Marine Science Afloat-Ecology Field Trip Curriculum & NGSS Alignment

Grade 3:

The Marine Science Afloat Field Trip for 3rd grade covers the disciplinary core ideas of these Next Generation Science Standards; 3-LS1-1, 3-LS2-1, 3-LS4-2, 3-LS4-3, 3-ESS2-1, 3-ESS2-2. By utilizing the following prompts in post trip activities the science & engineering practices, core ideas and crosscutting concepts of each of these standards will be fulfilled.

3-LS1-1: From Molecules to Organisms: Structures & Processes

Develop models to describe that organisms have unique and diverse life cycles but all have in common birth, growth, reproduction, and death.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Develop models to describe phenomena	Reproduction is essential to the continued existence of every kind of organism. Plants & animals have unique and diverse life	Patterns of change can be used to make predictions
	cycles.	
3rd Grade Prompt #1	Introduction to Puget Sound Food Chains Video microscope Microscope Lab Sea Life Tables	Fulfilled by doing both field trip & post trip activity/prompt

3-LS2-1: Ecosystems: Interactions, Energy & Dynamics

Construct an argument that some animals form groups that help members survive.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Construct an argument with evidence, data and/or a model.	Being part of a group helps animals obtain food, defend themselves, and cope with changes. Groups may serve different functions and vary dramatically in size	Cause & effect relationships are routinely identified & used to explain change.
3rd Grade Prompt #1	Food Chains Live Dive Sea Life Tables Protecting Puget Sound	Fulfilled by doing both field trip & post trip activity/prompt

3-LS4-2: Biological Evolution: Unity & Diversity

Use evidence to construct an explanation for how the variations in characteristics among individuals of the same species may provide advantages in surviving, finding mates, and reproducing.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Use Evidence to construct an explanation.	Sometimes the differences in characteristics between individuals of the same species provide advantages in surviving, finding mates and reproducing.	Cause & effect relationships are routinely identified and used to explain change.
3rd Grade Prompt #1	Food Chains Sea Life Tables	Fulfilled by doing both field trip & post trip activity/prompt

3-LS4-3: Biological Evolution: Unity & Diversity

Construct an argument with evidence that in a particular habitat some organisms can survive well, some survive less well, and some cannot survive at all.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Construct an argument with evidence.	For any particular environment, some kinds of organisms survive well, some survive less well, and some cannot survive at all.	Cause & effect relationships are routinely identified and used to explain change.
3rd Grade Prompt #1	Introduction to Puget Sound Sea Life Tables Food Chains Water Sampling	Fulfilled by doing both field trip & post trip activity/prompt

3-ESS2-1: Earth's Systems

Represent data in tables and graphical displays to describe typical weather conditions expected during a particular season.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Represent data in tables and various graphical displays to reveal patterns that indicate relationships.	Scientists record patterns of the weather across different times and areas so that they can make predictions about what kind of weather might happen next.	Patterns of change can be used to make predictions.
3rd Grade Prompt #2	Water Sampling	Fulfilled by doing both field trip & post trip activity/prompt

3-ESS2-2: Earth's Systems

Obtain and combine information to describe climates in different regions of the world.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Obtain and combine information from books and other reliable media to explain	Climate describes a range of an area's typical weather conditions and the extent to which those conditions vary	Patterns of change can be used to make predictions.
phenomena.	over year.	
3rd Grade Prompt # 2	Water Sampling Plankton Sampling (turbidity, etc)	Fulfilled by doing both field trip & post trip activity/prompt

Grade 4:

The Marine Science Afloat Field Trip for 4rd grade covers the disciplinary core ideas of these Next Generation Science Standards; 4-LS1-1, 4-LS1-2, 4-ESS3-1. By utilizing the following prompts in post trip activities the science & engineering practices, core ideas and crosscutting concepts of each of these standards will be fulfilled.

