
SFP BIDI, Single LC Connector, 1310nm FP LD for Single Mode Fiber, RoHS Compliant

• Multi Data Rate: from 125M to 1.25Gbps, NRZ

• Single +3.3V Power Supply

• RoHS Compliant and Lead-free

• AC/AC Differential Electrical Interface

 Compliant with Multi-Source Agreement (MSA) Small Form Factor Pluggable (SFP)

• Compliant with SFF-8472 Digital Diagnostic Monitoring Interface

• Single LC Connector

• Compliance with specifications for IEEE-802.3z Gigabit Ethernet at 1.25 Gbps

• Compliance with ANSI specifications for Fibre Channel applications at 1.06 Gbps

• Eye Safety
Designed to meet Laser Class 1 comply with
EN60825-1

Applications

- Gigabit Ethernet Links
- Fiber Channel Links at 1.06 Gbps
- High Speed Backplane Interconnects
- Switched Backbones

Description

The NS-GLC-BX10-U from us is the high performance and cost-effective module for serial optical data communication applications specified for single mode of multi-rate from 125M to 1.25 Gb/s. It operates with +3.3V power supply. The module is intended for single mode fiber, operates at a nominal wavelength of Tx: 1310nm / Rx: 1550nm and complies with Multi-Source Agreement (MSA) Small Form Factor Pluggable (SFP). Each module is integrated digital diagnostics functions via an I²C serial interface.

The module is a single fiber connector transceiver designed for use in Gigabit Ethernet applications and to provide IEEE-802.3z compliant link for 1.25Gb/s intermediate reach applications. The characteristics are performed in accordance with Telcordia Specification GR-468-CORE.

EMC

Most equipment utilizing high-speed transceivers will be required to meet the following requirements:

- 1) FCC in the United States
- 2) CENELEC EN55022 (CISPR 22) in Europe

To assist the customer in managing the overall equipment EMC performance, the transceivers have been designed to satisfy FCC class B limits and provide good immunity to radio-frequency electromagnetic fields.

Eye Safety

The transceivers have been designed to meet Class 1 eye safety and comply with EN 60825-1.

Product Information

Model Number	Operating Temperature. & Monitor Function	Distance	LD Type & Wavelength	Output Power	Sensitivity
NS-GLC-BX10-U	$0\sim70^{\circ}\!$	10 km	1310 nm FP / 1550 nm	-9 ~ -3 dBm	<i>≦-21 dBm</i>

ABSOLUTE MAX RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNIT	NOTE
Storage Temperature	T_{S}	-40	85	$^{\circ}\mathbb{C}$	
Supply Voltage	V_{CC}	0	6	V	
Data Input Voltage		0	Vcc	V	
Supply Current	I_S		300	mA	

OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Supply Voltage	V_{CC}	3.1		3.5	V	
Data Input Voltage Swing	$V_{ m ID}$	300		1860	mV	

ELECTRICAL CHARACTERISTICS

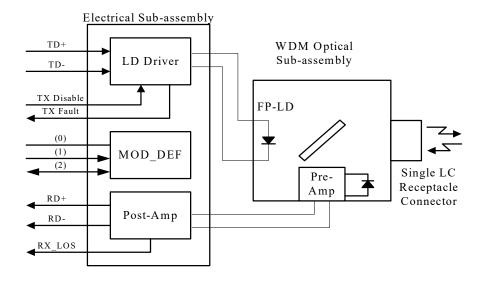
PARAMETER	SYMBOL	MIN	MAX	UNIT	NOTE
Transmitter					
Transmitter Supply Current	I_{CCT}		200	mA	
Tx_ Disable Input Voltage - Low	$ m V_{IL}$	0	0.8	V	
Tx_ Disable Input Voltage - High	$ m V_{IH}$	2.0	Vcc	V	
Tx_ Fault Output Voltage - Low	$ m V_{OL}$	0	0.8	V	
Tx_ Fault Output Voltage - High	$ m V_{OH}$	2.0	Vcc	V	
Receiver					
Receiver Supply Current	I_{CCR}		100	mA	
Receiver Data Output Differential Voltage	V_{OD}	0.4	1.3	V	
Rx_LOS Output Voltage - Low	$ m V_{OL}$	0	0.8	V	
Rx_LOS Output Voltage - High	$ m V_{OH}$	2.0	Vcc	V	
MOD_DEF (1), MOD_DEF (2) - Low	$ m V_{IL}$	-0.6	$Vcc \times 0.3$	V	
MOD_DEF (1), MOD_DEF (2) - High	$V_{ m IH}$	$Vcc \times 0.7$	Vcc + 0.5	V	

