16900[A]$ $\cos \varnothing_{1}=\frac{2.57}{6.1}=0.422$
b. Fault point F_{2} (1 phase circuit)
IF_{2} (rms) sym $=\frac{1031}{54.2} \times 100=1902[\mathrm{~A}] \cdots$ (at 100V)
$=\frac{1031}{54.2} \times 100 \times \frac{420}{100}=7989[\mathrm{~A}] \cdots$ (at 420 V)
IF_{2} (rms)sym is short-circuit current.
Therefore, convert it into 1 phase short-circuit current.
$\mathrm{IF}_{2}(\mathrm{rms}) 1 \Omega$ sym $=7989 \times \frac{\sqrt{3}}{2}=6919[\mathrm{~A}]$ $\cos \varnothing_{2}=\frac{39.06}{54.2}=0.72$
(6) Various short-circuit current

Calculate α, β, γ from <Fig.5>.
a. Fault point F_{1} $\cos \varnothing_{1}=0.422$
$\alpha=1.05 \quad \beta=1.3 \quad \gamma=1.74$
$\mathrm{I}_{\mathrm{F} 1}(\mathrm{rms})$ ave $=1.03 \times 16900=17407$ [A]
$\mathrm{I}_{\mathrm{F} 1}(\mathrm{rms})$ asym $=1.05 \times 16900=17745$ [A]
$\mathrm{I}_{\text {F1 }} \max =1.74 \times 16900=29406[A]$
b. Fault point F_{2}
$\cos \varnothing_{2}=0.72$
$\alpha=1.0 \quad \beta=1.48$
$\mathrm{I}_{\mathrm{F} 2} 1 \varnothing(\mathrm{rms}) \mathrm{asym}=1.0 \times 6919[\mathrm{~A}]$
$\mathrm{I}_{\mathrm{F} 2} 1 \varnothing \mathrm{max}=1.48 \times 6919=10240$ [A]

Simple calculation formula

(1) Base value
$\begin{array}{ll}\mathrm{P}_{\mathrm{B}}=750 \mathrm{kVA} & \mathrm{V}_{\mathrm{B}}=420 \mathrm{~V} \\ \mathrm{I}_{\mathrm{B}}=1031 \mathrm{~A} & \mathrm{Z}_{\mathrm{B}}=0.237 \Omega\end{array}$
(2) Short-circuit current of incoming circuit Disregard the impedance of primary part of transformer
In $<$ Fig. $7>\mathrm{I}_{\mathrm{A}(\mathrm{R})}=20500 \mathrm{~A}$
(3) Short-circuit current of motor Sum of motor capacity= $(120+140+100+115) \times 1.5=713[\mathrm{kVA}]$
$I_{A(M)}=\frac{713}{\sqrt{3} \times 420} \times 4=3920$ [A]
(4) Symmetrical short-circuit current at point A $I_{A}=20500+3920=24420$ [A]

Technical information

Susol

How to calculate short-circuit current value Calculation example

(5) Decreasing short-circuit current for cable
a. At point F_{1}

- $2 \times 100 \mathrm{~mm}^{2} 10 \mathrm{~m}$ $2 \times 100 \mathrm{~mm}^{2} 10 \mathrm{~m}=100 \mathrm{~mm}^{2} 5 \mathrm{~m}$

$$
\frac{l \mathrm{I}_{\mathrm{A}}}{10 \mathrm{E}}=\frac{20 \times 24420}{10 \times 420}=29.1
$$

Coefficient b=0.935
Short-circuit current value at point C lc $(\mathrm{rms}) \mathrm{sym}=0.935 \times 24420=22850[\mathrm{~A}]$

- $125 \mathrm{~mm}^{2} 20 \mathrm{~m}$

$$
\frac{l \mathrm{I}_{\mathrm{c}}}{10 \mathrm{E}}=\frac{20 \times 22850}{10 \times 420}=108.9
$$

$\mathrm{IF}_{\mathrm{F} 1}(\mathrm{rms}) \mathrm{sym}=0.785 \times 244850=17940[\mathrm{~A}]$
b. At point F_{1}

- $14 \mathrm{~mm}^{2} 30 \mathrm{~m}$
$\frac{l \mathrm{Ic}}{10 \mathrm{E}}=\frac{30 \times 24420}{10 \times 420}=174.4$
Coefficient b=0.249
$\mathrm{lo}_{\mathrm{o}}(\mathrm{rms}) 3 \varnothing$ sym $=0.24 \times 24420=6080[\mathrm{~A}]$
- Decreasing by the reactance ($1 \varnothing$ Tr)dp Convert the value of ' $\% \mathrm{X}$ of $1 \varnothing \mathrm{Tr}^{\prime}$ to base capacity
Xo= $750 \times 2 / 20=75 \%$
Impedance of primary part at $1 \varnothing \mathrm{Tr}$
$X A=\frac{I_{B}}{I_{D}} \times 100=\frac{1031}{6080} \times 100[\%]$
Convert X_{o} to equivalent 3 phases, and
$\frac{X_{0} / 2}{X_{A}}=\frac{750 \times 2 \times 6080}{20 \times 2 \times 1031 \times 100}=2.21$
Coefficient d of <Fig.9> d= 0.32 $\mathrm{l}=2(\mathrm{~ms}) 3 \varnothing \mathrm{sym}=0.32 \times 6080=1945[\mathrm{~A}](400 \mathrm{~V})$ $=0.32 \times 6080 \times 420 / 100$ $=817[\mathrm{~A}](100 \mathrm{~V})$
$\therefore \mathrm{IF}_{\mathrm{F}}(\mathrm{rms}) 1 \varnothing$ sym $=8171 \times \frac{\sqrt{3}}{2}=7076[\mathrm{~A}]$
(6) Various short-circuit current Find α, β, γ from <Table.1> a. At point F_{1}
$\alpha=1.25 \quad \beta=1.13 \quad \gamma=2.17$
IF1 (rms)ave $=1.13 \times 17940=20272$ [A]
IF1 (rms)asym $=1.25 \times 17940=22425$ [A]
IF1max $=2.17 \times 17940=38930[A]$
b. At point F_{2}
$\alpha=1.13 \quad \gamma=1.94$
IF21 \varnothing (rms)asym $=1.13 \times 7076=7945$ [A]
IF21 \varnothing max $=1.94 \times 7076=13727$ [A]