4-LS1-1: From Molecules to Organisms: Structures & Processes

Construct an argument that plants and animals have internal and external structures that function to support survival, growth, behavior, and reproduction.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Construct an argument with evidence, data, and/or a model.	Plants and animals have both internal and external structures that serve various functions in growth, survival, behavior, and reproduction.	A system can be described in terms of its components and their interactions.
4th Grade Prompt #1	Introduction to Puget Sound Video Microscope Food Chains Live Dive Sea Life Tables	Fulfilled by doing both field trip & post trip activity/prompt

4-LS1-2: From Molecules to Organisms: Structures & Processes

Use a model to describe that animals receive different types of information through their senses, process the information in their brain, and respond to the information in different ways.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Use a model to test interactions concerning the functioning of a natural system.	Different sense receptors are specialized for particular kinds of information, which may be then processed by the animal's brain. Animals are able to use their perceptions and memories to guide their actions.	A system can be described in terms of its components and their interactions.
4th Grade Prompt #1	Video Microscope Food Chains Live Dive Sea Life Tables	Fulfilled by doing both field trip & post trip activity/prompt

4-ESS3-1: Earth & Human Activity

Obtain and combine information to describe that energy and fuels are derived from natural resources and their uses affect the environment.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Obtain and combine information from books and other reliable media to explain phenomena	Energy and fuels that humans use are derived from natural sources, and their use affects the environment in multiple ways. Some resources are renewable over time, and others are not.	Cause & effect relationships are routinely identified and used to explain change.
4th Grade Prompt #2	Introduction to Puget Sound Water Sampling Protecting Puget Sound	Fulfilled by doing both field trip & post trip activity/prompt

Grade 5:

The Marine Science Afloat Field Trip for 5rd grade covers the disciplinary core ideas of these Next Generation Science Standards; 5-PS3-1, 5-LS1-1, 5-LS2-1, 5-ESS3-1. By utilizing the following prompts in post trip activities the science & engineering practices, core ideas and crosscutting concepts of each of these standards will be fulfilled.

5-PS3-1: Energy

Use models to describe that energy in animals' food (used for body repair, growth, and motion and to maintain body warmth) was once energy from the sun.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Use models to describe phenomena.	The energy released from food was once energy from the sun that was captured by plants in the process that forms plant matter. Food provides animals with the materials they need for body repair and growth and the energy they need to maintain body warmth and for motion	Energy can be transferred in various ways and between objects.
5th Grade Prompt #1	Introduction to Puget Sound Food Chains	Fulfilled by doing both field trip & post trip activity/prompt

5-LS1-1: From Molecules to Organisms: Structures & Processes

Support an argument that plants get the materials they need for growth chiefly from air and water.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Support an argument with	Plants acquire their material for growth	Matter is transported into, out
evidence, data, or a model.	chiefly from air and water	of, and within systems.
5th Grade Prompt #1	Introduction to Puget Sound	Fulfilled by doing both field trip
	Food Chains	& post trip activity/prompt
	Sea Life Tables	

5-LS2-1: Ecosystems: Interactions, Energy & Dynamics

Develop a model to describe the movement of matter among plants, animals, decomposers, and the environment.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept

		1
Develop a model to describe phenomena.	The food of almost any kind of animal can be traced back to plants. Organisms are related in food webs in which some animals eat plants for food and other animals eat the animals that eat plants. Some organisms, such as fungi and bacteria break down dead organisms and therefore operate as "decomposers." Decomposition eventually restores some materials back to the soil. Organisms can survive only in environments in which their particular needs are met. A healthy ecosystem is one in which multiple species of different types are each able to meet their needs in a relatively stable web of life. Newly introduced species can damage the balance of an ecosystem. Matter cycles between the air and soil and among plants, animals and microbes as these organisms live and die. Organisms obtain gases, and water, from the environment, and release waste matter back into the environment.	A system can be described in terms of its components and their interactions.
5th Grade Prompt #1	Introduction to Puget Sound Food Chains	Fulfilled by doing both field trip & post trip activity/prompt

