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Abstract

This paper investigates penalty calls in the National Hockey League (NHL). Our
study shows that there are various situational effects that are associated with the
next penalty call. These situational effects are related to the accumulated penalty
calls, the goal differential, the stage of the match and the relative strengths of the

two teams. We also investigate individual referee effects across the NHL.
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1 INTRODUCTION

The National Hockey League (NHL) is the premier hockey league in the world. Accord-
ingly, officiating in the NHL is taken very seriously. There is a lengthy process involved
in the training of NHL officials for which there are fewer than 80 positions (referees and
linesmen). Apart from the general comportment and decision making aspects of officiat-
ing, an NHL official requires an athleticism that exceeds what is needed in most other
sports. Officials require power and endurance to skate at high speeds in order to keep up
to the pace of play. Furthermore, the NHL employs a Director of Officiating (Stephen
Walkom appointed in 2013) who administers officiating performances. Every NHL match
is monitored for questionable calls and NHL teams are able to submit complaints regard-
ing officiating decisions (www.nhlofficials.com).

However, despite the rigorous standards and the monitoring of officials, it appears that
there are ingrained practices of NHL officiating that defy fair play. Our view concerning
fair play suggests that only on-ice infractions are relevant in the assignment of penalties.
Extraneous factors such as the so called “home team advantage” should not be relevant
in the determination of penalties.

To our knowledge, there have been very few quantitative investigations of penalty calls
in the NHL. From an economics perspective, Allen (2002) investigated the behavioral as-
pects of “crime” by studying aggregate penalty calls in the 1998-99 NHL season where
an additional on-ice referee was deployed. The study was more concerned with theories
of criminology than the game itself. In contrast, Beaudoin and Swartz (2010) developed
a simulator for NHL matches where their main focus was the timing involved in “pulling
the goaltender”. In a side comment (Remark #2), they noted that road teams are called
for more penalties than home teams in a 11:10 ratio. This observation coincides with

the perception that referees are influenced by the home crowd (chapters 10 and 11 of



Moskowitz and Wertheim 2011). In contrast to our interest in biases (i.e. to which team
the next penalty is assigned), Schuckers and Brozowski (2012) were primarily concerned
with penalty rates in the NHL. For example, they found that penalties dramatically de-
crease as the game progresses, a “swallowing of the whistle” effect. In addition, they found
that fewer penalties are called in tight games (i.e. as the score differential between the
two teams decreases). More recently, Abrevaya and McCulloch (2014) considered a large
dataset consisting of all penalties in the NHL that occurred from the 1995-1996 regular
season through the 2001-2002 regular season. Using advanced statistical techniques from
the machine learning literature, they observed that the next penalty call depends on a
number of factors including the team that was assigned the last penalty call, the current
time of the match, the time since the last penalty and the home team.

This paper builds on the work of Abrevaya and McCulloch (2014) in several ways.
We consider more recent seasons in our data analysis, 2009/2010 through 2013/2014.
This is important because a lockout occurred during the 2004/2005 season, and from
that time forward, important rule changes in the NHL were implemented. Many of these
rule changes were concerned with an attempt to emphasize the skill and speed of the
game. And with harsher standards for penalties, the determination of penalties changed
dramatically in the season following the lockout (Vesper 2007). Whereas Abrevaya and
McCulloch (2014) observed that the next penalty is more likely to be called against the
team that was not assigned the most recent penalty, we present a nuanced view of this
finding. Specifically, it is the totality of penalties that have been called on each team that
plays a role in the determination of the next penalty. The team which has fewer penalties
in aggregate is more likely to receive the next penalty. Also, our paper investigates the
tendencies of individual referees with respect to their decision making. The proposed

methodology has the potential to assist in the performance evaluation of referees.



There is a secondary area of literature that is related to our work. It concerns refereeing
bias in soccer. There are a number of papers that suggest that refereeing bias exists where
the dependent variable is either cards assigned (yellow and red) or the number of minutes
of extra time added to a game. Some of the interesting findings include an officiating bias
in favour of the home team (Buraimo, Forrest and Simmons 2010 and Rocha et al. 2015)
and that the composition of the crowd affects favoritism (Dohmen 2008 and Garicano,
Palacios-Huerta and Prendergast 2005).