Fault point		F_{1}	F_{2}
Symmetrical short-circuit current real value	Percent impedance calculation value	16900A	6919A
	Simple formula	17940A	7076A
	calculation value	106\%	102\%
3 phases average asymmetrical current real value	Percent impedance calculation value	17407A	-
	Simple formula calculation value	20272A	-
		116\%	-
Maximum asymmetrical current real value	Percent impedance calculation value	17745A	6919A
	Simple formula	22425A	7995A
	calculation value	126\%	115\%

How to calculate short-circuit current value

Short-circuit current value will be achieved by simple formula for <Fig.16>

<Fig.16>
(1) Calculate rated current at each point
(1) Rated current lnA_{A} at point A

$$
\mathrm{I}_{\mathrm{nA}}=\frac{500[\mathrm{kVA}] \times 1000}{\sqrt{3} \times 6.6[\mathrm{kV}] \times 1000}=43.7[\mathrm{~A}]
$$

(2) Rated current $I_{n B}$ at point B

$$
\begin{aligned}
& \operatorname{In}=\frac{100[\mathrm{kVA}] \times 1000}{\sqrt{3} \times 3.3[\mathrm{kV}] \times 1000}=17.5[\mathrm{~A}] \\
& \operatorname{Inc}=\frac{20[\mathrm{~kW}] \times 1000}{\sqrt{3} \times 220[\mathrm{~V}] \times 0.85 \times 0.8}=77.2[\mathrm{~A}]
\end{aligned}
$$

(2) Put 1000 k VA for base capacity and calculate short-circuit current at each point.
(1) Short-circuit current lsA at point A a) Impedance Map

b) Short-circuit IsA

$$
\mathrm{I}_{\mathrm{SA}}=\frac{1000[\mathrm{kVA}] \times 1000 \times 100}{\sqrt{3} \times 6.6[\mathrm{kV}] \times 1000 \times 0.25 \%}=34990[\mathrm{~A}]
$$

* Breaking capacity of breaker [MVA] MVA= 3 short-circuit current $[k A]$ line to line voltage[kV]
(2) Short-circuit current at point B: Iss
a) Impedance Map
* Serial sum of impedance

Ztot $=0.25+0.01+8=8.26[\%]$

b) Short-circuit current Isc

$$
\mathrm{I}_{\mathrm{ss}}=\frac{1000[\mathrm{kVA}] \times 1000 \times 100}{\sqrt{3} \times 3.3[\mathrm{kV}] \times 1000 \times 8.26}=2118[\mathrm{~A}]
$$

* Breaking capacity of breaker [MVA]

MVA $=\sqrt{3}$ short-circuit current [kA] line to line voltage[kV]
(3) Short-circuit current at point C : Isc a) Impedance Map

* Parallel sum of impedance

$$
Z=\frac{1}{\frac{1}{33.26}+\frac{1}{2001}+\frac{1}{8001}}=32.58[\%]
$$

b) Short-circuit current Isc

$$
\mathrm{Isc}=\frac{1000[\mathrm{kVA}] \times 1000 \times 100}{\sqrt{3} \times 220[\mathrm{~V}] \times 32.58[\%]}=8055[\mathrm{~A}]
$$

Calculation formula

Rated current In $=\frac{\text { Transformer capacity }}{\sqrt{3} \times \text { Rated voltage }}$
Short-circuit current Is $=\frac{\text { Transformer capacity } \times 100}{\sqrt{3} \times \text { Rated voltage } \times \% \text { Z }}$

Technical information

How to calculate short-circuit current value Combination of transformer and impedance

<Table. 3> Combination of transformer and impedance

Transformer	3 phases transformer											
Impedance	6.3kV/210V Oil Tr.			6.3kV/210V Mold Tr.			20kV/420V Mold Tr.			20kV/420V Oil Tr.		
Transformer capacity (VA)	ZT[\%]	RT[\%]	XT[\%]									
20	2.19	1.94	1.03									
30	2.45	1.92	1.53	4.7	2.27	4.12						
50	2.47	1.59	1.89	4.7	1.94	4.28						
75	2.35	1.67	1.66	4.4	1.56	4.11						
100	2.54	1.65	1.96	4.6	1.5	4.24						
150	2.64	1.64	2.07	4.2	1.29	4.0						
200	2.8	1.59	2.31	4.5	1.17	4.35						
300	3.26	1.46	2.92	4.5	1.2	4.33						
500	3.61	1.33	3.36	4.7	0.08	4.69	5.0	1.56	4.76	6.0	1.0	5.92
750	4.2	1.55	3.9	6.0	0.8	5.95	5.0	1.40	4.80	6.0	0.9	5.93
1000	5.0	1.35	4.82	7.0	0.7	6.96	5.0	1.26	4.84	6.0	0.8	5.95
1500	5.1	1.22	4.95	7.0	0.6	6.97	5.5	1.2	5.37	7.0	0.75	6.96
2000	5.0	1.2	4.85	7.5	0.65	7.47	5.5	1.1	5.39	7.0	0.7	6.96

<Table. 4> Example of transformer impedance

| Transformer | 1 phase transformer | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Impedance | $6.3 \mathrm{kV} / 210 \mathrm{~V}$ Oil Tr. | $6.3 \mathrm{kV} / 210 \mathrm{~V}$ Mold Tr. | | | | |
| Transformer
 capacity (VA) | ZT[\%] | RT[\%] | XT[\%] | ZT[\%] | RT[\%] | XT[\%] |
| 10 | | | | 14.9 | 14.9 | 0.268 |
| 20 | | | | 14.0 | 14.0 | 0.503 |
| 30 | | | | 14.8 | 14.8 | 0.523 |
| 50 | | | | 13.6 | 13.6 | 0.494 |
| 75 | | | | 11.0 | 11.0 | 0.558 |
| 100 | | | | 8.87 | 8.85 | 0.562 |
| 200 | | | | 7.70 | 7.68 | 0.571 |
| 300 | | | | 5.75 | 5.69 | 0.619 |
| 500 | | | | 5.08 | 4.97 | 1.05 |
| 750 | | | | 5.05 | 4.92 | 1.16 |
| 1000 | | | | 4.03 | 3.93 | 0.904 |
| 2000 | | | | 4.55 | 4.50 | 0.637 |
| 3000 | | | | 4.29 | 4.22 | 0.768 |
| 5000 | | | | 3.26 | 3.18 | 0.725 |
| 7500 | | | | 2.72 | 2.81 | 0.775 |
| 10000 | 2.5 | 2.07 | 1.40 | 2.33 | 2.18 | 0.823 |
| 15000 | 2.37 | 1.84 | 1.49 | 2.04 | 1.82 | 0.937 |
| 20000 | 2.57 | 1.76 | 1.87 | 1.90 | 1.60 | 1.02 |
| 30000 | 2.18 | 1.58 | 1.50 | | | |
| 50000 | 2.05 | 1.47 | 1.42 | | | |
| 75000 | 2.27 | 1.46 | 1.74 | | | |
| 100000 | 2.48 | 1.49 | 1.98 | | | |
| 150000 | 3.39 | 1.31 | 3.13 | | | |
| 200000 | 3.15 | 1.31 | 2.87 | | | |
| 30000 | 2.23 | 1.28 | 2.96 | | | |
| 500000 | 4.19 | 1.09 | 4.03 | | | |
| | | | | | | |