5-ESS3-1: Earth & Human Activity

Obtain and combine information about ways individual communities use science ideas to protect the Earth's resources and environment.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Obtain and combine information	Human activities in agriculture,	A system can be described in
from books and/or other reliable	industry, and everyday life have had	terms of its components and
media to explain phenomena or	major effects on the land, vegetation,	their interactions.
solutions to a design problem.	streams, ocean, air, and even outer	Science findings are limited to
	space. But individuals and communities	questions that can be answered
	are doing things to help protect Earth's	with empirical evidence.
	resources and environments.	
5th Grade Prompt #2	Introduction to Puget Sound	Fulfilled by doing both field trip
	Protecting Puget Sound	& post trip activity/prompt

Marine Science Afloat-Water Quality Field Trip Curriculum & NGSS Alignment

Middle School (Grade 6-8):

The Marine Science Afloat Field Trip for Middle School (6-8) covers the disciplinary core ideas of these Next Generation Science Standards ; MS-LS1-5, MS-LS1-6, MS-LS1-8, MS-LS2-1, MS-LS2-3, MS-LS2-4, MS-LS4-3, MS-ESS3-3, MS-ESS3-4, MS-ESS3-5. By utilizing the following prompts in post trip activities the science & engineering practices, core ideas and crosscutting concepts of each of these standards will be fulfilled.

MS-LS1-5:

Construct a scientific explanation based on evidence for how environmental and genetic factors influence the growth of organisms.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Construct a scientific explanation	Genetic factors as well as local conditions	Phenomena may have more
based on valid and reliable	affect the growth of the adult plant	than one cause, and some
evidence obtained from sources		cause and effect relationships
(including the students' own		in systems can only be
experiments) and the assumption		described using probability
that theories and laws that describe		
the natural world operate today as		
they did in the past and will		
continue to do so in the future.		
Middle School Prompt #1	Plankton Sampling	Fulfilled by doing both field
	Video Microscope	trip & post trip
	Live Dive	activity/prompt
	Sea Life Tables	

MS-LS1-6:

Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Construct a scientific explanation	Plants, algae (phytoplankton), and many	Within a natural system the
based on valid and reliable	microorganisms use the energy from light	transfer of energy drives the
evidence obtained from sources	to make sugars (food) from carbon	motion and/or cycling of
(including the students' own	dioxide from the atmosphere and water	matter.
experiments) and the assumption	through the process of photosynthesis,	
that theories and laws that describe	which also releases oxygen. These sugars	
the natural world operate today as	can be used immediately or stored for	
they did in the past and will	growth or later use.	
continue to do so in the future.		

Science knowledge is based upon logical connections between evidence and explanations	The chemical reaction by which plants produce complex food molecules requires an energy input to occur (ie sunlight). In this reaction carbon dioxide and water combine to form carbon-based organic molecules and release oxygen.	
Middle School Prompt #1	Introduction to Puget Sound Plankton Sampling	Fulfilled by doing both field trip & post trip activity/prompt

MS-LS1-8:

Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as memories

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Gather, read, and synthesize	Each sense receptor responds to different	Cause & effect relationships
information from multiple	inputs electromagnetic, mechanical,	may be used to predict
appropriate sources and assess the	chemical), transmitting them as signals	phenomena in natural
credibility, accuracy, and possible	that travel along nerve cells to the brain.	systems.
bias of each publication and	The signals are then processed in the	
methods used, and describe how	brain, resulting in immediate behaviors or	
they are supported or not	memories.	
supported by evidence.		
Middle School Prompt #2	Live Dive	Fulfilled by doing both field
	Sea Life Tables	trip & post trip
		activity/prompt

MS-LS2-1:

Analyze and interpret data to provide evidence for the effects of resource availability on organisms and populations of organisms in an ecosystem.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Analyze and interpret data to	Organisms, and populations of organisms,	Cause & effect relationship
provide evidence for phenomena	are dependent on their environmental	may be used to predict
	interactions both with other living things	phenomena in natural or
	and with nonliving factors.	designed systems.
	In any ecosystem, organisms and	
	populations with similar requirements for	
	food, water, oxygen, or other resources	
	may compete with each other for limited	
	resources, access to which consequently	
	constrains their growth and reproduction.	

