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1 Introduction
Professional sports teams are always looking for ways 
to gain an edge over their opponents. In baseball, here 
are methods to do so: optimizing in-play strategy (e.g., 
should a team attempt stealing a base or not?), finding the 
batting order that maximizes a team’s expected number of 
runs, and measuring accurately the true ability of players 
(which may lead to signing underrated free agents or 
drafting more efficiently). This paper aims to contribute in 
this regard through a very realistic game simulator.

The book “Moneyball” by Michael Lewis (2003) 
opened a lot of people’s eyes regarding the usefulness of 
statistics in baseball. It describes different approaches 
for fielding a competitive team (new prospect selection 
methods, the use of more meaningful statistics when 
gauging players, etc.). Since the publication of that book, 
more and more teams have been inclined to hire statisti-
cians or “Sabermetric” analysts. The term “Sabermetric” 
is derived from the acronym SABR, which stands for the 
Society for American Baseball Research (www.sabr.org). 

The main aim of this group is to study baseball history, 
but some “Sabermetric” people analyze baseball through 
objective analyses, rather than beliefs (which may be 
biased). The main purpose of this work is to provide tools 
for team management to increase their team’s success on 
the field through a handful of applications.

Several authors have employed baseball game simu-
lations in their work. A common trait to the procedures 
used in the past is the set of rules for runner advancement 
which are quite simplified and do not reflect accurately 
what is observed in Major League Baseball (MLB) games. 
For example, a single with a runner on second base may 
always score a run in simulated games. Moreover, outs 
are treated such that runners never advance following the 
play, which is clearly not the case in real games. Strike 
outs, ground outs and fly outs are pooled together and 
viewed as a single possible outcome.

The lack of appropriate data with respect to the way 
runners advance in all kinds of situations explains the 
application of such simple rules. More detailed data are 
now available through the source www.retrosheet.org 
and some authors have gone on to publish entire books of 
empirical data, such as Tango et al. (2006). Prior to that, 
authors had to rely on simple baserunning rules. We now 
list some references to projects using such methods. Please 
note that there exist enormous non-academic literature on 
this topic, but we focus mainly on academic work.

D’Esopo and Lefkowitz (1977) develop an interesting 
statistic called the “scoring index.” Basically, they cal-
culate the number of runs a player would generate if he 
batted in all nine spots in their modelling approach. In 
other words, the authors assume independent and identi-
cally distributed at-bats according to the batter’s hitting 
distribution. This paper adheres to a simple model to 
determine the location of runners after the occurrence of 
any at-bat.

Cover and Keilers (1977) came up with a similar idea 
to evaluate a batter’s performance, but this time through 
play-by-play computations. The latter consist of following 
the sequence of outcomes for a given player and calcu-
lating its resulting number of runs per game. The statis-
tic is named the “offensive earned-run average” (OERA). 
Ano (2001) expands this measure to account for stolen 
bases, a measure the author calls the “modified offensive 
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earned-run average” (MOERA). Both papers follow con-
ventions for runner advancement which are slightly dif-
ferent from the ones considered in D’Esopo and Lefkowitz 
(1977). Cover and Keilers (1977) and Ano (2001) assume 
singles and doubles to be long, i.e., a single moves all 
runners two bases, and a double scores all runners.

Mills and Mills (1970) also look for a measure of a bat-
ter’s ability. These authors estimate the average contribu-
tion per at-bat to the probability of winning a game; this 
statistic is called the “player win percentage.” Similarly, 
Lackritz (1990) evaluates players in terms of their effects 
on their team winning proportion.

Kinoshita (1987) applies the same concept to evaluate 
pitching abilities. This work simulates at-bats according to 
probabilities suggested by the pitcher’s number of singles, 
doubles, triples, home runs and walks allowed in the season.

The main objective of the paper by Hirotsu and Wright 
(2005) is to optimize pitcher substitution strategies incor-
porating handedness of opposing batters. The technique is 
illustrated via a fictitious game between the San Francisco 
Giants and the Colorado Rockies. The authors simulate 
games complying with the rules of runner advancement 
proposed by D’Esopo and Lefkowitz (1977).

Bukiet, Harold, and Palacios (1997) introduce a 
Markov chain method, which is then applied to achieve 
several goals such as finding optimal batting orders and 
predicting the number of games a team might win. Finally, 
we mention the work of Sueyoshi et al. (1999) which pro-
poses an approach for baseball evaluation referred to as 
“a benchmark approach.” This paper combines the OERA 
defined above with data envelopment analysis (DEA). 
The authors consider the offensive results of 30 players 
belonging to the Central League in Japan.

More recently, Baumer (2009) examines the impact 
of baserunning ability on a team’s number of runs scored 
over a complete season. The method makes player-spe-
cific estimation, but considers only eight ways to “take 
the extra base” and does not account for the number of 
outs, a factor that turns out to be statistically significant 
(see Section 2). Here is a quote that shows the author rec-
ognized the potential of incorporating this factor: “Since 
runners are more likely to be moving with the pitch with 
two outs, a revision of the baserunning probabilities to 
take the number of outs into account could be fruitful.”

We also mention the work of Beaudoin and Swartz 
(2010), who develop a hockey simulator in a similar way. 
Based on a vast data collection process, these authors esti-
mate several parameters and simulate games in order to 
assess strategies for pulling the goalie late in games. Their 
simulation program has several applications, just like the 
one suggested in this paper with respect to baseball.

This paper promotes a much more lifelike baseball 
simulator, which is based on a broad data collection 
process. The data grants accurate estimation of runner 
movement on the bases as a function of the batting 
outcome and the current situation (position of runners on 
the bases and number of outs), as well as the simulation 
of throwing errors. The possible outcomes are more elabo-
rate than previous models, as outs are subcategorized as 
strike outs, ground outs and fly outs. Runners may now 
advance following an out, a feature that was non existent 
in prior work, despite its very common occurrence in real 
games. A batter reaching on an error is also made possi-
ble via probabilities obtained through data. Another key 
element related to our simulator concerns the estimation 
of the probability of each possible outcome for any given 
batter-versus-pitcher confrontation. This crucial step is 
made in part by virtue of a logistic regression analysis.

The simulation model is detailed in Section 2. We 
describe an at-bat’s possible outcomes, as well as the esti-
mation of their respective probabilities. The set of rules 
for runner advancement is also presented in this portion. 
The following three sections relate to numerous applica-
tions of the simulator. More precisely, Section 3 defines 
a measure of the ability of a batter/pitcher called the 
number of runs generated per game (NRGG). This statistic 
is calculated for all batters and pitchers in MLB based on 
their 2009 achievements, and the top 20 is shown for both 
categories of players. A very important aspect of baseball 
is studied in Section 4: optimizing in-play strategy. The 
methodology is illustrated via two scenarios encountered 
during the 2009 ALCS (American League Championship 
Series). The last application of the simulation program 
studied in this project concerns optimal batting orders 
(see Section 5). The technique is exemplified by finding 
the best ordering of New York Yankees players. We con-
clude with a short discussion in Section 6, which exhibits 
some potential improvements to the current version of the 
baseball simulator.