<Table. 5> Example of cable impedance
(600 vinyl cable)

Cable dimension	Impedance of cable 1m (Ω)			
	Internal insulation wiring or cable of steel tube and duct	Internal vinyl tube wiring of steel tube and duct	Insulator wiring in building	Resistance (Ω) 1 cable 1meter
$\varnothing 1.6 \mathrm{~mm}$ $\varnothing 2 \mathrm{~mm}$ $\varnothing 3.2 \mathrm{~mm}$ $5.5 \mathrm{~mm}^{2}$ $8 \mathrm{~mm}^{2}$	0.00020	0.00012	0.00031	$\begin{aligned} & 0.0089 \\ & 0.0056 \\ & 0.0022 \\ & 0.0033 \\ & 0.0023 \end{aligned}$
$14 \mathrm{~mm}^{2}$ $22 \mathrm{~mm}^{2}$ $30 \mathrm{~mm}^{2}$ $38 \mathrm{~mm}^{2}$	0.00015	0.00010	0.00026	0.0013 0.00082 0.00062 0.00048
$50 \mathrm{~mm}^{2}$ $60 \mathrm{~mm}^{2}$ $80 \mathrm{~mm}^{2}$ $100 \mathrm{~mm}^{2}$ $125 \mathrm{~mm}^{2}$ $150 \mathrm{~mm}^{2}$ $200 \mathrm{~mm}^{2}$ $250 \mathrm{~mm}^{2}$ $325 \mathrm{~mm}^{2}$	0.00013	0.00009	0.00022	$\begin{aligned} & \hline 0.00037 \\ & 0.00030 \\ & 0.00023 \\ & 0.00018 \\ & 0.00014 \\ & 0.00012 \\ & 0.00009 \\ & 0.00007 \\ & 0.00005 \end{aligned}$

<Remark1> At 60 Hz , the reactance multiply 2 times itself, so $1 / 2$ reactance of primary part can achieve IB.
<Remark2> When the cable is parallelly 2 or 3ea, reactance and resistance can be calculated in the condition of $1 / 3$ and $1 / 3$ length cable.

Susol

How to calculate short-circuit current value Various short-circuit
<Table.6> Impedance sample of bus and busduct (50 Hz)
$\left[\times 10^{-4} \Omega / \mathrm{m}\right]$

$*$	Ampere rating (A)				R	X
	1.257	0.323	1.297	1.385	0.387	1.438
600	0.848	0.235	0.879	0.851	0.282	0.896
800	0.641	0.185	0.667	0.645	0.222	0.682
1000	0.518	0.152	0.540	0.523	0.183	0.554
1200	0.436	0.129	0.454	0.443	0.155	0.469
1350	0.378	0.113	0.394	0.386	0.135	0.409
1500	0.360	0.107	0.375	0.367	0.128	0.389
1600	0.286	0.084	0.298	0.293	0.101	0.310
2000	0.218	0.065	0.228	0.221	0.078	0.235
2500	0.180	0.054	0.188	0.184	0.064	0.195
3000	0.143	0.042	0.149	0.146	0.051	0.155
3500	0.126	0.038	0.131	0.129	0.045	0.136
4000	0.120	0.036	0.125	0.122	0.043	0.130
4500	0.095	0.028	0.099	0.098	0.034	0.103
5000	0					

<Table.6> Impedance sample of Bus and busduct (50 Hz)
$\left[\times 10^{-4} \Omega / \mathrm{m}\right]$

Ampere rating (A)	50 Hz			60 Hz		
	R	X	Z	R	X	Z
600	0.974	0.380	1.045	0.977	0.456	1.078
800	0.784	0.323	0.848	0.789	0.387	0.879
1000	0.530	0.235	0.580	0.536	0.282	0.606
1200	0.405	0.185	0.445	0.412	0.222	0.468
1350	0.331	0.152	0.364	0.338	0.183	0.384
1500	0.331	0.152	0.364	0.338	0.183	0.384
1600	0.282	0.129	0.311	0.289	0.155	0.328
2000	0.235	0.107	0.259	0.241	0.128	0.273
2500	0.166	0.076	0.182	0.169	0.091	0.192
3000	0.141	0.065	0.155	0.144	0.078	0.164
3500	0.122	0.056	0.135	0.127	0.068	0.143
4000	0.110	0.051	0.121	0.113	0.061	0.126
4500	0.094	0.043	0.104	0.096	0.052	0.109
5000	0.082	0.038	0.091	0.084	0.045	0.096
5500	0.078	0.035	0.086	0.080	0.043	0.091
6500	0.068	0.028	0.074	0.071	0.031	0.077

Technical information

How to calculate short-circuit current value Calculation example

Using a certain graph, you can find and calculate the short-circuit current value which is at one position of network. No matter the condition of network is different, you can do the calculation through adjusting variables.

Graph note

P coordinates - Transformer capacity (kVA)
Is, coordinates - Short-circuit current value (kA)
Is ${ }_{2}$ coordinates - Short-circuit current value affected cable condition (kA)
(a) Line - \% impedance of transformer (\%)
(b) Line - Length of cable (m)
(C) Line - Square mm of cable $\left(\mathrm{mm}^{2}\right)$
(d) Line - Is 2 (kA)

Remark) © line shows the length of hard vinyl cable (600V IV)

How to calculate short-circuit current value

(1) 3 phases transformer
(1) Short-circuit current value at (A) where it is just below transformer. At P coordinates, find the coordinates value (g) of the cross point (f) which is from transformer capacity (e) and A line. Disregard primary part impedance of transformer.
(2) Find the short-circuit current value at Point B, C which are considered cable impedance.