In Section 2, we begin by describing the dataset. The data was taken from the
2009/2010 through 2013/2014 regular seasons of the NHL. Hence, the results are only
directly applicable to the NHL. We then carry out logistic regression analyses which in-
vestigate the effect of various covariates on the next penalty call. The results are then
compared to the results obtained through a boosting algorithm and are found to be com-
parable. Section 3 provides a discussion of possible causes of the inferences obtained in
Section 2. We distinguish between biases that are due to refereeing decisions and those
that are due to situational changes in the way the game is played. Then in Section 4, we
expand the investigation to individual referees by introducing a performance metric for
referees. The metric introduces no additional parameters into the model. We make the
distinction between referees (who call penalties) and linesmen (who call only restricted
types of penalties such as “too many men on the ice” and who may sometimes report
infractions to referees). We conclude with a short discussion and concluding remarks in

Section 5.



2 ANALYSES USING LOGISTIC REGRESSION

Our penalty data were obtained from the website www.nhl.com and involve match in-
formation from the 2009/2010 through 2013/2014 NHL regular seasons. A web crawler
was used to scrape the data. Considerable effort was required to convert the data to a
useable format and to check for errors. We have omitted 10-minute penalties as they do
not confer a manpower advantage. Although summary statistics on penalties are avail-
able, our data is more comprehensive as we obtained covariates of interest at the times
that the penalties occurred. With four full regular seasons of NHL data (82 games per
team) and the 2012/2013 lockout season (48 games per team), we collected penalty data
for 5640 matches. Our resultant penalty data file consists of 42424 rows, where each
row corresponds to a penalty call. Therefore, on average, there were 42424/5640 = 7.5
penalties called per match.

With the above data, we fit various logistic regression models. We do not consider
every penalty that occurred; only those “penalty occasions” that provided a manpower
advantage. For example, consider a situation where both Team A and Team B received
offsetting 5-minute penalties. Since neither team was awarded a powerplay advantage,
we do not consider this as a penalty occasion. As another example, consider a situation
where Team A received a 5-minute penalty and Team B received a 5-minute penalty and a
2-minute penalty. We count this as a single penalty occasion where Team A was awarded
a powerplay. The resulting dataset consists of n = 38084 penalty occasions.

We fit logistic regression models where y; = 1(0) according to whether the ith penalty

was called against the home (road) team, i = 1,...,n. The dependent variable y; is



distributed according to y; ~ Bernoulli(p;) and we considered the following covariates:

T4

X2

X34

L 44

total road penalties minus total home penalties in the particular match when
the 7th penalty was called

total road goals minus total home goals in the particular match when the ith
penalty was called

the time in the match when the ith penalty was called; x3; ranges from the
Oth minute to the 65th minute which is the end of overtime

team strength parameter where values 1/0/-1 correspond to a stronger home
team, evenly matched teams and a stronger road team based on regular

season points

In Table 1, we present the results from fitting various logistic regression models where

each model includes an intercept term. The Akaike Information Criterion (AIC) incorpo-

rates a penalty term so that the complexity of models are taken into account. We observe

that the best fitting model is the one which consists of all four covariates xzy, xs, x3 and

x4. We also note that most of the variability is explained by the covariates z; and x».

Model AIC Model AIC
T1,To, X3, Ty 01622 | 29, 14 52598
T1,T9, T3 51628 | x9,x3,24 52598
T1,T2, T4 51628 i) 52601
T1,T9 51634 L9, T3 52602
T1,T3,T4 51689 T3 52739
T1,T3 51690 | =4 52739
T1, Ty 51692 | z3, x4 52741
1 51693

Table 1: Logistic regression models initially considered and the resulting AIC diagnostic
where each model includes an intercept term. The models are listed in increasing order
of AIC such that the best fitting models appear at the top.