2 Simulation model
Each at-bat is simulated according to the multinomial dis-
tribution with parameters n = 1 and p = (p1, …, p9). In other 
words, every at-bat can yield nine possible outcomes, 
which are presented below:
1.	 Single (1B)
2.	 Double (2B)
3.	 Triple (3B)
4.	 Home run (HR)
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5.	 Base on balls (BB)
6.	 Hit by pitch (HBP)
7.	 Strike out (SO)
8.	 Ground out (GO)
9.	 Fly out (FO)

Notice that a player reaching the bases via error is handled 
in the GO outcome, as will be discussed later. Double 
plays can also occur following a GO or a FO, as this play 
depends on the rules for runner advancement. This topic 
is also covered a bit later.

The estimation of the parameters p1 = Pr(single), 
p2 = Pr(double),..., p9 = Pr(fly out) is vital to the realism of 
the simulator. How do you estimate those nine parameters 
for a matchup between a given batter B and a given pitcher 
P? Hirotsu and Wright (2004) estimate a parameter ω to 
calibrate the batting probabilities. A different approach is 
taken here.

The log5 approach by Bill James (1981) also studies 
the batter-pitcher matchup. It does account for the oppos-
ing pitcher’s ability, but does not allow the simulation of 
the various outcomes of an at-bat. It is based on batting 
averages, which do not account for walks and HBP.

Clearly, p1,..., p9 depend on ( )b
ip  and ( ) ,p

ip  where:
–– ( )b

ip  = probability of occurrence of outcome i for batter 
B facing an average pitcher (for i = 1, 2,...,9)

–– ( )p
ip  = probability of occurrence of outcome i for 

pitcher P facing an average batter (for i = 1, 2,...,9)

The statistics on Major League Baseball’s official website 
(www.mlb.com) enable us to easily estimate the para
meters ( )b

ip  and ( )p
ip  described above for any batter and 

any pitcher (those estimators will be called ( )ˆ b
ip  and ( )ˆ p

ip  
from now on). Indeed, the statistics of a certain batter 
were obtained against a wide variety of pitchers, whose 
abilities differ greatly from one another. It seems reason-
able to assume that the statistics of a batter reflect his per-
formance against an average pitcher. A similar argument 
could be made regarding pitching statistics.

The goal is therefore to estimate the probability of 
each possible outcome for a given matchup based on the 
batter’s and pitcher’s statistics. This was done by first car-
rying out the following logistic regression model:

0 1 2( /(1 )) ,log PPO PPO PPOB PPOPβ β β− = + ∗ + ∗ +e

where:
–– PPO = p1+p2+p3+p4+p5+p6 = P(positive outcome) for the 

current matchup between batter B and pitcher P
–– PPOB =  ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 5 6
b b b b b bp p p p p p+ + + + +  = P(positive 

outcome) for batter B facing an average pitcher

–– PPOP =  ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4 5 6

p p p p p pp p p p p p+ + + + +  = P(positive 
outcome) for pitcher P facing an average batter

From the definitions above, a “positive outcome” cor-
responds to any of the first six events described earlier 
(1B, 2B, 3B, HR, BB, HBP). The logistic model thus incor-
porates the information on the batter and the pitcher to 
come up with a probability that the batter will reach the 
bases safely.

Data was collected on over 43,000 at-bats from the 
MLB 2009 regular season. For each matchup between 
batter B and pitcher P, the following three variables were 
calculated:

–– � ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4 5 6

ˆ ˆ ˆ ˆ ˆ ˆb b b b b bPPOB p p p p p p= + + + + +

–– � ( ) ( ) ( ) ( ) ( ) ( )
1 2 3 4 5 6

ˆ ˆ ˆ ˆ ˆ ˆp p p p p pPPOP p p p p p p= + + + + +

–– Outcome  = 1 if the at-bat resulted in 1B, 2B, 3B, HR, BB 
or HBP, 0 if the at-bat resulted in SO, GO or FO

The logistic regression procedure with Outcome as the 
dependent variable and �PPOB  and �PPOP  as the inde-
pendent variables provide the estimated model below:

�

�
� �3.6538 4.3932* 4.5242* ,

1
PPOlog PPOB PPOP

PPO

 
=− + +  − 

Simple algebra yields:

� exp( ) /( 1 exp( )),PPO z z= +

� �where = 3.6538 4.3932 4.5242z PPOB PPOP− + ∗ + ∗

All three parameter estimates are largely significant 
( < 1×10e-16), with the standard errors of β0, β1 and β2 taking 
values 0.12, 0.22 and 0.27, respectively. Both parameters 
associated with the quality of the batter and the pitcher 
(β1 and β2) turn out to be  > 0. This was expected since a 
batter whose probability of a positive outcome is very high 
(i.e. one of the best batters in baseball) should increase 
the value of the occurrence of a positive outcome for the 
current matchup between himself and any pitcher (simi-
larly for a pitcher whose value of �PPOP  is large, i.e., one 
of the worst pitchers).

We motivate the model by discussing the interpreta-
tion of the resulting parameter estimates. First, we check 
whether a matchup between an average batter and an 
average pitcher yields a probability of positive outcome 
which makes sense. Combining all MLB players’ 2009 sta-
tistics together, we obtain a probability of occurrence of 
a positive outcome to be 0.327. Plugging this value in the 
estimated logistic regression model (i.e., replacing �PPOB  

Brought to you by | Bibliotheque de l'Universite Laval
Authenticated

Download Date | 12/4/14 10:02 PM

www.mlb.com


274      D. Beaudoin: Various applications to a more realistic baseball simulator

and �PPOP  by this value) we obtain �PPO  = 0.323, which 
turns out to be pretty close to 0.327. Also, one could expect 
β1 = β2. The estimates, 4.39 and 4.52, are fairly close and 
well within each other’s confidence interval.

Once the probability of a positive outcome, PPO, has 
been estimated by �PPO  for a given matchup between 
batter B and pitcher P, the values of ( ) ( )

1 6
ˆ ˆ, ,b bp p…  are 

adjusted so that their sum equals �.PPO  In other words, 
we modify the probability of occurrence of each of the 
six positive outcomes to account for the strength of the 
pitcher currently on the mound. A similar strategy is used 
in order to estimate the parameters associated with nega-
tive outcomes, i.e. p1, p8 and p9. More precisely, the final 
estimates for the matchup of interest are provided by the 
following equations:

–– ��( )ˆ ˆ / ,b
i ip p PPO PPOB= ∗  for i = 1, 2, 3, 4, 5, 6

–– � �( )ˆ ˆ (1-  ) / (1-  )b
i ip p PPO PPOB= ∗ , for i = 7, 8, 9

We are thus assuming that the probabilities will scale 
proportionally to only the batter’s statistics. McCracken 
(2001) shows that both batter and pitcher tendencies are 
responsible for issuing walks and homeruns, but the fre-
quency with which singles, doubles and triples are hit is 
primarily a function of the batter’s ability. That would be a 
possible improvement to the current method.