- At short-circuit current g (kA) of Is coordinates, find the value (h) of B line
- Move (h) to parallel direction of Is, and find the cross point (i) to C line.
- Move (i) to parallel direction of Is 2 , and find the cross point value (j) to D line (g), finally find (k) of IS2
(2) 1 phase transformer
(1) Short-circuit current value where it is just below transformer. Find the value as same as that of 3 phase transformer and multiply it 3 times. ($g^{\prime} k A$)
(2) Find the short-circuit current value where it is considered cable impedance.
- Multiply $2 / 3$ times to g ' of Is coordinates
- Find the $I s_{2}$ value as same as that of 3 phase transformer and multiply it $3 / 2$ times.

Remark

1. It's not considered the transformer contribution. Multiply 4 times the rated current of transformer in cases.
2. The real short-circuit current value is littler lower that its calculated value by the way we suggest because we take the rated voltage as AC200V, 400 V . So the current value should be calculated in the consideration of stability
3. The calculated value is symmetrical real value.

Technical information

How to calculate short-circuit current value Calculation graph

(1) Short-circuit current value at point A (IsA)

- At P coordinates, find (f) which is the point which is to match transformer capacity 500 kVA and A line. Then move (f) to Is s_{1}
(2) Short-circuit current value at point B (lsb)
- Find value h of B line (20 mm) at g ($=$ 29 kA) of Is_{1} coordinates
- Move h parallely to the direction of Is ${ }_{1}$, and find value I at the cross point with C line (200mm)
direction and finally find (g).
- $I_{s a}=29 \mathrm{kVA}$ (g)
- Move I parallely to the direction of Is_{2}, and find value j at the cross point with D line ($\mathrm{g}=29 \mathrm{kA}$)
- $\mathrm{I}_{\mathrm{ss}}=19 \mathrm{kA}(\mathrm{k})$

Technical information

Susol

(3) Short-circuit current value at point C (lsc)

- Find Is coordinates value (19 kA) of short-circuit current value $k(=19 \mathrm{kA}$) at Point B. and find cross point m between 19kA and B line.
- Move m parallely to the direction of Is_{1} coordinates, and find the cross point n at C line (30 mm).
- Move n parallely to the direction of $I s_{1}$ and find the cross point p of $I s_{2}$ with D line.
- $\mathrm{Isc}=10 \mathrm{kA}$ (g)

Installation instruction

Susol

Frames 15A to 125A front mounting type circuit breakers and molded case switches.

\triangle DANGER

Hazard of electric shock, burn or explosion

1) This equipment must be installed and serviced only by qualified electrical personnel.
2) Turn off and lock out all power supplying this equipment before working on or inside equipment.
3) Replace all devices, doors, and covers before turning on power to this equipment.
4) Always verify that no voltage is present before working on or inside equipment, and always follow generally accepted safety procedures.
Failure to follow these instructions will result in death or severe injury.
LS Industrial Systems is not liable for the misapplication or mis-installation of its products.

The user is cautioned to observe all recommendations, warnings and cautions relating to the safety of personal and equipment as well as general and local health and safety laws, codes and procedures.

1. Circuit breaker installation

Make sure that the equipment is suitable for the installation by comparing nameplate ratings with system requirements. Inspect the equipment for completeness and check for any damage.

\triangle DANGER

Hazard of electric shock, burn or explosion

1) Before mounting the circuit breaker in an electrical system, make sure there is no voltage present where work is to be performed.
2) Mount no closer to enclosure metal or live parts than is indicated in drawing.
3) All enclosure closing hardware must be installed.

Failure to follow these instructions will result in death or severe injury.
Dimensions for electrical and mechanical clearance to metal or live electrical parts. (See Fig. 1)

To mount the circuit breaker perform the following steps:

1) For individual surface mounting, drill and tap mounting bolts holes according to the drilling plan shown in Fig. 2. For dead front cover applications, cut out cover to correct escutcheon dimensions refer to Fig. 3.
2) If circuit breaker includes factory- or field-installed internal accessories, make sure that accessory wiring can be reached when the circuit breaker is mounted.
3) Position circuit breaker on mounting surface.
4) Install circuit breaker mounting screws. Tighten hardware securely, but do not exceed 17 pound-inches(2N.m.)

<Fig. 2> Circuit breaker mounting bolt drilling plan
<Fig. 3> Circuit breaker escutcheon dimensions

2. Manual operation

Manual Operation of the circuit breaker is controlled by the circuit breaker handle and the PUSH TO TRIP button. The circuit breaker has three positions, two of which are shown on the cover with raised lettering to indicate ON and OFF. The third position indicates a TRIP position and is between the ON and OFF positions. (See Fig. 4)

Circuit Breaker Reset

After an automatic or accessory initiated trip, or a manual PUSH TO TRIP operation, the circuit breaker is reset by moving the circuit breaker handle to the reset position.
NOTE) In the event of a thermal trip, the circuit breaker cannot be reset until the thermal element in the trip unit cools.

PUSH TO TRIP button

The PUSH TO TRIP button checks the tripping function and is used to manually exercise the operating mechanism.
NOTE) Press PUSH TO TRIP button once a year to exercise circuit breaker.

<Fig. 4> Circuit Breaker Manual Controls

Installation instruction

Susol

3. Wire installation-all circuit breakers

See circuit breaker nameplate label or optional lug instructions for wire size and torque.

\triangle CAUTION

Hazard of false torque indication

1) Each terminal connectors or conductors should be connected as shown in the Fig. 5.
2) Do not allow conductor strands to interfere with threads of wire binding screw.
3) When installing two cables into a lug body make sure cables do not back out during tightening of the wire binding screw.
Failure to follow these instructions will result in equipment damage.

4. Circuit breaker removal

1) Turn off all power supplying this equipment before working on or inside equipment.
2) Remove circuit breaker in reverse order of installation.

5. Accessories install(if required)

1) Turn off all power supplying this equipment before working on or inside equipment.
2) Loosen four screws from the auxiliary cover and open it.
3) Install field-installable accessories according to instructions supplied with them.
4) Close the auxiliary cover and secure with screws.
5) If circuit breaker has factory-installed accessories, refer to label on circuit breaker for electrical specifications and lead colors.

6. Other safety instructions

Check area where circuit breaker is installed for any safety hazards including personal safety and fire hazards. Exposure to certain types of chemicals can cause deterioration of electrical connections.

\triangle CAUTION

Hazard of equipment damage

1) No circuit breaker should be reclosed until the cause of trip is known and the situation rectified.
2) Be careful not to be damaged by accidents during transportation or installation.
3) Check periodically terminals and connectors for looseness or signs of overheating.

Failure to follow these instructions will result in

 equipment damage.If any questions arise, contact LS Industrial systems Co.,Ltd or refer to the catalogue for further information or instructions.