Using the full model based on all four covariates, we then considered the contribution
of interaction terms to see if model improvements could be obtained. The six possible
interaction terms were xyxy, T1x3, T1%4, ToTs, Toxy and xzxry. We began adding the
interaction terms to the model in an attempt to improve AIC. We also dropped terms
from the model that were not statistically significant. Through this iteration procedure,
the “best” model is given by

log <1pA> = —0.1237 + 0.40142, — 0.0520z5 — 0.0299x4 — 0.004621 23 (1)

-P
which has a greatly improved AIC = 51548. The five estimates in model (1) have associ-
ated p-values 2.0 x 10716, 2.0 x 10716, 1.4 % 107'%, 0.0048 and 2.0 * 10716 respectively. In

terms of the implications for hockey, the partial effects are summarized as follows:

the next penalty is more likely to be called on the road team

e the next penalty is more likely to be called on the team that has accumulated fewer

penalties in the match
e the next penalty is more likely to be called on the team that is leading in the match
e the next penalty is more likely to be called on the weaker team

e as the match progresses, the effect due to penalty differential (i.e. the second bullet
point) is slightly reduced

When considering the fitted logistic regression model (1), it is instructive to look at
both the size of the estimated parameters Bl and the potential values of the associated
covariates. When doing so, it is apparent that penalty differential z; has the greatest
effect on the outcome of the next penalty call. For example, consider the case where

the road team has accumulated x; = 3 more penalties than the home team, and default
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values are set for the remaining covariates (i.e. 23 = 0, 3 = 30 and x4 = 0). Then the
probability that the home team receives the next penalty is a stunning p = 0.66. The
intercept term is also of particular interest as it conveys a type of home team advantage;
i.e. the rate which penalties are assigned to the home team. With all things being equal
(i.e. 21 =0, 9 = 0, 3 = 30 and z4 = 0), the probability that the next penalty is called
on the home team is p = 0.47. This estimate agrees with Remark #2 from Beaudoin and
Swartz (2010) which notes that penalties are called on the road team in a 11:10 ratio (i.e.

with probability 0.476).

2.1 A Machine Learning Approach

Whereas logistic regression has been the long-standing approach for analyzing Bernoulli
data, there has been increasing interest in analyses based on machine learning algorithms
in the context of large datasets. Machine learning analyses often suffer from a lack of direct
interpretability. On the other hand, these modern approaches tend to provide superior
predictive capability and do not require the specification of a parametric relationship
involving the covariates (Hastie, Tibshirani and Friedman 2009).

The particular machine algorithm which we considered is gradient boosting which is
based on an ensemble of decision trees. In our implementation, we used the gbm function
from the gbm package in R (Ridgeway et al. 2015). The computations were based on the
same response variable and covariates used in the analyses based on logistic regression.
Without going into the details regarding our choices, the gbm tuning parameters were set
according to shrinkage = 0.005, n.trees = 1350, interaction.depth = 2 and learning rate
= 0.005.

In Table 2, we rank the importance of the four covariates using the relative influence

variable provided by gbm. Relative influence is scaled so that its sums to 100 over all



covariates. We observe a similar pattern as obtained in logistic regression. Namely z;
(penalty differential) is by far the most important predictor and z5 (goal differential) is

the second most important covariate.

Covariate | Relative Influence
1 79.18
T 11.11
Z3 8.93
Ty 0.78

Table 2: The relative influence of the four covariates ranked from most important to least
important based on the gradient boosting algorithm.

We now provide a comparison between the predictions obtained via logistic regression
and gradient boosting. For ease of notation, the fitted logistic regression model (1) can
be expressed as logit(p) = B The expression can then be inverted to solve for the
predictive value p = exp{z’'8}/(1 + exp{a’B}). In Table 3, we provide the predictions
for various covariate settings. When focusing on a particular covariate, say z;, we set
the remaining covariates at their default values. The default values (i.e. standard values)
for the four covariates are z; = 0, x5 = 0, 3 = 30 and z, = 0. We observe that the

predictions obtained via logistic regression and gradient boosting are comparable.

3 INTERPRETATION OF RESULTS

We have observed that the team which is assessed the next penalty depends on which
team is the home team, the accumulated penalty differential, the goal differential, the time
of the match and the relative strengths of the two teams. There are various explanations
for the effects, and we must be careful in assigning causal relationships.