TRANSMITTER ELECTRO-OPTICAL CHARACTERISTICS

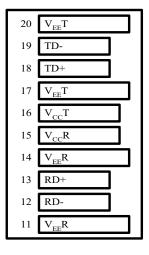
PARAMETER	SYMBOL	MIN	TYP.	MAX	UNIT	NOTE
Optical Output Power	Po	-9		-3	dBm	1
Extinction Ratio	ER	9			dB	
Center Wavelength	λο	1270		1355	nm	
Spectral Width (RMS)	Δλ			2.5	nm	
RIN	RIN			-120	dB/Hz	
Optical Rise time (20%-80%)	$t_{\rm r}$			260	ps	2
Optical Fall time (20%-80%)	t_{f}			260	ps	2
Output Eye	·	Comp	oliant with IEE	EE802.3z/D5.0)	

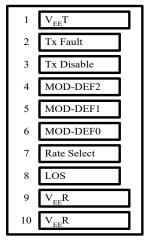
RECEIVER ELECTRO-OPTICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNIT	NOTE
Maximum Input Optical Power	P_{max}	-3			dBm	3
Minimum Input Optical Power 1.25Gb/s	P_{min}			-21	dBm	3
Operating Wavelength	λ	1480		1580	nm	
Optical Return Loss	ORL	14			dB	
Receiver Electrical 3dB Upper Cutoff Frequency	У			1500	MHz	
LOS of Signal - Asserted	P_{A}	-35			dBm	
LOS of Signal - Deasserted	P_{D}			-20	dBm	
Loss of Signal -Hysterisis	$P_D - P_A$	0.5			dB	


Notes:

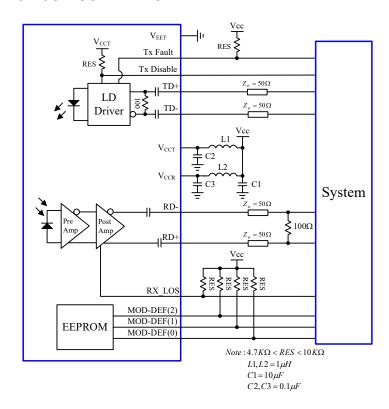
- 1. Measured average power coupled into 9/125 μ m single mode fiber.
- $2.\, These$ are 20-80% values.
- 3. Measured with 2⁷-1 PRBS at BER<10⁻¹²


TIMING CHARACTERISTICS


PARAMETER	SYMBOL	MIN	TYP.	MAX	UNIT	NOTE
TX_DISABLE Assert Time	t_off			10	μs	
TX_DISABLE Negate Time	t_on			1	ms	
Time to initialize, include reset of TX_FAULT	t_init			300	ms	
TX_FAULT from fault to assertion	t_fault			100	μs	
TX_DISABLE time to start reset	t_reset	10			μs	
Receiver Loss of Signal Assert Time (off to on)	$t_{A,RX\ LOS}$			100	μs	
Receiver Loss of Signal Assert Time (on to off)	t _{D,RX} Los			100	μs	

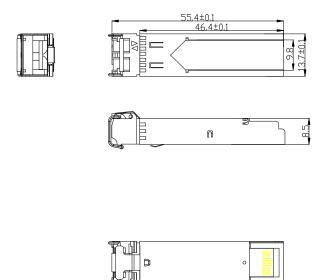
BLOCK DIAGRAM OF TRANSCEIVER

PIN OUT DIAGRAM OF TRANSCEIVER


Top of Board

Buttom of Board (As Viewed through Top of Board

PIN OUT TABLE


Pin	Symbol	Functional Description
1	VeeT	Transmitter Ground
2	TX Fault	Transmitter Fault Indication
3	TX Disable	Transmitter Disable – Module disables on high or open
4	MOD-DEF(2)	Module Definition 2 – Two wire serial ID interface
5	MOD-DEF(1)	Module Definition 1 – Two wire serial ID interface
6	MOD-DEF(0)	Module Definition 0 – Grounded in module
7	Rate Select	Not Connected
8	LOS	Loss of Signal
9	VeeR	Receiver Ground
10	VeeR	Receiver Ground
11	VeeR	Receiver Ground
12	RD-	Inverse Received Data Out
13	RD+	Received Data Out
14	VeeR	Receiver Ground
15	VccR	Receiver Power
16	VccT	Transmitter Power
17	VeeT	Transmitter Ground
18	TD+	Transmitter Data In
19	TD-	Inverse Transmitter Data In
20	VeeT	Transmitter Ground

RECOMMENDED CIRCUIT SCHEMATIC

MECHANICAL DIMENSIONS

Units in mm

All dimensions are ±0.2mm unless otherwise specified.

Claim:

We reserve the right to make changes in the specification described hereinafter without prior notice.