	Growth of organisms and population increases are limited by access to	
	resources.	
Middle School Prompt #1	Introduction to Puget Sound	Fulfilled by doing both field
	Plankton Sampling	trip & post trip
	Live Dive	activity/prompt
	Sea Life Tables	
	Protecting Puget Sound	

MS-LS2-3:

Develop a model to describe the cycling of matter and flow of energy among living and nonliving parts of an ecosystem

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Develop a model to describe	Food webs are models that demonstrate	The transfer of energy can be
phenomena	how matter and energy is transferred	tracked as energy flows
	between producers, consumers,	through a natural system.
	decomposers as the three groups interact	Science assumes that objects
	within an ecosystem. Transfers of matter	and events in natural systems
	into and out of the physical environment	occur in consistent patterns
	occur at every level.	that are understandable
	Decomposers recycle nutrients from dead	through measurement &
	plant or animal matter back to the soil in	observation.
	terrestrial environments or to the water	
	in aquatic environments. The atoms that	
	make up the organisms in an ecosystem	
	are cycled repeatedly between the living	
	and nonliving parts of the ecosystem.	
Middle School Prompt #3	Introduction to Puget Sound	Fulfilled by doing both field
	Plankton Sampling	trip & post trip
	Water Quality #1 & #2	activity/prompt
	Live Dive	

MS-LS2-4:

Construct an argument supported by empirical evidence that changes to physical or biological components of an ecosystem affect populations.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Construct an oral and written	Ecosystems are dynamic in nature; their	Small changes in one part of a
argument supported by empirical	characteristics can vary over time.	system might cause large
evidence and scientific reasoning to	Disruptions to any physical or biological	changes in another part.
support or refute an explanation or	component can lead to shifts in all its	
a model for a phenomenon or a	populations.	
solution to a problem		

Middle School Prompt #1	Introduction to Puget Sound	Fulfilled by doing both field
	Water Quality #1 & #2	trip & post trip
	Live Dive	activity/prompt
	Protecting Puget Sound	

MS-LS4-3:

Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify relationships not evident in the fully formed anatomy.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Analyze displays of data to identify	Comparison of the embryological	Graphs, charts, and images
linear and nonlinear relationships	development of different species also	can be used to identify
	reveals similarities that show	patterns in data.
	relationships not evident in the	
	fully-formed anatomy	
Video Microscope	Video Microscope	Video Microscope
Microscope Lab	Microscope Lab	Microscope Lab

MS-ESS3-3:

Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Apply scientific principles to design an object, tool, process or system	Human activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing the extinction of other species. But changes to Earth's environments can have different impacts (neg and pos) for different living things. Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.	Relationships can be classified as causal or correlational and correlation does not necessarily imply causation. The uses of technologies and any limitations on their use are driven by individual or societal needs, desires and values; by the finding of scientific research; and by difference in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.
Middle School Prompt #4	Water Quality #1 & #2 Protecting Puget Sound	Fulfilled by doing both field trip & post trip activity/prompt

MS-ESS3-4:

Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.	Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.	Cause & effect relationship may be used to predict phenomena in natural or designed systems. All human activity draws on natural resources and has both short and long-term consequences (pos and neg) for the health of people and the natural environment Scientific knowledge can describe the consequences of actions but does not necessarily prescribe the docisions that society takes
Middle School Prompt #4	Water Quality #1 & #2 Protecting Puget Sound	Fulfilled by doing both field trip & post trip activity/prompt