[^1]
<Fig. 6> Dimensions

Installation instruction

Susol

Frames 150A to 250A front mounting type circuit breakers and molded case switches.

\triangle DANGER

Hazard of electric shock, burn or explosion

1) This equipment must be installed and serviced only by qualified electrical personnel.
2) Turn off and lock out all power supplying this equipment before working on or inside equipment.
3) Replace all devices, doors, and covers before turning on power to this equipment.
4) Always verify that no voltage is present before working on or inside equipment, and always follow generally accepted safety procedures.
Failure to follow these instructions will result in death or severe injury.
LS Industrial Systems is not liable for the misapplication or mis-installation of its products.

The user is cautioned to observe all recommendations, warnings and cautions relating to the safety of personal and equipment as well as general and local health and safety laws, codes and procedures.

1. Circuit breaker installation

Make sure that the equipment is suitable for the installation by comparing nameplate ratings with system requirements. Inspect the equipment for completeness and check for any damage.

\triangle DANGER

Hazard of electric shock, burn or explosion

1) Before mounting the circuit breaker in an electrical system, make sure there is no voltage present where work is to be performed.
2) Mount no closer to enclosure metal or live parts than is indicated in drawing.
3) All enclosure closing hardware must be installed.

Failure to follow these instructions will result in death or severe injury.

Dimensions for electrical and mechanical clearance to metal or live electrical parts. (See Fig. 1)
-Dimensions : inch (mm)

To mount the circuit breaker perform the following steps:

1) For individual surface mounting, drill and tap mounting bolts holes according to the drilling plan shown in Fig. 2. For deadfront cover applications, cut out cover to correct escutcheon dimensions refer to Fig. 3 .
2) If circuit breaker includes factory- or field-installed internal accessories, make sure that accessory wiring can be reached when the circuit breaker is mounted.
3) Position circuit breaker on mounting surface.
4) Install circuit breaker mounting screws and washers. Tighten hardware securely, but do not exceed 33 pound-inches(3.8N.m.)
-Dimensions : inch (mm)

<Fig. 2> Circuit breaker mounting bolt drilling plan
<Fig. 3> Circuit breaker escutcheon dimensions

2. Manual operation

Manual Operation of the circuit breaker is controlled by the circuit breaker handle and the PUSH TO TRIP button. The circuit breaker has three positions, two of which are shown on the cover with raised lettering to indicate ON and OFF. The third position indicates a TRIP position and is between the ON and OFF positions. (See Fig. 4)

Circuit Breaker Reset

After an automatic or accessory initiated trip, or a manual PUSH TO TRIP operation, the circuit breaker is reset by moving the circuit breaker handle to the reset position.
NOTE) In the event of a thermal trip, the circuit breaker cannot be reset until the thermal element in the trip unit cools.

PUSH TO TRIP button

The PUSH TO TRIP button checks the tripping function and is used to manually exercise the operating mechanism.
NOTE) Press PUSH TO TRIP button once a year to exercise circuit breaker.

<Fig. 4> Circuit Breaker Manual Controls

Installation instruction

Susol

3. Wire installation-all circuit breakers

See circuit breaker nameplate label or optional lug instructions for wire size and torque.

\triangle CAUTION

Hazard of false torque indication

1) Each terminal connectors or conductors should be connected as shown in the Fig. 5.
2) Do not allow conductor strands to interfere with threads of wire binding screw.
3) When installing two cables into a lug body make sure cables do not back out during tightening of the wire binding screw.
Failure to follow these instructions will result in equipment damage.

<Fig. 5>

4. Circuit breaker removal

1) Turn off all power supplying this equipment before working on or inside equipment.
2) Remove circuit breaker in reverse order of installation.

5. Accessories install(if required)

1) Turn off all power supplying this equipment before working on or inside equipment.
2) Loosen four screws from the auxiliary cover and open it.
3) Install field-installable accessories according to instructions supplied with them.
4) Close the auxiliary cover and secure with screws.
5) If circuit breaker has factory-installed accessories, refer to label on circuit breaker for electrical specifications and lead colors.

6. Other safety instructions

Check area where circuit breaker is installed for any safety hazards including personal safety and fire hazards. Exposure to certain types of chemicals can cause deterioration of electrical connections.

\triangle CAUTION

Hazard of equipment damage

1) No circuit breaker should be reclosed until the cause of trip is known and the situation rectified.
2) Be careful not to be damaged by accidents during transportation or installation.
3) Check periodically terminals and connectors for looseness or signs of overheating.

Failure to follow these instructions will result in

 equipment damage.If any questions arise, contact LS Industrial systems Co.,Ltd or refer to the catalogue for further information or instructions.

Installation instruction

Susol

Frames 300A to 400A front mounting type circuit breakers and molded case switches.

\triangle DANGER

Hazard of electric shock, burn or explosion

1) This equipment must be installed and serviced only by qualified electrical personnel.
2) Turn off and lock out all power supplying this equipment before working on or inside equipment.
3) Replace all devices, doors, and covers before turning on power to this equipment.
4) Always verify that no voltage is present before working on or inside equipment, and always follow generally accepted safety procedures.
Failure to follow these instructions will result in death or severe injury.
LS Industrial Systems is not liable for the misapplication or mis-installation of its products.

The user is cautioned to observe all recommendations, warnings and cautions relating to the safety of personal and equipment as well as general and local health and safety laws, codes and procedures.

1. Circuit breaker installation

Make sure that the equipment is suitable for the installation by comparing nameplate ratings with system requirements. Inspect the equipment for completeness and check for any damage.

\triangle DANGER

Hazard of electric shock, burn or explosion

1) Before mounting the circuit breaker in an electrical system, make sure there is no voltage present where work is to be performed.
2) Mount no closer to enclosure metal or live parts than is indicated in drawing.
3) All enclosure closing hardware must be installed.

Failure to follow these instructions will result in death or severe injury.

Dimensions for electrical and mechanical clearance to metal or live electrical parts. (See Fig. 1)
-Dimensions : inch (mm)

To mount the circuit breaker perform the following steps:

1) For individual surface mounting, drill and tap mounting bolts holes according to the drilling plan shown in Fig. 2. For deadfront cover applications, cut out cover to correct escutcheon dimensions refer to Fig. 3.
2) If circuit breaker includes factory- or field-installed internal accessories, make sure that accessory wiring can be reached when the circuit breaker is mounted.
3) Position circuit breaker on mounting surface.
4) Install circuit breaker mounting screws and washers. Tighten hardware securely, but do not exceed 33 pound-inches(3.8N.m.)