It can be easily verified that, as it should:

�

�
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Let us demonstrate the method through a matchup 
between Ryan Howard from the Philadelphia Phillies and 
Tim Lincecum from the San Francisco Giants. Their values 
of ( )ˆ b

ip  and ( )ˆ p
ip , for i = 1,...,9 are presented in Table 1, 

based on their 2009 statistics.
It can be inferred from Table 1 that �PPOB  = 0.1211+0.0

521+0.0056+0.0634+0.1056+0.0085 = 0.3563, while �PPOP  =  
0.1301+0.0395+0.0043+0.0110+0.0748+0.0066 = 0.2663. 

Table 1 Estimated probabilities of each of the nine outcomes for a given batter and a given pitcher (when facing average opposition).

Player 1B 2B 3B HR BB HBP SO GO FO

Ryan Howard 0.1211 0.0521 0.0056 0.0634 0.1056 0.0085 0.2620 0.1916 0.1901
Tim Lincecum 0.1301 0.0395 0.0043 0.0110 0.0748 0.0066 0.2871 0.2442 0.2024

From the estimated logistic regression model, we obtain 
�PPO  = 0.2924. The probability of each of the six posi-
tive outcomes for Howard (the first six probabilities in 
the first row of Table 1) must be lowered to account for 
the fact that he is facing one of the best pitchers in the 
game. In fact, from the equations seen earlier, ( )ˆ ˆ b

i ip p=
*0.2924/0.3563 = 0.8207* ( )ˆ b

ip , which means that the prob-
ability of every positive outcome for Howard must be 
lowered by 17.93%. On the other hand, it can be shown that 
each of the three negative outcomes for Howard must have 
their respective probabilities increased by 9.93% ( ( )ˆ ˆ b

i ip p=  
*(1-0.2924)/(1-0.3563) = 1.0993* ( )ˆ b

ip ). The final estimates 
that are used by the program to simulate an at-bat 
between Ryan Howard and Tim Lincecum are displayed in 
Table 2. For example, it can be seen that Howard’s prob-
ability of striking out, which was 26.2% versus an average 
pitcher, is raised to 28.8% against Lincecum. The chances 
of hitting a single went from 12.1% (vs average) to 9.9% (vs 
Lincecum).

A batter with too few at-bats, or a pitcher with a small 
number of batters faced may yield probabilities which do 
not make much sense (e.g., a batter with 3 home runs in 
only 10 at-bats). Special care must be taken in such cases, 
and several options may be considered like assigning 
average (or below-average) statistics to players not having 
sufficient data. Or perhaps the user may choose to include 
data from previous seasons.

Notice that a batter reaching first, second or third base 
on a defensive error was accounted for in the outcome GO. 
Data on errors were collected for all 2430 games from the 
2009 season. The information gathered allowed for the 
estimation of Pr(batter reaches base i following an error 
| the batter hit a ground ball), for i = 1, 2, 3. When simu-
lating one of the nine possible outcomes, if the random 
number points towards the occurrence of outcome GO, a 
second random number is generated to check if the batter 
indeed grounds out, or if he reaches one of the three bases 
on an error. The data suggest that Pr(batter reaches first 
base on error | GO) = 3.083%, Pr(batter reaches second base 
on error|GO) = 0.501% and Pr(batter reaches third base on 
error | GO) = 0.058%.

The rules of runner advancement have a large 
impact on the quality of the simulations, especially when 
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Table 2 Final probability estimates of each of the nine outcomes for a simulated at-bat between Ryan Howard and Tim Lincecum.

Matchup 1B 2B 3B HR BB HBP SO GO FO

Ryan Howard vs Tim Lincecum 0.0994 0.0427 0.0046 0.0520 0.0867 0.0070 0.2880 0.2106 0.2090

assessing in-play strategies. Most authors whose research 
required the use of a baseball simulator adopted the 
model developed by D’Esopo and Lefkowitz (1977). This 
simple model is as follows:

–– In the case of a single: The batter and all runners 
advance one base, except for a runner on second base 
who scores automatically.

–– In the case of a double: The batter and all runners 
advance two bases.

–– In the case of a triple: The batter and all runners 
advance three bases.

–– In the case of a home run: The batter and all runners 
score.

–– In the case of a walk: The batter reaches first base, 
and all runners who are forced to move advance one 
base.

–– In the case of an out: The batter is out, and all runners 
stay put.

Clearly, this set of rules does not reflect accurately what 
happens in real games. For example, a runner on second 
base does not always score following a single. He may 
hold at third base, or he may be thrown out. Also, the 
batter may advance an additional base while the team on 
defense is trying to retire the runner. Using a more sophis-
ticated set of rules increases the realism of the simula-
tor, and improves the quality of the results. For instance, 
in-play probabilities can be significantly biased if using 
rules of runner advancement which are inappropriate, 
especially late in games. Suppose the road team is trailing 
by a single run in the top of the 9th inning with a runner 
on second base. A simulator based on the model elabo-
rated by D’Esopo and Lefkowitz (1977) overestimates the 
probability of the road team winning the game, since a 
single invariably scores the tying run (which may not nec-
essarily be the case in reality).

One of the biggest difference between the model of 
D’Esopo and Lefkowitz (1977) and ours concerns the way 
runners are handled in the case of outs. The previous 
model simply does not allow runners to advance in such 
situations. This work splits “outs” into three distinct cat-
egories, namely strike outs, ground outs and fly outs. This 
discrimination is important as runners may advance fol-
lowing a ground out or a fly out. Therefore, a batter who 

has a tendency to strike out often will get penalized in our 
simulator (rightfully so). A runner on third base may now 
have the opportunity to score on a GO or a FO. Also, our 
more realistic model allows for double plays, or a batter 
reaching first base on a fielder’s choice.

There are cases where the advancement of runners, if 
any, is obvious. If a player hits a home run, the batter and 
all runners score. In the case of a walk or a batter getting 
hit by a pitch, there is no doubt as to where the runners 
end up following the play. Let us call them “obvious situa-
tions.” On the other hand, there are several circumstances 
where one cannot tell for sure the location of each runner 
following the at-bat. We shall call them “non obvious situ-
ations” and we list them here:

–– The batter singles with at least one runner on base, 
except if there was a runner on third base only (in 
which case the runner almost always scores and the 
batter holds at first base).

–– The batter hits a double. There had to be a runner on 
first base prior to the play.

–– The batter grounds out with less than two outs with at 
least one runner on base.

–– The batter flies out with less than two outs with at 
least one runner on base, except if there was a runner 
on first base only (in which case the runner almost 
never advances).

Each of the four situations above can be further subcat-
egorized by specifying exactly where runners stood before 
the play occurred. A total of 23 “non obvious situations” 
are then obtained.

Data was collected (www.mlb.com) from the 2009 
season on over 18,000 plays belonging to any of those 
“non obvious situations.” The location of the batter and 
all runners before and after the play was recorded in an 
Excel file. For each “non obvious situation,” an analysis of 
variance was achieved in order to test whether the number 
of outs had any impact on the runner advancement or not. 
Indeed, runners may be more aggressive as the number of 
outs increases. Tables 3 and 4 present an exhaustive list of 
all 23 “non obvious situations,” as well as the conclusion 
provided by the F-test of every analysis of variance, at the 
5% level, regarding the potential effect of the number of 
outs on the way runners react.
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It can be seen from Table 3 that the number of outs 
turns out to be significant at the 5% level for all six sub-
categories related to outcome 1B. As a result, the simulator 
uses different sets of probabilities for runner advancement 
as a function of the current number of outs for these cases. 
When the analysis of variance concludes that the number 
of outs has no impact on runner advancement, the prob-
abilities are pooled together over all possible numbers of 
outs.