The tempting conclusion is that the observations are a result of officiating biases such



Covariate | GB LR | GB LR | GB LR | GB LR
X1 .171:4 171:2 [E1:—2 [E1:—4
0.70 0.72]0.59 0.60 | 0.37 0.34|0.29 0.24
) .172:2 172:1 [EQZ—]_ ZEQZ—Q
0.44 044|045 0.46 | 0.50 0.48 | 0.50 0.50
I3 T3 = 10 T3 = 20 T3 = 40 T3 = o0
0.47 047|048 0.47 047 047|047 047
Xy Ty = 1 Ty = —1
0.47 0.46 | 0.48 0.48

Table 3: The predicted probabilities of Prob(y = 1) for gradient boosting (GB) and
logistic regression (LR) for specified covariate values. When focusing on a particular
covariate (left column), default values are assigned to the remaining covariates.

as those that have been established in soccer. On the other hand, it is possible that teams
modify their playing behavior according to the match situation.

For example, it is possible that when a team is ahead in a match, they decide to play
rougher and incur more penalties. It is also possible that when a team has more penalties
in a match, they decide to be more careful and are less likely to have the next penalty
called against them. Personally, we find these two explanations unlikely. However, a
more tenable explanation is that teams that are winning play more conservatively and
spend more time in their defensive zone and with less possession. This may contribute
to more penalties such as holding and hooking. To investigate this conjecture, Figure 1
provides a graph of the proportion of hooking and holding penalties plotted against the
goal differential attained by the penalized team. We observe that as the goal differential
of the penalized team increases, more of their penalties tend to be of the holding/hooking
variety. This is indicative that leading teams begin to play cautiously, trying to preserve
their lead and are perhaps less willing to venture into the offensive zone. It is suggestive

that playing style may change as a team builds a lead.
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0.30
|

Proportion of holding and hooking calls
0.26
!

Goals by penalized team minus goals by opponent

Figure 1: Proportion of holding and hooking calls plotted against the goal differential
attained by the penalized team.

As a further study of how goal differential x5 may affect playing style, Figure 2 provides
a graph of the percentage of shots on goal by the home team plotted against x5 in even
manpower situations. There is a clear increasing pattern which demonstrates that as the
road team’s goal differential increases, the home team takes a greater percentage of shots.
The implication is that teams play more cautiously and play more in their own end as
their lead increases.

Analogous to Figure 2, Figure 3 investigates how penalty differential affects playing
style. Figure 3 provides a graph of the percentage of shots on goal by the home team
plotted against x; in even manpower situations. Unlike Figure 2, there is no clear pattern
in Figure 3 and this suggest that the effect on penalty calls due to penalty differential can
be mainly attributed to officiating.
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0.54 0.56 0.58
| | |

Proportion of shots on goal by home team
0.50 0.52
! !

x2
Figure 2: Proportion of shots on goal by the home team versus goal differential x5.

The logistic model (1) also suggests that penalties are more likely to be called on
the road team (intercept term) and on the weaker team (z4). It is plausible that these
observations may also have an explanation involving playing style, and are not exclusively
attributed to refereeing bias. For example, both road teams and weaker teams may feel
that their opportunity to win is diminished, and that playing a conservative style and
preventing goals is in their best interests. As mentioned above, a conservative playing
style where one has less possession, may lead to increased penalties.

To investigate the situational changes simultaneously, we fit the same logistic model
(1) to the data arising from the first half of matches (i.e. the first 30 minutes). We
suspect that teams are less likely to modify their playing behavior and strategies early

in the match due to situational circumstances. The first half of a game is too early for
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| | | |

Proportion of shots on goal by home team

0.510
|

x1

Figure 3: Proportion of shots on goal by the home team versus penalty differential x;.

teams to think about preserving leads and playing more cautiously. The first half fitted

logistic regression model is given by

~

log <1 b ) = —0.1132 + 0.4886x; — 0.0471z9 — 0.042624 — 0.0089x 73 (2)

The estimates in (2) are all statistically significant. Moreover, we observe only small
differences between the estimates in (2) and those given in (1). In particular, the estimates
in (2) are all within two standard deviations of the estimates in (1). This suggests that
the situational effects on penalty calls are primarily due to officiating biases.