2. Manual operation

Manual Operation of the circuit breaker is controlled by the circuit breaker handle and the PUSH TO TRIP button. The circuit breaker has three positions, two of which are shown on the cover with raised lettering to indicate ON and OFF. The third position indicates a TRIP position and is between the ON and OFF positions. (See Fig. 4)

Circuit Breaker Reset

After an automatic or accessory initiated trip, or a manual PUSH TO TRIP operation, the circuit breaker is reset by moving the circuit breaker handle to the reset position.
NOTE) In the event of a thermal trip, the circuit breaker cannot be reset until the thermal element in the trip unit cools.

PUSH TO TRIP button

The PUSH TO TRIP button checks the tripping function and is used to manually exercise the operating mechanism.
NOTE) Press PUSH TO TRIP button once a year to exercise circuit breaker.

<Fig. 4> Circuit Breaker Manual Controls

Installation instruction

Susol

3. Wire installation-all circuit breakers

See circuit breaker nameplate label or optional lug instructions for wire size and torque.

\triangle CAUTION

Hazard of false torque indication

1) Each terminal connectors or conductors should be connected as shown in the Fig. 5.
2) Do not allow conductor strands to interfere with threads of wire binding screw.
3) When installing two cables into a lug body make sure cables do not back out during tightening of the wire binding screw.
Failure to follow these instructions will result in equipment damage.

-Strip Length
 of the wire binding screws.

4. Circuit breaker removal

1) Turn off all power supplying this equipment before working on or inside equipment.
2) Remove circuit breaker in reverse order of installation.

5. Accessories install(if required)

1) Turn off all power supplying this equipment before working on or inside equipment.
2) Loosen four screws from the auxiliary cover and open it.
3) Install field-installable accessories according to instructions supplied with them.
4) Close the auxiliary cover and secure with screws.
5) If circuit breaker has factory-installed accessories, refer to label on circuit breaker for electrical specifications and lead colors.

6. Other safety instructions

Check area where circuit breaker is installed for any safety hazards including personal safety and fire hazards. Exposure to certain types of chemicals can cause deterioration of electrical connections.

\triangle CAUTION

Hazard of equipment damage

1) No circuit breaker should be reclosed until the cause of trip is known and the situation rectified.
2) Be careful not to be damaged by accidents during transportation or installation.
3) Check periodically terminals and connectors for looseness or signs of overheating.

Failure to follow these instructions will result in

 equipment damage.If any questions arise, contact LS Industrial systems Co.,Ltd or refer to the catalogue for further information or instructions.

<Fig. 6> Dimensions

Installation instruction

Susol

Frames 500A to 800A front mounting type circuit breakers and molded case switches.

\triangle DANGER

Hazard of electric shock, burn or explosion

1) This equipment must be installed and serviced only by qualified electrical personnel.
2) Turn off and lock out all power supplying this equipment before working on or inside equipment.
3) Replace all devices, doors, and covers before turning on power to this equipment.
4) Always verify that no voltage is present before working on or inside equipment, and always follow generally accepted safety procedures.
Failure to follow these instructions will result in death or severe injury.
LS Industrial Systems is not liable for the misapplication or mis-installation of its products.

The user is cautioned to observe all recommendations, warnings and cautions relating to the safety of personal and equipment as well as general and local health and safety laws, codes and procedures.

1. Circuit breaker installation

Make sure that the equipment is suitable for the installation by comparing nameplate ratings with system requirements. Inspect the equipment for completeness and check for any damage.

\triangle DANGER

Hazard of electric shock, burn or explosion

1) Before mounting the circuit breaker in an electrical system, make sure there is no voltage present where work is to be performed.
2) Mount no closer to enclosure metal or live parts than is indicated in drawing.
3) All enclosure closing hardware must be installed.

Failure to follow these instructions will result in death or severe injury.
Dimensions for electrical and mechanical clearance to metal or live electrical parts. (See Fig. 1)

A-4-43
$<$ Fig. 1> Clearances for Circuit Breaker

To mount the circuit breaker perform the following steps:

1) For individual surface mounting, drill and tap mounting bolts holes according to the drilling plan shown in Fig. 2. For deadfront cover applications, cut out cover to correct escutcheon dimensions refer to Fig. 3 .
2) If circuit breaker includes factory-or field-installed internal accessories, make sure that accessory wiring can be reached when the circuit breaker is mounted.
3) Remove the line and load lug covers by loosening the two lug cover screws that attach them to the cover.
4) Position circuit breaker on mounting surface.
5) Install circuit breaker mounting screws and washers. Tighten hardware securely, but do not exceed 33 pound-inches(3.8N.m.)

$<$ Fig. 2> Circuit breaker mounting bolt drilling plan
-Dimensions : inch (mm)

<Fig. 3> Circuit breaker escutcheon dimensions

2. Manual operation

Manual Operation of the circuit breaker is controlled by the circuit breaker handle and the PUSH TO TRIP button. The circuit breaker has three positions, two of which are shown on the cover with raised lettering to indicate ON and OFF. The third position indicates a TRIP position and is between the ON and OFF positions. (See Fig. 4)

Circuit Breaker Reset
After an automatic or accessory initiated trip, or a manual PUSH TO TRIP operation, the circuit breaker is reset by moving the circuit breaker handle to the reset position.
NOTE) In the event of a thermal trip, the circuit breaker cannot be reset until the thermal element in the trip unit cools.

PUSH TO TRIP button
The PUSH TO TRIP button checks the tripping function and is used to manually exercise the operating mechanism.
NOTE) Press PUSH TO TRIP button once a year to exercise circuit breaker.

<Fig. 4> Circuit Breaker Manual Controls

Installation instruction

Susol

3. Wire installation-all circuit breakers

See circuit breaker nameplate label or optional lug instructions for wire size and torque.

\triangle CAUTION

Hazard of false torque indication

1) Each terminal connectors or conductors should be connected as shown in the Fig. 5.
2) Do not allow conductor strands to interfere with threads of wire binding screw.
3) When installing two cables into a lug body make sure cables do not back out during tightening of the wire binding screw.
Failure to follow these instructions will result in equipment damage.

4) Install wire.

5) Replace line and load lug covers and tighten screws securely.

4. Circuit breaker removal

1) Turn off all power supplying this equipment before working on or inside equipment.
2) Remove circuit breaker in reverse order of installation.