Tables 13–19 in the supplementary reading paper 
show the probabilities pertaining to the rules for runner 

Table 3 “Non obvious situations” associated with outcomes 1B and 
2B, specifying whether the runner advancement probabilities vary 
as a function of the number of outs.

Outcome Location of runners 
prior to the play

Significance of the 
number of outs

1B R1 Yes
1B R2 Yes
1B R1-R2 Yes
1B R1-R3 Yes
1B R2-R3 Yes
1B R1-R2-R3 Yes
2B R1 Yes
2B R1-R2 Yes
2B R1-R3 No
2B R1-R2-R3 Yes

R1 means that a runner was on first base prior to the play. Similar 
definitions apply for R2 and R3 regarding second and third base 
prior to the play, respectively.

Table 4 “Non obvious situations” associated with outcomes GO 
and FO, specifying whether the runner advancement probabilities 
vary as a function of the number of outs.

Outcome Location of runners 
prior to the play

Significance of the 
number of outs

GO R1 Yes
GO R2 No
GO R3 No
GO R1-R2 Yes
GO R1-R3 No
GO R2-R3 Yes
GO R1-R2-R3 No
FO R2 Yes
FO R3 No
FO R1-R2 Yes
FO R1-R3 No
FO R2-R3 No
FO R1-R2-R3 No

R1 means that a runner was on first base prior to the play. Similar 
definitions apply for R2 and R3 regarding second and third base 
prior to the play, respectively.

advancement in all “non obvious situations.” Those are 
the probabilities used in the simulator. One important 
note: only situations which occurred in the data are pre-
sented in those tables. We are aware that other (rare) cases 
might happen in real life, but their probabilities were esti-
mated as 0. Example: with runners on 2nd and 3rd base, a 
batter flies out and it turns out that the runner on 3rd base 
stays put, while the runner on 2nd base gets thrown out 
(perhaps following a spectacular catch in the outfield).

The number of outs is significant for all six cases 
where the outcome is a single (see Table 3). A careful look 
at the proportions pertaining to these cases (see Tables 
13 and 14 in the supplementary reading) exhibits the fact 
that runners are definitely more aggressive as the number 
of outs increase. A runner on second base prior to the 
occurrence of a single scores much more often with two 
outs than with none. The same comment could be made 
regarding a runner on first base trying to reach third base 
on a single.

Based on Table 4, the “non obvious situations” 
where the number of outs has a significant impact on the 
advancement of runners following a GO occurs when the 
location of the runners prior to the play was either R1, 
R1-R2 or R2-R3. The logical explanation with respect to 
the first two states may come from sacrifice bunts (which 
count as ground outs). The batter being retired with the 
runner(s) advancing was observed much more often with 
0 out than with only one. As for the R2-R3 situation, we 
note that runners were much more conservative (both 
staying put on the ground ball) with no outs compared to 
one out.

Two out of the six subcategories related to outcome 
FO are significant with respect to the number of outs. They 
correspond to the only cases where a runner was located 
on second base with nobody on third base prior to the 
play (R2 and R1-R2). The results show that the runner on 
second base tried much more frequently to reach third 
base on the fly out when there were no outs (hoping to 
be 90 feet away from home plate with one out, increas-
ing substantially the chances of scoring without having 
anyone getting a hit).

Stolen bases (SB) are omitted from the simulator, but 
may be included in a future version. The biggest obstacle 
faced by the programmer when trying to add this char-
acteristic into the simulations is to determine a player’s 
probability of attempting a stolen base. This probability 
can be estimated by the number of SB attempts by the 
given player divided by the number of times he was “in a 
position to attempt one.” The latter is difficult to evaluate. 
Determining the number of times a given player stood on 
first base over the whole season is not that easy (adding 
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the singles, the walks and the HBP is not enough, since 
he may have reached first base on a fielder’s choice, or 
on an error). Also, a player being on first base is not suf-
ficient to qualify as being “in a position to attempt a SB” 
since there may be a runner on second base preventing 
him from trying to steal second base. To avoid having to 
spend a huge amount of time overcoming this hurdle it 
was decided to drop stolen bases from this version of the 
simulation program.

An additional feature was incorporated in the sim-
ulator: throwing errors. Out of the nine possible out-
comes defined earlier, only five can lead to a throwing 
error during the play: 1B, 2B, 3B, GO and FO. Indeed, it 
is impossible (or highly unlikely) to observe a throwing 
error committed by the defense on a HR, a BB, a HBP or 
a SO. There exist two more common ways that a throwing 
error may occur during a game: on a stolen base attempt 
and on a pickoff attempt. We need not to worry about the 
first since SB are omitted from the simulator (as discussed 
previously). We thus end up with six possible plays where 
a throwing error may occur: 1B, 2B, 3B, GO, FO and on a 
pickoff attempt.

It was mentioned earlier that data on errors were col-
lected over all games from the 2009 regular season. This 
data set was not restricted to errors leading to the batter 
reaching the bases, but also included throwing errors. The 
file specifies the number of bases the runners advanced 
following the throwing error, as well as the play that 
caused it. Proprietary restrictions prevent the publica-
tion of all estimated probabilities, but we reveal below the 
value of two estimates:

–– Pr(runners advance ONE base on a throwing 
error|1B) = 0.0142

–– Pr(runners advance TWO bases on a throwing error| 
1B) = 0.0014

As a consequence, every time the simulator determines 
that a player hits a single, the program first settles where all 
runners end up following the play (according to our rules 
of runner advancement), and then allows the possibility 
that all runners advance an additional base with a 1.42% 
chance, or an extra two bases with a 0.14% percentage.

Let us now summarize the various steps executed by 
the simulator for each at-bat:

–– If there are runners on the bases prior to the play, 
simulate whether a throwing error occurs on a pickoff 
attempt or not.

–– Calculate the values of ˆ
ip  that prescribe the likelihood 

of each of the nine outcomes, based on the batter’s 
and pitcher’s statistics. Simulate the occurrence of 
one of those nine possible outcomes accordingly.

–– If the combination of outcome, runners on base prior 
to the play and number of outs corresponds to an 
“obvious situation,” move the runners in a suitable 
way.

–– In the case of a “non obvious situation,” simulate 
the advancement of the batter and the runners in 
accordance with the rules specified by our model.

–– If the selected outcome was either 1B, 2B, 3B, GO or 
FO, simulate the occurrence of a throwing error (and 
the number of bases by which runners advance).

The simulator has been coded in the R programming 
language. The speed of simulations depends, of course, 
on the machine on which the program is executed, but 
just to give a general idea to the reader, let’s mention 
that simulating one million games takes roughly 3 h to 
run.