MS-ESS3-5:

Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Ask questions to identify and clarify	Human activities, such as the release of	Stability might be disturbed
evidence of an argument	greenhouse gases from burning fossil	either by sudden events or
	fuels, are major factors in the current rise	gradual changes that
	in Earth's mean surface temperature	accumulate over time.
	(global warming). Reducing the level of	
	climate change and reducing human	
	vulnerability to whatever climate changes	
	do occur depend on the understanding of	
	climate science, engineering capabilities,	
	and other kinds of knowledge such as	
	understanding of human behavior and on	
	applying that knowledge wisely in	
	decisions and activities	

Middle School Prompt #4	Water Quality #1 & #2	Fulfilled by doing both field
	Protecting Puget Sound	trip & post trip
		activity/prompt

High School (Grade 9-12)

HS-LS1-5:

Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Use a model based on evidence to illustrate the relationships between	The process of photosynthesis converts light energy to stored chemical energy by	Changes of energy and matter in a system can be described
systems or between components of a system.	converting carbon dioxide plus water into sugars plus released oxygen.	in terms of energy and matter flows into, out of and within
- ,		that system
Introduction to Puget Sound	Introduction to Puget Sound	Introduction to Puget Sound

HS-LS2-6:

Evaluate claims, evidence, and reasoning that the complex interactions in ecosystems maintain relatively consistent numbers and types of organisms in stable conditions, but changing conditions may result in a new ecosystem

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Evaluate the claims, evidence, and	A complex set of interactions within an	Much of science deals with
reasoning behind currently	ecosystem can keep its numbers and	constructing explanations of
accepted explanations or solutions	types of organisms relatively constant	how things change and how
to determine the merits of	over long periods of time under stable	they remain stable.
arguments.	conditions. If a modest biological or	
	physical disturbance to an ecosystem	
	occurs, it may return to its more or less	
	original status (i.e. The ecosystems is	
	resilient), as opposed to becoming a very	
	different ecosystem. Extreme fluctuations	
	in conditions or the size of any	
	population, however, can challenge the	
	functioning of ecosystems in terms of	
	resources and habitat availability.	
High School Prompt #1	Water Quality #1 & #2	Fulfilled by doing both field
		trip & post trip
		activity/prompt

Design, evaluate, and refine a solution for reducing the impacts of human activities on the environment and biodiversity.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Design, evaluate, and refine a	Moreover, anthropogenic changes in the	Much of science deals with
solution to a complex real-world	environment—including habitat	constructing explanations of
problem, based on scientific	destruction, pollution, introduction of	how things change and how
knowledge, student-generated	invasive species, overexploitation, and	they remain stable.
sources of evidence, prioritized	climate change—can disrupt an	
criteria, and trade-off	ecosystem and threaten the survival of	
considerations.	some species.	
	Biodiversity is increased by the formation	
	of new species and decreased by the loss	
	of species.	
	Biodiversity is increased by the formation	
	of new species and decreased by the loss	
	of species.	
	Humans depend on the living world for	
	the resources and other benefits	
	provided by biodiversity. But human	
	activity is also having adverse impacts on	
	biodiversity through overpopulation,	
	overexploitation, habitat destruction,	
	pollution, introduction of invasive	
	species, and climate change. Thus	
	sustaining biodiversity so that ecosystem	
	functioning and productivity are	
	maintained is essential to supporting and	
	enhancing life on Earth. Sustaining	
	biodiversity also aids humanity by	
	preserving landscapes of recreational or	
	inspirational value.	
	When evaluating solutions it is important	
	to take into account a range of constraints	
	including cost, safety, reliability and	
	aesthetics and to consider social, cultural	
	and environmental impacts.	
High School Prompt #3	Water Quality #1 & #2	Fulfilled by doing both field
	Protecting Puget Sound	trip & post trip
		activity/prompt

HS-LS2-8:

Evaluate evidence for the role of group behavior on individual and species' chances to survive and reproduce.