5. Accessories install(if required)

1) Turn off all power supplying this equipment before working on or inside equipment.
2) Loosen four screws from the auxiliary cover and open it.
3) Install field-installable accessories according to instructions supplied with them.
4) Close the auxiliary cover and secure with screws.
5) If circuit breaker has factory-installed accessories, refer to label on circuit breaker for electrical specifications and lead colors.

6. Other safety instructions

Check area where circuit breaker is installed for any safety hazards including personal safety and fire hazards. Exposure to certain types of chemicals can cause deterioration of electrical connections.

\triangle CAUTION

Hazard of equipment damage

1) No circuit breaker should be reclosed until the cause of trip is known and the situation rectified.
2) Be careful not to be damaged by accidents during transportation or installation.
3) Check periodically terminals and connectors for looseness or signs of overheating.

Failure to follow these instructions will result in

 equipment damage.If any questions arise, contact LS Industrial systems Co.,Ltd or refer to the catalogue for further information or instructions.

<Fig. 6> Dimensions

A-5. Mounting \& Connection

Fixed mounting A-5-1
Connecting terminal \& conductor A-5-1

Mounting \& Connection

Susol

Fixed mounting

Susol TD and TS circuit-breakers can be directly connected to the mounting plate. If busbars or terminals are used to connect the
circuit breaker on the back of the mounting plate, the appropriate safety clearances must be observed.

	TD125U	TS250U	TS400U	TS800U
Screw for mounting				
	$\begin{gathered} \text { 2/3Pole: 2EA } \\ \text { (NO.8-32 UNC-2A, L100) } \end{gathered}$		2/3Pole: 2EA (NO.10-24 UNC-2A, L120)	$\begin{aligned} & \text { 2/3Pole: 2EA } \\ & (1 / 4 "-20 \\ & \text { UNC-2A, L140) } \end{aligned}$
Screw for connection of terminals,	$\begin{aligned} & \text { 2Pole:4EA(M5 } \times \text { L16 }) \\ & \text { 3Pole: } 6 \mathrm{EA}(\mathrm{M} 5 \times \text { L16 }) \end{aligned}$	$\begin{aligned} & \text { 2Pole:4EA(M8 } \times \mathrm{L} 20) \\ & \text { 3Pole:6EA }(\mathrm{M} 8 \times \mathrm{L} 20) \end{aligned}$		
	Torque: Max 46kgf $\cdot \mathrm{cm}$	Torque: Max 147kgf • cm		

Connecting terminal \& conductor

TS 250 U

A-6. Characteristics curves

Circuit breakers with thermall-magnetic trip units	
TD125U	A-6-1
TS250U	A-6-5
TS400U	A-6-7
TS800U	A-6-9
Specific let-through energy curves	A-6-1
240V	A-6-13
480V	A-6-14
600V	A-6-15
	A-6-16
Current-limiting curves	A-6-17

Characteristics curves

Circuit breakers with thermal-magnetic trip units

Characteristics curves

Circuit breakers with thermal-magnetic trip units

Characteristics curves

Circuit breakers with thermal-magnetic trip units

Characteristics curves

Circuit breakers with thermal-magnetic trip units

TD125U
FTU FMU 125A

Characteristics curves

Circuit breakers with thermal-magnetic trip units

TS250U
FTU
FMU
150~250A

Characteristics curves

Circuit breakers with thermal-magnetic trip units

Characteristics curves

Circuit breakers with thermal-magnetic trip units

TS400U
FTU
FMU
300~400A

Characteristics curves

Circuit breakers with thermal-magnetic trip units

Characteristics curves

Circuit breakers with thermal-magnetic trip units

TS800U
FTU
FMU
500~800A

Characteristics curves

Circuit breakers with thermal-magnetic trip units

Characteristics curves

Circuit breakers with thermal-magnetic trip units

Characteristics curves

Susol
Specific let-through energy curves

Characteristics curves

Specific let-through energy curves

Characteristics curves

Susol
Specific let-through energy curves

Characteristics curves

Current-limiting curves

Characteristics curves

Susol
Current-limiting curves

Characteristics curves

Current-limiting curves

A-7. Dimensions

TD125U A-7-1
TS250U A-7-2
TS400U A-7-3
TS800U A-7-4
Extended rotary handle A-7-5
Flange handle A-7-9
Mechanical interlocking device A-7-13
MIT13, MIT23, MIT33, MIT43
Mechanical interlocking device A-7-14
Mounting dimension for MIT

Overall dimensions

Susol

TD125U

Dimensions : inch (mm)

Circuit breaker mounting
bolt drilling plan

Circuit breaker escutcheon dimensions

Overall dimensions

Susol

TS250U

Circuit breaker mounting bolt drilling plan

Circuit breaker escutcheon dimensions

Overall dimensions

Susol

TS400U

Circuit breaker mounting

bolt drilling plan

Circuit breaker escutcheon dimensions

Overall dimensions

Susol

TS800U

Dimensions : inch (mm)

Circuit breaker mounting bolt drilling plan

Circuit breaker
escutcheon dimensions

Overall dimensions

Extended rotary handle

TD125U

Dimensions : inch (mm)

Panel drilling

Way of installation

Overall dimensions

Extended rotary handle

Panel drilling

Way of installation

Overall dimensions

Susol

Extended rotary handle

 TS400U

Panel drilling

Way of installation

Overall dimensions

Extended rotary handle

TS800U

Panel drilling

Way of installation

Overall dimensions

Flange handle

TD125U

Panel drilling

Table 1 Maximum "E" Dimension			Table 2	Maximum "F" Dimension			
Enclosure	FH1-60	FH1-72	Enclosure Depth	60 cable		72 cable	
Depth				Up	Down	Up	Down
10	25	30	10	17	31	20	34
12	24	29	12	17	31	19	33
16	23	28	16	17	28	19	30
18	22	27	18	17	28	19	30
20	21	26	20	16	26	18	28
24	20	25	24	14	26	16	28
30	19	24	30	11	24	13	26
36	18	23	36	6	21	8	22

Way of installation

Overall dimensions

Flange handle
TS250U

Way of installation

Table 1 Maximum "E" Dimension

Enclosure Depth	FH2-60	FH2-72	Enclosure Depth	60 cable		72 cable	
				Up	Down	Up	Down
10	25	30	10	17	31	20	34
12	24	29	12	17	31	19	33
16	23	28	16	17	28	19	30
18	22	27	18	17	28	19	30
20	21	26	20	16	26	18	28
24	20	25	24	14	26	16	28
30	19	24	30	11	24	13	26
36	18	23	36	6	21	8	22