3 �Measure of the ability of a batter/
pitcher

When a batter steps up to the plate, most baseball broad-
casters present the following three statistics: the batting 
average (BA), the number of home runs and the number 
of runs batted in (RBI). In the case of a pitcher, the major-
ity of television stations show his win-loss record, his 
earned run average (ERA), as well as the number of strike 
outs and walks. There exist several such statistics being 
amassed on every player in MLB. How do you compare two 
batters or two pitchers based on such a huge amount of 
variables? For example, is a player with a 0.250 BA and  
30 HR better than a player with a 0.300 BA and 15 HR? 
Would not it be simpler if the quality of a player was meas-
ured in terms of a single statistic that incorporated all of 
the important information?

Perhaps the most intuitive statistic that can be devel-
oped for any given batter is its number of runs scored 
per game if that player filled all nine spots of the lineup. 
The interpretation of such measure is quite simple and 
its units, the number of runs scored per game, is easy to 
understand. The simulator described in Section 2 allows 
for the estimation of this statistic for all batters by simu-
lating a large number of games. We simply let ( )ˆ ˆ b

i ip p= , 
which translates into assuming that the batter constantly 
faces an average pitcher, and we calculate the average 
number of runs generated per game. For pitchers, we fix 

( )ˆ ˆ ,p
i ip p=  that amounts to postulating that the pitcher of 

interest keeps dealing with an average batter. We shall call 
this statistic the NRGG.
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Table 6 NRGG for the top 20 starting pitchers in the MLB 2009 
regular season.

Rank Pitcher Team NRGG Rank Batter Team NRGG

1 T. Lincecum SF 2.54 11 U. Jimenez Col 3.35
2 C. Carpenter StL 2.61 12 T. Lilly ChC 3.35
3 Z. Greinke KC 2.81 13 T. Hanson Atl 3.39
4 C. Kershaw LAD 2.85 14 R. Wolf LAD 3.43
5 J. Vazquez Atl 2.99 15 J. Jurrjens Atl 3.46
6 J. Peavy CWS 3.02 16 E. Bedard Sea 3.47
7 F. Hernandez Sea 3.13 17 J. Pineiro StL 3.48
8 D. Haren Ari 3.19 18 A. Wainwright StL 3.48
9 J. Johnson Fla 3.27 19 J. Verlander Det 3.53
10 C. Sabathia NYY 3.33 20 J. Outman Oak 3.53

Similar methods were used in the development of a 
statistic like this one in the past like the scoring index by 
D’Esopo and Lefkowitz (1977) and the offensive earned-
run average (OERA) by Cover and Keilers (1977). We also 
mention the work of Lindsey (1977), Pankin (1978), Bennett 
and Flueck (1983) and Bukiet et al. (1997). The most impor-
tant distinctions between these approaches and this one 
lies in the rules of runner advancement which are far more 
accurate here, and also the number of possible outcomes 
(various authors consider strike outs, ground outs and fly 
outs as being equivalent). Moreover, the method for esti-
mating the probability of each at-bat’s outcome is novel 
(see Section 2).

A total of 2,500,000 games were simulated for each 
batter and each pitcher in order to calculate their NRGG 
statistic. This choice leads to a margin of error of up to 
0.006 runs per game. Indeed, simulations show that an 
upper bound on the standard error of the runs per game 
is 5, so that the maximal value for the half length of the 
confidence interval, Emax is:

/2 /

5 1.96 / 2,500,000
0.006

max

max

E s z n

E
E

α
= ∗

= ∗
=

The NRGG statistic was calculated only for batters with 
at least 200 at-bats and for pitchers who faced at least 200 
opposing batters. The average value of the statistic turns 
out to be 4.87 for batters and 4.56 for pitchers. Theoreti-
cally, those numbers should be identical, but differ here 
because the number of batters and pitchers considered in 
the calculation is different (334 batters with at least 200 
at-bats versus 369 pitchers who faced at least 200 batters). 
Also, for those numbers to match, one would need to do 
a weighted average (by at-bats or plate appearances).  
Tables 5 and 6 present the top 20 batters and starting 

Table 5 NRGG for the top 20 batters in the MLB 2009 regular 
season.

Rank Batter Team NRGG Rank Batter Team NRGG

1 A. Pujols StL 9.81 11 A. Gonzalez SD 7.56
2 J. Mauer Min 9.29 12 R. Braun Mil 7.48
3 P. Fielder Mil 8.48 13 A. Dunn Was 7.43
4 J. Votto Cin 8.40 14 P. Sandoval SF 7.43
5 K. Youkilis Bos 8.06 15 A. Rodriguez NYY 7.41
6 M. Ramirez LAD 7.98 16 M. Teixeira NYY 7.36
7 D. Lee ChC 7.98 17 C. Utley Phi 7.35
8 H. Ramirez Fla 7.92 18 T. Helton Col 7.32
9 B. Zobrist TB 7.73 19 M. Cabrera Det 7.31
10 C. Beltran NYM 7.57 20 J. Bay Bos 7.22

pitchers, respectively, in MLB during the 2009 regular 
season.

Albert Pujols and Joe Mauer, who take the top 2 spots 
in our batter rankings, were named National League (NL) 
and American League (AL) most valuable players in 2009, 
respectively. The NRGG statistic therefore seems to be in 
agreement with the votes from the Baseball Writers Asso-
ciation of America. The Cy Young award is given annually 
to the best pitchers in baseball, one each for the NL and 
AL. The winners in 2009 were Tim Lincecum from the San 
Francisco Giants (NL) and Zack Greinke from the Kansas 
City Royals (AL). These pitchers rank at the top of their 
respective leagues according to the NRGG statistic (first 
and third overall).

4 In-play strategy
The simulator can easily estimate in-play probabilities at 
any point during a particular game. The user has to input 
both lineups (including which batter is due up next), each 
team’s current pitcher on the mound and the current state 
of the game (score, inning, number of outs, runner(s) on 
base, if any). It is then possible to simulate a very large 
number of games, where every single one starts at the 
state that was inputted by the user, and to determine the 
fraction of games won by each team.

In-play probabilities can be very useful to a team’s 
manager as it opens the way to the comparison of different 
strategies. The simulator can be used to estimate winning 
percentages under a few strategies, helping a team to opti-
mize its chances of beating their opponents. This can be 
done in real time: all that is needed is someone running 
simulations on a laptop, and letting the coach know what 
the suggested strategy is.
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We consider two games from the 2009 ALCS (Ameri-
can League Championship Series) between the Los Angels 
Angels and the New York Yankees, a series that was even-
tually won by the Yankees in six games. We first turn our 
attention to Game 3, which was held on October 19th. 
The Angels led 4–3 going into the top of the 8th inning. 
The leadoff hitter, Hideki Matsui, walked on five pitches 
before being replaced by Brett Gardner as a pinch runner. 
Jorge Posada was up next against the Angels’ relief pitcher 
Kevin Jepsen. The Yankees manager, Joe Girardi, had 
several options to consider:

–– Ask Gardner to try stealing second base.
–– Instruct Posada to hit a sacrifice bunt.
–– Let Posada hit, while asking Gardner to stay put at 

first base.