Science & Engineering Practices Disciplinary Core Idea Crosscutting Concept

Evaluate the evidence behind currently accepted explanations to determine the merits of arguments. Scientific argumentation is a mode of logical discourse used to clarify the strength of relationships between ideas and evidence that may result in revision of an explanation.	Group behavior has evolved because membership can increase the chances of survival for individuals and their genetic relatives.	Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
High School Prompt #4	Live Dive	Fulfilled by doing both field
	Sea Life Tables	trip & post trip
	Protecting Puget Sound	activity/prompt

HS-LS4-5:

Evaluate the evidence supporting claims that changes in environmental conditions may result in (1) increases the number of individuals of some species, (2) the emergence of new species over time, and (3) the extinction of other species.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Evaluate the evidence behind currently accepted explanations or solutions to determine the merits of arguments.	Changes in the physical environment, whether naturally occurring or human induced, have thus contributed to the expansion of some species, the emergence of new distinct species as populations diverge under different	Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.
	conditions, and the decline—and sometimes the extinction—of some species.	
	no longer survive and reproduce in their altered environment. If members cannot adjust to change that is too fast or drastic, the opportunity for the species' evolution is lost	
High School Prompt #1	Water Quality #1 & #2 Protecting Puget Sound	Fulfilled by doing both field trip & post trip activity/prompt

HS-LS4-6:

Create or revise a simulation to test a solution to mitigate adverse impacts of human activity on biodiversity.

	Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
--	---------------------------------	------------------------	----------------------

Create or revise a simulation of a	Changes in the physical environment,	Empirical evidence is required
phenomenon, designed device,	whether naturally occurring or human	to differentiate between cause
process, or system	induced, have thus contributed to the	and correlation and make
	expansion of some species, the	claims about specific causes
	emergence of new distinct species as	and effects.
	populations diverge under different	
	conditions, and the decline—and	
	sometimes the extinction—of some	
	species.	
	Humans depend on the living world for	
	the resources and other benefits	
	provided by biodiversity. But human	
	activity is also having adverse impacts on	
	biodiversity through overpopulation,	
	overexploitation, habitat destruction,	
	pollution, introduction of invasive	
	species, and climate change. Thus	
	sustaining biodiversity so that ecosystem	
	functioning and productivity are	
	maintained is essential to supporting and	
	enhancing life on Earth. Sustaining	
	biodiversity also aids humanity by	
	preserving landscapes of recreational or	
	inspirational value.	
	When evaluating solutions, it is important	
	to take into account a range of	
	constraints, including cost, safety,	
	reliability, and aesthetics, and to consider	
	social, cultural, and environmental	
	impacts. (secondary)	
	Both physical models and computers can	
	be used in various ways to aid in the	
	engineering design process. Computers	
	are useful for a variety of purposes, such	
	as running simulations to test different	
	ways of solving a problem or to see which	
	one is most efficient or economical; and	
	in making a persuasive presentation to a	
	client about how a given design will meet	
	his or her needs. <i>(secondary)</i>	
High School Prompt #3	Water Quality #1 & #2	Fulfilled by doing both field
	Protecting Puget Sound	trip & post trip
	0 0	activity/prompt

Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Plan and conduct an investigation	The abundance of liquid water on Earth's	The functions and properties
individually and collaboratively to	surface and its unique combination of	of natural and designed
produce data to serve as the basis	physical and chemical properties are	objects and systems can be
for evidence, and in the design:	central to the planet's dynamics. These	inferred from their overall
decide on types, how much, and	properties include water's exceptional	structure, the way their
accuracy of data needed to produce	capacity to absorb, store and release	components are shaped and
reliable measurements and	large amounts of energy, transmit	used and the molecular
consider limitations on the	sunlight, expand upon freezing, dissolve	substructures of its various
precision of the data (number of	and transport materials, and lower and	materials.
trials, cost, risk, time) and refine	viscosities and melting points of rocks.	
the design accordingly		
High School Prompt #2	Introduction to Puget Sound	Fulfilled by doing both field
	Water Quality #1 & #2	trip & post trip
	Protecting Puget Sound	activity/prompt