In summary, there are arguments that can be put forward that suggest that situational
effects may influence playing style and hence the probability of receiving the next penalty.
On the other hand, the similarity between the estimates in (1) and (2) suggest that

refereeing bias is the major explanation for the effect of 21, 25, 3 and x4 on Prob(y = 1).
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4 INVESTIGATION OF INDIVIDUAL REFEREES

In this section, we use the same dataset but restrict our analysis to the 26 referees who of-
ficiated at least 300 games. Referees work together in pairs where the partner assignments
are rotated throughout the season.

Referring back to the covariates considered in logistic regression, and following the
discussion in Section 3, we believe that the intercept term and the x; term are the terms
most strongly associated with officiating bias. Recall that the intercept term describes
the home team advantage whereas x; is the accumulated penalty differential in favor of
the road team. Therefore, for the evaluation of referees, we consider only these two terms,

and the associated logistic regression model

log <1 fﬁ) = —0.1154 + 0.2302z; . (3)

Model (3) is simpler than the previously considered model (1) but we note from Table
2 that x; is the covariate which explains most of the variation in Prob(y = 1). In our
evaluation of referees, we state two assumptions which we posit are indicative of good

officiating:
1. the home team and road team should be penalized at equal rates
2. the penalty differential should not be predictive of the next penalty

Under these two assumptions, the logistic regression model (3) reduces to

p
1 =0 <+ =0.5 4
og<1_p> p (4)

Now let By = —0.1154 and $; = 0.2302 be the estimated parameters in (3). Then

1) = eXP(BoAﬂL Blffl)
1+ exp(fBo + Biz1)

(5)

14



is the estimated probability that the home team is assessed the next penalty when the
total road penalties minus home penalties is z;.

Our proposed measure of refereeing performance has a cross-validation aspect to it
where for a given referee j, we fit the same logistic regression model (3) except that we
exclude all observations involving referee 7. Accordingly, let B((]j ) and B{j ) be the estimated

parameters omitting the data corresponding to referee j. Then

ﬁ(])($l) — eXp<6é]) _'_ 69)1;1) (6)

Ut exp(30) + A7)
is the estimated probability (omitting referee j) that the home team is assessed the next
penalty when the total road penalties minus home penalties is .

Referring to (4), (5) and (6), the idea underlying our proposed performance metric is

that referee j is making better than average refereeing decisions under situation x; if
59 (1) — 0.5] > [p(21) — 0.5]

and is making worse than average refereeing decisions under situation x; if
P9 (1) — 0.5| < |[p(x1) — 0.5] .

The rationale is that if referee j’s exclusion pulls the logistic model further away from the
idealized surface, then referee j is making good decisions.
For the jth referee, we therefore propose the following statistic as a refereeing perfor-
mance metric:
Qj =Y w(wy) (P9 (x1) = 0.5] = [p(x1) — 0.5 ) (7)
1

where the weight w(z;) is the proportion of penalties in the entire dataset corresponding

to x1. For example, consider the n = 38084 penalty occasions that are recorded in the
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dataset. Let n(2) = 3883 be the number of those occasions when the road team had
x1 = 2 more total penalties than the home team. In this case, w(2) = n(2)/n = 0.102. To
illustrate formula (5), we note that p(2) = 0.585. This means that when z; = 2, 58.5%
of the time (which is remarkably high), the next penalty is called on the home team.
Suppose that the jth referee has pi)(2) = 0.600, i.e. this is the corresponding probability
when penalties called by the jth referee have been deleted from the dataset. Then, the
contribution to the metric @; due to the z; = 2 term is 0.102(]0.600—0.5|—[0.585—0.5|) =
0.00153. The contribution is positive meaning that referee j is making better than average
decisions under z; = 2. Referees for whom (@) is positive have an above average officiating
metric. Conversely, referees for whom (); is negative have a below average officiating
metric. In (7), more weight is given to the more common situations that occur in hockey
games.