Those three strategies are compared through the simula-
tor. Other variations of those tactics could have been com-
manded by the manager (such as a hit-and-run), but they 
are omitted here. We simply focus on the three plans of 
action described above. The success rate of the stolen base 
attempt is set at 26/31 = 0.839 since Gardner stole 26 bases 
in 31 attempts over the 2009 season. As for the sacrifice 
bunt, we consider three different success rates: 80%, 90% 
and 100%.

On October 19th, Girardi opted for the stolen base 
attempt, but Gardner was caught stealing by the catcher 
Jeff Mathis. Posada homered a few pitches later to tie the 
game up at 4 apiece. The game went in extra innings, 
where the Angels won 5–4 in 11 innings. On the Angels 
side, Kevin Jepsen threw the 8th inning, Brian Fuentes 
took care of the 9th, while Jason Bulger and Ervin Santana 
were on the mound for the 10th and 11th innings, respec-
tively. That is the information we input in the simula-
tion program with respect to which pitchers are on the 
mound for Los Angeles for the remainder of the game. 
If a simulated game lasted more than 11 innings, it was 
assumed that Ervin Santana kept pitching until the game  
finished.

The same concept was used regarding New York’s 
pitchers. In other words, the management of Yankees 
hurlers during Game 3 of the ALCS is replicated in simu-
lated games, and the last pitcher used in that game stays 
on the mound indefinitely every time a simulated game 
goes beyond 11 innings. Specifically, Phil Coke throws 
the first third of the 8th inning, Phil Hughes performs the 
remainder of that inning as well as the whole 9th inning, 
the ace Mariano Rivera takes care of the 10th, whereas 
David Robertson pitches the first two thirds of the 11th 
inning and Alfredo Aceves stays on the mound until the 
game ends.

Table 7 Estimated winning percentages of the New York Yankees 
against the Los Angeles Angels on October 19th using various strat-
egies in the top of the 8th inning with no outs, Brett Gardner on first 
base and Jorge Posada at the plate with the Angels leading 4–3.

Strategy Estimate of 
Pr(Yankees win)

Stolen base attempt 48.35%
No stolen base attempt, no sacrifice bunt 46.03%
Sacrifice bunt (100% success rate) 41.33%
Sacrifice bunt (90% success rate) 40.88%
Sacrifice bunt (80% success rate) 40.36%

Team lineups are also inputted in the simulation 
program, stipulating that Jorge Posada and Bobby Abreu 
are up next for the Yankees and the Angels, respectively. 
Each simulated game starts with a 4–3 score in favor of 
Los Angeles with no outs in the top of the 8th inning with 
a runner on first base. A total of N = 4 million games are 
simulated under each possible strategy, and the fraction 
of games won by New York is calculated. Such choice of 
the value of N guarantees precision up to three decimal 
places on the winning percentage (the half length of the 
confidence interval becomes 0.00049 at most).

The estimated probabilities of New York winning the 
game are displayed in Table 7 for all strategies discussed 
above. The results suggest that the best strategy consists 
of attempting a stolen base, which is exactly what the 
Yankees did in that game. This approach did not yield a 
positive outcome on October 19th as Gardner was retired 
on the attempt (and to make matters even worse, Posada 
followed that up with a home run, which would have 
given New York the lead, instead of tying the game), but it 
was still the best plan of attack. Based on our procedure, 
the sacrifice bunt turns out to be the worst strategy, even 
if its success rate is guaranteed!

It is interesting to note that the Yankees roughly have 
one chance out of two of beating the Angels, despite cur-
rently trailing by a run, when adopting the stolen base 
strategy. The latter increases New York’s chances of 
winning the game by about 7% compared to the sacrifice 
bunt strategy, and 2% versus the “stay put” strategy (no 
SB, no sacrifice bunt).

The simulator was used once again to evaluate the 
intentional base on balls strategy which was employed 
by the Angels manager, Mike Scioscia, on October 22th 
2009 for game 5 of the ALCS. Los Angeles led 7–6 with two 
outs and the bases empty in the top of the 9th inning. One 
of the most feared hitters in the game, Alex Rodriguez, 
was up next against pitcher Brian Fuentes. Los Angeles’s 
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Table 8 Estimated winning percentages of the New York Yankees 
against the Los Angeles Angels on October 19th using various strat-
egies in the top of the 8th inning with no outs, Brett Gardner on first 
base and Jorge Posada at the plate with the Angels leading 4–3.

Strategy Estimate of 
Pr(Angels win)

Face A. Rodriguez, M. Rivera does not pitch  
in 9th

93.14%

Face A. Rodriguez, M. Rivera pitches in 9th 92.50%
Walk A. Rodriguez intentionally, M. Rivera 
does not pitch in 9th

88.62%

Walk A. Rodriguez intentionally, M. Rivera 
pitches in 9th

87.16%

manager elected to intentionally walk Rodriguez, even 
though such a decision put the potential winning run at 
the plate in Hideki Matsui. Matsui eventually walked, fol-
lowed by Robinson Cano being hit by a pitch to load the 
bases. The tension was palpable in Angel Stadium as Nick 
Swisher came to the plate, but Fuentes forced him to fly 
out to the delight of the fans in Los Angeles, as the Angels 
won 7–6. But was the intentional walk the strategy that 
maximized LA’s chances of winning the game? Or should 
Fuentes have faced Rodriguez?

Before moving on to the simulation results, let us 
first discuss the management of pitchers (as we did for 
the October 19th game). The Yankees’ best relief pitcher, 
Mariano Rivera, threw the last two thirds of the bottom of the 
8th inning. Since the actual game ended halfway through 
the ninth, we cannot tell for sure whether Rivera would 
have pitched the 9th inning or not. Therefore, we simulate 
4,000,000 games using a specific strategy (walking Rod-
riguez intentionally or not) assuming that Rivera would 
have pitched the ninth, and we simulate another 4,000,000 
games taking for granted that he was done for the night. 
The Yankees relief pitchers who had not yet played in that 
game were Chad Gaudin, Phil Coke, David Robertson and 
Alfredo Aceves (we chose to exclude those who did not par-
ticipate in the ALCS at all, presuming it was a sign that their 
manager did not trust them enough to use them in such 
crucial games). Prior to each half inning where the Angels 
are on offense in simulated games, the program therefore 
picks randomly one of those four relief pitchers to go on the 
mound for the entire half inning.

On the Angels side, it is conjectured that Brian 
Fuentes pitches the 9th inning until it is over (no matter 
what happens), since this is what was observed in Game 5.  
The relief pitchers who had not played so far were Jason 
Bulger, Ervin Santana, Matt Palmer and Scott Kazmir 
(again, excluding those who did not make a single pitch 
during the ALCS). Accordingly, for each simulated game 
that goes in extra innings the simulator picks randomly 
(without replacement) one of those four hurlers to take 
care of an entire half inning.

We input each team’s lineup, noting that Alex Rod-
riguez and Torii Hunter are up next for the Yankees and 
the Angels, respectively. Each simulated game starts with 
Los Angeles leading 7–6 in the top of the 9th inning with 
the bases empty and two outs. Again, a total of 4 million 
games are simulated under each scenario (IBB to Rod-
riguez or not, Rivera pitches the 9th inning or not). The 
fraction of simulated games won by the Angels is pre-
sented in Table 8.