HS-ESS3-2:

Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Evaluate competing design	All forms of energy production and other	Engineers continuously modify
solutions to a real-world problem	resources extraction have associated	these technological systems by
based on scientific ideas and	economic, social, environmental, and	applying scientific knowledge
principles, empirical evidence, and	geopolitical costs and risks as well as	and engineering design
logical arguments regarding	benefits. New technologies and social	practices to increase benefits
relevant factors (eg economic,	regulations can change the balance of	while decreasing costs and
societal, environmental, ethical	these factors.	risks.
considerations)	When evaluating solutions, it is important	Analysis of costs and benefits
	to take into account a range of	is critical aspect of decisions
	constraints, including cost, safety	about technology
	reliability, and aesthetics, and to consider	
	social, cultural and environmental	
	impacts.	
High School Prompt #3	Protecting Puget Sound	Fulfilled by doing both field
		trip & post trip
		activity/prompt

HS-ETS1-1:

Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Analyze complex real-world	Criteria and constraints also include	New technologies can have
problems by specifying criteria and	satisfying any requirements set by	deep impacts on society and
constraints for successful solutions	society, such as taking issues of risk	the environment, including
	mitigation into account, and they should	some that were not
	be quantified to the extent possible and	anticipated. Analysis of costs
	stated in such a way that one can tell if a	and benefits is critical aspect
	given design meets them.	of decisions about technology.
	Humanity faces major global challenges	
	today, such as the need for supplies of	
	clean water and food or for energy	
	sources that minimize pollution, which	
	can be addressed through engineering.	
	These global challenges also may have	
	manifestations in local communities.	
High School Prompt #5	Protecting Puget Sound	Fulfilled by doing both field
		trip & post trip
		activity/prompt

HS-ETS1-2:

Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Design a solution to a complex	Criteria may need to be broken down into	
real-world problem, based on	simpler ones that can be approached	
scientific knowledge,	systematically, and decisions about the	
student-generated sources of	priority of certain criteria over others	
evidence, prioritized criteria, and	(trade-offs) may be needed	
trade-off considerations.		
High School Prompt #5	Protecting Puget Sound	

HS-ETS1-3:

Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Evaluate a solution to a complex	When evaluating solutions, it is important	New technologies can have
real-world problem, based on	to take into account a range of	deep impacts on society and
scientific knowledge,	constraints, including cost, safety,	the environment, including

student-generated sources of evidence, prioritized criteria, and trade-off considerations.	reliability, and aesthetics and to consider social, cultural and environmental impacts	some that were not anticipated. ANalysis of costs and benefits is a critical aspect of decisions about technology.
High School Prompt #5	Protecting Puget Sound	Fulfilled by doing both field trip & post trip activity/prompt

HS-ETS1-4:

Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

Science & Engineering Practices	Disciplinary Core Idea	Crosscutting Concept
Use mathematical models and/or	Both physical models and computers can	Models (physical,
computer simulations to predict	be used in various ways to aid in the	mathematical, computer) can
the effects of a design solution on	engineering design process. Computers	be used to simulate systems
systems and/or the interactions	are useful for a variety of purposes, such	and interactionsincluding
between systems	as running simulations to test different	energy, matter, and
	ways of solving a problem or to see which	information flowswithin and
	one is most efficient or economical; and	between systems at different
	in making a persuasive presentation to a	scales.
	client about how a given design will meet	
	his or her needs	
High School Prompt #5	Protecting Puget Sound	Fulfilled by doing both field
		trip & post trip
		activity/prompt