Now a potential difficulty with (7) is that we do not want a performance metric that
depends greatly on the number of matches officiated. And we note that (7) is based on
estimates which may be sensitive to sample size. Since we have limited our investigation
to only those referees who have officiated at least 300 matches, this should not be a great
problem. Also, we note that the maximum number of matches officiated by any referee in
our dataset is 345. However, to provide a less sensitive measure (in case we wish to consider
referees with fewer matches), we suggest a variation to (); based on a bootstrapping-type
procedure (Efron and Tibshirani 1993). For the jth referee, we resample m = 200 of his
matches without replacement. These m matches are then excluded in the estimation of
pY)(x,) using logistic regression. For each resample of size m, Q; is calculated, and this
procedure is repeated 5000 times. The average value of ); is then used as the performance
measure. The rationale is that every referee’s performance measure is based on the same

number m of excluded matches.
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An alternative approach for assessing officiating performance may involve introduc-
ing an effect for each referee. However, this increases the parametrization of the model
significantly.

Although the measure (7) does not have a straightforward interpretation, it does
permit the ranking of referees. In Table 4, we rank the 26 NHL referees from the dataset
based on the bootstrapped performance measure (); in (7). Tim Peel is the top referee,
and at the bottom of the list lies Kevin Pollock. We also observe that Tim Peel and Ian
Walsh are more extreme in the positive sense than Kevin Pollock is in the negative sense.
We found that the results were not greatly sensitive to modest departures from the choice
of m = 200.

We are able to provide some context to the performance measure (7). Consider two
hypothetical referees. We define Referee A as the perfect referee and Referee B as the
completely biased referee. Recall that m = 200 is the number of games that are excluded
for referee j when calculating ). Since there are on average 6.753 penalty occasions per
match, we set the number of penalty calls in situation z; by Referees A and B equal to
6.753(200)w(x;) rounded to the nearest even integer. For the perfect Referee A, he calls
half of his penalties in situation x; on the home team and half of his penalties on the
road team. For the completely biased Referee B, he calls penalties in the same manner

as Referee A, except

e if 1 > 0, he calls all the penalties on the home team

e if 1 <0, he calls all the penalties on the road team (8)

To elaborate on the decision making of Referee B, consider the first bullet point in (8).
At the time of the next penalty, the road team has more penalties than the home team.
To “even things up”, Referee B calls the penalty on the home team.

Augmenting our dataset with the calls made by the two hypothetical referees, we
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obtain 1000Q); = 2.56 for Referee A and 1000Q); = —6.67 for Referee B. These values
provide some context for the results presented in Table 4. For example, it appears that
some of the top referees (e.g. Peel and Walsh) are very good. That is, they are unbiased
in terms of penalty differentials. On the other hand, the referees at the bottom of Table 4
are nowhere close to being as bad as they could be. This is somewhat expected and also
reassuring.

To further aid in the interpretation of the @); values reported in Table 4, the bootstrap-
ping approach also allows us to get a sense of the associated variability. The standard
deviations from bootstrapping are given in Table 4. We see that the standard deviations
are of similar magnitude. We suggest that differences of less than one standard deviations
should not be regarded as highly meaningful. Therefore, perhaps Peel and Walsh are in
a class of excellence by themselves. In addition, since ); = 0 corresponds to an average
referee, perhaps Pollock, McCauley, Martell, Van Massenhoven and Kowal can be viewed
as slightly below average. Other clear divisions are less obvious.

Furthermore, it would seem good practice for the NHL to assign their best referees
to important matches. We recorded the refereeing assignments for the 18 games that
consisted of semifinals and finals matches during the 2013/2014 NHL playoffs. In the
NHL, there are two referees who officiate each game. Therefore there were 36 refereeing
assignments for the 2013/2014 playoff games under study. Of the referees recorded in Ta-
ble 4, Kozari, O’Rourke, Watson, Joannette, O’Halloran, McCauley and Pollock received
match assignments. According to (); in Table 4, only Kozari and O’Rourke were amongst
the top 10 referees. Obviously, this suggests that the NHL are using other criteria (Fraser
2013) for determining refereeing assignments in the playoffs.