The results suggest that walking Alex Rodriguez inten-
tionally is not the optimal strategy. In fact, the numbers 

from Table 8 indicate that facing Rodriguez increases 
the Angels’ chances of winning the game by roughly 
5%, which is quite large. Also, having Mariano Rivera 
on the mound during the 9th inning inflates New York’s 
winning percentage by about 1%. Notice, however, that 
fatigue is not accounted for by the simulator, so it is up 
to the manager to determine whether it is best to remove 
a pitcher.

5 Optimal batting order
Another application to the simulation program is the 
determination of the optimal batting order for any given 
team. We consider the 2009 World Champions, the New 
York Yankees. The nine players with the most at-bats 
during the 2009 regular season were Robinson Cano, 
Derek Jeter, Mark Teixeira, Johnny Damon, Nick Swisher, 
Melky Cabrera, Hideki Matsui, Alex Rodriguez and Jorge 
Posada. The natural defensive positions of these players 
are suitable for the manager Joe Girardi to put them in the 
same lineup. Therefore, we are looking for the best pos-
sible lineup which includes all nine players mentioned 
above.

There exist 9! = 362,880 ways to order nine batters in a 
lineup. We could simulate a large number of games under 
each possible lineup and calculate the average number of 
runs per game to determine the batting order that maxi-
mizes offensive performance. This procedure takes a lot of 
time, so we make a few assumptions to reduce the number 
of simulations. The first one consists of assuming that Alex 
Rodriguez and Derek Jeter should be placed in either one 
of the first four spots in the lineup, whereas the second 
premise suggests to put Melky Cabrera among the bottom 
four. The other six players may bat at any remaining spot. 
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Those assertions are based on the high level of offensive 
production from Rodriguez and Jeter, and the mediocre 
performance by Cabrera. We are left with 12*4*720 = 34,560 
possible permutations, a significant cutback compared to 
the initial 362,880 potential lineups.

As a first step, a total of 25,000 games are simulated 
under each of the 34,560 possible lineups. The values of ˆ

ip  
are set at ( )ˆ b

ip  for every player, which means it is assumed 
that an average pitcher is on the mound throughout the 
simulations. Once the run of simulations is completed for 
a given lineup, a confidence interval is calculated with 
respect to the average number of runs scored. The largest 
lower bound of all 34,560 confidence intervals turns out 
to be 6.603672. All lineups whose upper bound on the 
average number of runs is smaller than this number were 
dropped from the second step, which leaves us with only 
1423 lineups.

During that second step, a total of 1,250,000 games 
are simulated for each of the remaining 1423 lineups. Once 
again, a confidence interval on the number of runs per 
game is calculated for every combination of players. The 
largest lower bound obtained is 6.369681 and we find 40 
lineups whose upper bound exceeds this number (no sig-
nificant difference with the optimal order). We view those 
40 lineups as being the optimal ones: they are shown in 
Tables 11 and 12 (see supplementary reading paper) along 
with their respective average runs per game and their 
associated confidence interval. We summarize in Table 9 
the number of times each player is spotted in rank i among 
those fourty optimal lineups. The value of the statistic 
NRGG described earlier is also presented for those players.

It can be seen from Table 9 that Derek Jeter should 
definitely be the leadoff hitter, while Robinson Cano and 
Melky Cabrera, the two worst players based on the statistic 
NRGG, should bat in the last two spots. Jeter’s suggested 

Table 9 Ranks of nine Yankees players in the 40 optimal batting 
orders, as well as their NRGG.

Player Rank in the lineup NRGG

1 2 3 4 5 6 7 8 9

R. Cano 1 39 5.96
D. Jeter 40 6.62
M. Teixeira 5 11 19 5 7.36
J.Damon 1 4 2 12 9 12 6.21
N. Swisher 6 3 3 3 13 11 1 6.18
M. Cabrera 40 4.59
H. Matsui 4 8 9 10 5 4 6.58
A. Rodriguez 24 13 3 7.41
J. Posada 1 4 10 12 13 6.20

Table 10 Batting position of nine Yankees players in the lineup 
during the 2009 World Series, as well as their suggested position 
according to the top 40 batting orders (based on our simulator).

Player Batting position(s) 
World Series

Batting position(s)  
in 40 optimal orders

R. Cano 6–7 8
D. Jeter 1 1
M. Teixeira 3 4–3
J. Damon 2 5–7–6
N. Swisher 5–7–8 6–7–2
M. Cabrera 8–9 9
H. Matsui 5–6 5–4–3
A. Rodriguez 4 2–3
J. Posada 5–6 7–6–5

number one batting position may very well be explained 
by his high on-base percentage (he finished the 2009 
season first among all Yankees players) and his relatively 
low slugging percentage (8th out of the nine players con-
sidered here). The best players according to the NRGG sta-
tistic, Alex Rodriguez and Mark Teixeira, should be placed 
in the number 2, 3 or 4 spots.

We verify whether the Yankees manager, Joe Girardi, 
used a “good” batting order during the 2009 World Series 
or not. Table 10 depicts each of the nine players’ spot(s) 
in New York’s lineup during that series versus the optimal 
spots according to our top 40 orders.

We formulate the following conclusions based on 
Table 10:

–– Johnny Damon should bat at a much lower spot.
–– Robinson Cano should bat at a slighly lower spot.
–– Alex Rodriguez and Hideki Matsui should bat at a 

slightly upper spot.
–– Joe Girardi placed Derek Jeter, Mark Teixeira, Nick 

Swisher, Melky Cabrera and Jorge Posada at their 
optimal spots.

Recall that the optimal batting order generates, on average, 
6.374252 runs per game with a (6.369681, 6.378823) con-
fidence interval (see Table 11 in the supplementary 
reading). Girardi’s most common lineup during the World 
Series (Jeter, Damon, Teixeira, Rodriguez, Matsui, Posada, 
Cano, Swisher, Cabrera) averages 6.350583 runs per game. 
Its confidence interval, (6.346015, 6.355152), does not 
overlap with the optimal, so we conclude there is a sig-
nificant difference, although pretty minimal in practice. 
As a comparison, the worst possible lineup composed of 
those nine players scores an average of 6.24 runs per game 
(approximately). In other words, Girardi’s batting order 
was not very far from being optimal.
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6 Concluding remarks
This paper develops a baseball simulator, whose main 
assets over previous simulation programs are its more real-
istic rules of runner advancement and its discrimination 
of different types of outs (not viewing strike outs, ground 
outs and fly outs as being equivalent). We investigate 
various applications to this simulation procedure, such 
as the introduction of a single statistic (called NRGG) that 
incorporates all of the relevant information regarding the 
performance of any given batter/pitcher. According to this 
new criterion, the best batter in MLB for the 2009 season 
was Albert Pujols from the St. Louis Cardinals, whereas 
the best starting pitcher in the game was Tim Lincecum 
from the San Francisco Giants. Two more applications of 
the simulator are examined, namely the determination of 
the in-game strategy that maximizes a team’s chances of 
winning a game at any given moment, as well as the estab-
lishment of a team’s optimal batting order.