Panel drilling

$$
\square-
$$

Overall dimensions

Flange handle

TS400U

N
Tap (4 Holes)

Panel drilling

Table 1	Maximum "E" Dimension		Table 2	Maximum "F" Dimension			
Enclosure	FH3-60	FH3-72	Enclosure Depth	60 cable		72 cable	
Depth				Up	Down	Up	Down
10	25	30	10	17	31	20	34
12	24	29	12	17	31	19	33
16	23	28	16	17	28	19	30
18	22	27	18	17	28	19	30
20	21	26	20	16	26	18	28
24	20	25	24	14	26	16	28
30	19	24	30	11	24	13	26
36	18	23	36	6	21	8	22

Overall dimensions

Susol

Flange handle

Panel drilling

Table 1 Maximum "E" Dimension			Table 2 Maximum "F" Dimension				
Enclosure Depth	FH4-60	FH4-72	Enclosure Depth	60 cable		72 cable	
				Up	Down	Up	Down
10	25	30	10	17	31	20	34
12	24	29	12	17	31	19	33
16	23	28	16	17	28	19	30
18	22	27	18	17	28	19	30
20	21	26	20	16	26	18	28
24	20	25	24	14	26	16	28
30	19	24	30	11	24	13	26
36	18	23	36	6	21	8	22

Way of installation

Overall dimensions

Mechanical interlocking device
MIT13, MIT23, MIT33, MIT43

Dimensions : inch (mm)

	A (inch)	B (inch)
TD125U	3.267	3.385
TS250U	4.015	3.385
TS400U	6.614	4.330
TS800U	7.913	5.314

Overall dimensions

Mechanical interlocking device

Mounting dimension for MIT

2, 3Pole MCCBs	C(inch)	D (inch)	E (inch)
TD125U	4.212	3.543	1.181
TS250U	4.921	4.133	1.377
TS400U	7.874	5.490	1.830
TS800U	10.944	8.267	2.755

Green Innovators of Innovation

- For your safety, please read user's manual thoroughly before operating.
- Contact the nearest authorized service facility for examination, repair, or adjustment.
- Please contact a qualified service technician when you need maintenance. Do not disassemble or repair by yourself!
- Any maintenance and inspection shall be performed by the personnel having expertise concerned.

HEAD OFFICE

LS Tower 1026-6, Hogye-dong, Dongan-gu,
Anyang-si, Gyeonggi-do 431-848, Korea
Tel. (82-2)2034-4887, 4873, 4918, 4148
Fax. (82-2)2034-4648

CHEONG-JU PLANT

Cheong-Ju Plant \#1, Song Jung Dong, Hung Duk Ku, Cheong Ju, 361-720, Korea

Specifications in this catalog are subject to change without notice due to continuous product development and improvement.

Global Network

- LSIS (Middle East) FZE >> Dubai, U.A.E.

Address: LOB 19 JAFZA VIEW TOWER Room 205, Jebel Ali Freezone P.O. Box 114216, Dubai, United Arab Emirates Tel: 971-4-886 5360 Fax: 971-4-886-5361 e-mail: dhleef@Isis.biz

- Dalian LSIS Co., Ltd. >> Dalian, China

Address: No.15, Liaohexi 3-Road, Economic and Technical Development zone, Dalian 116600, China
Tel: 86-411-8273-7777 Fax: 86-411-8730-7560 e-mail: tangyh@|sis.com.cn

- LSIS (Wuxi) Co., Ltd. >> Wuxi, China

Address: 102-A , National High \& New Tech Industrial Development Area, Wuxi, Jiangsu, 214028, P.R.China Tel: 86-510-8534-6666 Fax: 86-510-522-4078 e-mail: luw@lsis.com.cn

- LSIS-VINA Co., Ltd. >> Hanoi, Vietnam

Address: Nguyen Khe - Dong Anh - Ha Noi - Viet Nam
Tel: 84-4-882-0222 Fax: 84-4-882-0220 e-mail: sjbaik@Isis.biz

- LSIS-VINA Co., Ltd. >> Hochiminh , Vietnam

Address: 41 Nguyen Thi Minh Khai Str. Yoco Bldg 4th Floor, Hochiminh City, Vietnam
Tel: 84-8-3822-7941 Fax: 84-8-3822-7942 e-mail: hjchoid@lsis.biz

- LSIS Shanghai Office \gg Shanghai, China

Address: Room 32 floors of the Great Wall Building, No. 3000 North Zhongshan Road, Putuo District, Shanghai, China
Tel: 86-21-5237-9977 Fax: 89-21-5237-7189 e-mail: baijh@Isis.com.cn

- LSIS Beijing Office >>Beijing, China

Address: B-Tower 17FL.Beijing Global Trade Center B/D. No.36, BeiSanHuanDong-Lu, DongCheng-District, Beijing 100013, P.R. China
Tel: 86-10-5825-6025,7 Fax: 86-10-5825-6026 e-mail: sunmj@lsis.com.cn

- LSIS Guangzhou Office \gg Guangzhou, China

Address: Room 1403, 14/F, New Poly Tower, No. 2 Zhongshan Liu Road, Guangzhou 510180, P.R. China
Tel: 020-8326-6754 Fax:020-8326-6287 e-mail: chenxs@lsis.com.cn

- LSIS Chengdu Office >>Chengdu, China

Address: Room 1701 17Floor, huamin hanjun internationnal Building, No1 Fuxing Road Chengdu, 610016, P.R. China
Tel: 86-28-8670-3201 Fax: 86-28-8670-3203 e-mail: yangcf@lsis.com.cn

- LSIS Qingdao Office \gg Qingdao, China

Address: Room 2001,20/F,7B40, Galaxy Building, No. 29 Shandong Road, Shinan District, Qingdao 266071, P.R. China
Tel: 86-532-8501-6058 Fax: 86-532-8501-6057 e-mail: wangzy@lsis.com.cn

- LSIS NETHERLANDS Co.Ltd \gg Schiphol-Rijk, Netherlands

Address: 1st. Floor, Tupolevlaan 48, 1119NZ,Schiphol-Rijk, The Netherlands
Tel: 31-20-654-1420 Fax: 31-20-654-1429 e-mail: junshickp@lsis.biz

- LSIS Gurgaon Office \gg Gurgaon ,India

Address: 109 First Floor, Park Central, Sector-30, Gurgaon-122 002, Haryana, India e-mail: hwyim@Isis.biz

[^0]: Note) K1 \times Multiplier factor of rated current (In)

[^1]: -Dimensions : inch (mm)