Finally, let’s return to the statistic (7). The statistic was proposed because we believe

that the impact of the covariate x; on penalty calls is mainly due to refereeing bias.
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However, it is plausible that a small portion of the effect is due to a change in playing
style. We quantify this by saying that refereeing bias ought to be instead measured by
a comparison of [pY)(z;) — 0.5 + A| with [p(z;) — 0.5 + A| where |A| is small relative to
both [p9)(z;) — 0.5] and [p(z;) — 0.5. In this case, it is easily seen that

Q; =Y w(z1) (199 (1) — 0.5+ A] = [p(xr) — 05+ Al )

1

and (7) are equivalent if sign(p")(x;) — 0.5) = sign(p(z;) — 0.5) This provides added

support for the use of (7) as an appropriate measure of refereeing bias.

5 CONCLUDING REMARKS

Two of the primary observations in this paper are that (1) teams that have taken more
penalties in a match are less likely to have the next penalty called against them and (2)
teams that are leading in a match are more likely to have the next penalty called against
them (also noted by Abrevaya and McCulloch (2014)). Both of these observations may be
suggestive of poor officiating. However, as discussed in Section 3, we need to be careful
about our conclusions. It may be possible that NHL teams behave differently under
different situations leading to biased penalty calls. It would be good to explore the causal
relationships in more detail and attempt to disentangle the reasons behind biased penalty
calls. For example, one could investigate European professional hockey leagues where the
referees are European. It may be safe to assume that European teams play hockey in the
same manner as NHL teams, and therefore differences in penalty calls may be strictly
attributed to officiating decisions.

It may also be possible that there exist other sources of bias. For example, one could
imagine refereeing bias due to teams, players, coaches, the fan-base, etc. Although we

have not tested for any of these, such biases (if they exist) are more objectionable from
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the point of view of fair play. Hence, we suspect they are less likely to be present, at
least in a way that greatly disrupts the integrity of the game. Extending our model to
investigate different sources of refereeing bias is a valuable direction for future work.
The evaluation of the performance of NHL referees is a serious and detailed exercise
that involves the scrutiny of film, and where the evaluation is carried out by top-level
staff (Fraser 2013). Whereas there is no obvious substitution for the careful and time-
consuming review process, we believe that the methodology presented in Section 4 provides
a simple way to evaluate aspects of refereeing that is objective and can be replicated by
anyone who possesses basic statistical expertise. Our methodology detects that not all

referees are the same.
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Referee Matches | Measure | Standard
1000Q; | Deviation
01. Peel, Tim 341 1.26 0.32
02. Walsh, lan 343 0.96 0.30
03. Devorski, Paul 336 0.57 0.26
04. Pochmara, Brian 343 0.51 0.31
05. Dwyer, Gord 329 0.36 0.29
06. Morton, Dean 329 0.36 0.27
07. Kozari, Steve 345 0.34 0.34
08. O’Rourke, Dan 343 0.18 0.30
09. Lee, Chris 343 0.17 0.28
10. St. Pierre, Justin 318 0.10 0.23
11. Watson, Brad 342 0.07 0.32
12. Meier, Brad 343 0.02 0.28
13. Joannette, Marc 342 -0.06 0.24
14. Kimmerly, Greg 338 -0.08 0.27
15. Furlatt, Eric 340 -0.11 0.26
16. LaRue, Dennis 337 -0.12 0.20
17. Sutherland, Kelly 337 -0.13 0.24
18. Leggo, Mike 339 -0.16 0.23
19. O’Halloran, Dan 340 -0.17 0.20
20. Rooney, Chris 340 -0.20 0.26
21. St. Laurent, Francois 341 -0.24 0.27
22. Kowal, Tom 341 -0.49 0.22
23. Van Massenhoven, Don 315 -0.54 0.23
24. Martell, Rob 331 -0.63 0.22
25. McCauley, Wes 344 -0.64 0.20
26. Pollock, Kevin 340 -0.87 0.19

Table 4: Performance measures and standard deviations for referees with at least 300
games officiated during the 2009/2010 through 2013/2014 NHL regular seasons. The
referees are listed according to decreasing levels of performance.
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