Before we discuss possible improvements to the pro-
cedure detailed in this paper, let us highlight the pros and 
cons of using a modeling approach versus simulations. 
The latter can include additional variables more easily 
and could take into account some factors like the current 
score and who is on base (which may not be possible in a 
reasonable way under modeling approaches). Also, extra 
innings can be dealt with more easily and realistically 
with simulations. On the other hand, models yield defini-
tive results, as opposed to sample averages (confidence 
intervals need to be calculated to determine if two aver-
ages are significantly different from one another).

There are several improvements that could be made 
to the current simulation method. Future work may add 
stolen bases into the simulator. Also, any baseball fan is 
aware of the importance of handedness in pitcher-versus-
batter matchups. As a matter of fact, most left-handed 
pitchers perform better against players batting from the left 
side of the plate, and vice-versa. As a consequence, if a left-
handed pitcher is on the mound it may be more astute to 
simulate at-bats using the batters’ statistics against lefties 
only. This small adjustment is very easy to implement.

Also, a player’s speed is only partially taken into 
account by the simulator. A slower player does not get as 
many doubles and triples as others, which is taken care of 

in the estimation of parameters p2 and p3, but the use of 
universal rules for runner advancement prevent us from 
distinguishing faster from slower players. A future version 
of the simulation program may create three categories of 
runners such as “fast,” “average” and “slow,” where the 
numerous probabilities guiding the way runners advance 
in a simulated game could be estimated for each category. 
Sugano (2008) and Baumer (2009) take into account the 
effect of player speed on the bases, whereas James (1987) 
puts forth a framework for measuring player speed.

It may be desirable to include a ballpark and a home 
field advantage effect. Also, recent player performance may 
be weighted more heavily than more dated statistics. Some 
people may also argue that the probabilities of each of the 
nine outcomes defined earlier could possibly depend on 
the game situation (runs ahead/behind, inning, outs), but 
having few data on certain situations may cause trouble.

A possible improvement regarding optimal batting 
orders lies in the criterion for declaring one lineup to be 
better than another. This work focused on the average 
number of runs scored per game, but we are aware that the 
variance also plays a key role here, as some lineups may 
be more all-or-none than others. For example, it is best to 
have a team scoring 8 runs on every game, than a lineup 
generating the following number of runs per match: 0, 0, 
24, 0, 0, 24,... (which also amounts to an average of eight 
runs per game).

Adding those features to the current version of the sim-
ulator would yield even more realistic results. Such a tool 
can be extremely useful to general managers and manag-
ers in order to maximize their team’s chances of performing 
well (by acquiring underrated players based on their NRGG 
statistic, by making the best decision at all times during a 
game and by using the best possible lineup on any given 
night). We also envision another crucial application to 
the NRGG statistic: drafting the right players. Indeed, the 
NRGG measure could be computed for all eligible players 
to the draft, accounting for the strength of opposition.

Acknowledgments: The author has been partially sup-
ported by a research grant from the Natural Sciences and 
Engineering Research Council of Canada. A special thanks 
to the Mathematics and Statistics Department at Laval for 
the use of its computing resources.

References
Ano, K. 2001. “Modified Offensive Earned-Run Average with Steal 

Effect for Baseball.” Applied Mathematics and Computation 
120(1–3): 279–288.

Baumer, B. S. 2009. “Using Simulation to Estimate the Impact 
of Baserunning Ability in Baseball.” Journal of Quantitative 
Analysis in Sports 5(2): 1–16.

Brought to you by | Bibliotheque de l'Universite Laval
Authenticated

Download Date | 12/4/14 10:02 PM



D. Beaudoin: Various applications to a more realistic baseball simulator      283

Beaudoin, D. and T. B. Swartz. 2010. “Strategies for Pulling the 
Goalie in Hockey.” The American Statistician 64(3): 197–204.

Bennett, J. M. and J. A. Flueck. 1983. “An Evaluation of Major League 
Offensive Performance Models.” The American Statistician 37: 
76–82.

Bukiet, E. R., E. Harold, and J. L. Palacios. 1997. “A Markov Chain 
Approach to Baseball.” Operations Research 45: 14–23.

Cover, T. M. and C. W. Keilers. 1977. “An Offensive Earned-Run 
Average for Baseball.” Operations Research 25: 729–740.

D’Esopo, D. A. and B. Lefkowitz. 1977. “The Distribution of Runs in the 
Game of Baseball.” pp. 55–62 in Optimal strategies in sports, 
edited by S.P. Ladany and R. E. Machal. New York: North Holland.

Hirotsu, N. and M. Wright. 2005. “Modelling a Baseball Game 
to Optimise Pitcher Substitution Strategies Incorporating 
Handedness of Players.” IMA Journal of Management 
Mathematics 16: 179–194.

Hirotsu, N. and M. Wright. 2004. “Modelling a Baseball Game 
to Optimize Pitcher Substitution Strategies Using Dynamic 
Programming.” pp. 131–161 in Economics, Management, and 
Optimization in Sports, edited by S. Butenko et al. Berlin: 
Springer.

James, B. 1981. The Bill James Baseball Abstract. New York: 
Ballantine Books.

James, B. 1987. The Bill James Baseball Abstract. New York: Villard 
Books.

Kinoshita, A. 1987. “Evaluation of Baseball Batters and Pitchers 
(in Japanese).” Communications of the Operations Research 
Society of Japan 32: 689–697.

Lackritz, J. 1990. “Salary Evaluation for Professional Baseball 
Players.” The American Statistician 44: 4–8.

Lewis, M. 2003. Moneyball: the art of winning an unfair game. New 
York: W.W. Norton and Company.

Lindsey, G. R. 1977. “A Scientific Approach to Strategy in Baseball.” 
Optimal strategies in sports. New York: Elsevier-North 
Holland.

McCracken, V. 2001. “Pitching and Defense: How Much Control Do 
Hurlers Have?l.” http://www.baseballprospectus.com/article.
php?articleid = 878

Mills, E. and H. Mills. 1970. Player win averages. New Jersey: A.S. 
Barnes and Co., Cranbury.

Pankin, M. D. 1978. “Evaluating Offensive Performance in Baseball.” 
Operations Research 26: 610–619.

Sueyoshi, T., K. Ohnishi, and Y. Kinase. 1999. “A Benchmark 
Approach for Baseball Evaluation.” European Journal of 
Operational Research 115: 429–448.

Sugano, A. 2008. “A Player Based Approach to Baseball Simulation”, 
University of California, Los Angeles (dissertation).

Tango, T. M., M. G. Lichtman, and A. E. Dolphin. 2006. The book: 
playing the percentages in baseball. Dulles, Virginia, USA: 
Potomac Books Inc.

Brought to you by | Bibliotheque de l'Universite Laval
Authenticated

Download Date | 12/4/14 10:02 PM

http://www.baseballprospectus.com/article.php?articleid = 878
http://www.baseballprospectus.com/article.php?articleid = 878

