STOP:bit MicroPython Tutorials smalldevices

Project 1: Single Traffic Light

Page 1 of 12

STOP:bit MicroPython Tutorials smaiidevigog_g

In this project, you will learn to:

[Write a function to turn on individual Traffic Light LEDs
A Call the function in your main loop

You will need:

d One Kitronik STOP:bit, assembled with a micro:bit
[Micro USB cable for programming the micro:bit

1 Battery pack (2x AAA batteries) for the micro:bit

@ Mu editor’ installed on your laptop

Step 1: Launch mu editor, and enable micro:bit mode
1 Go to Applications in mac, or the Programs menu in Windows, and launch mu

editor by clicking the icon that looks like this:@
[Once the editor is running, click on the Mode button =
[Click on BBC micro:bit so it is highlighted, then click OK.

-] Select Mode

Please select the desired mode then click "OK". Otherwise, click "Cancel”.

% Adafruit CircuitPython

Usa CircuitPython on Adafruit's line of boards.

BBC micro:bit
Write MicroPython for the BEC micro:bit.

Pygame fero

A Make games with Pygame Zero.

P Python 3
Create code using standard Pythen 3.

Change mode at any time by clicking the "Mode” button containing Mu's loga,

Cancel QK

 https://codewith.mu/

Page 2 of 12

STOP:bit MicroPython Tutorials smalldevices

Step 2: Write your code

Each traffic light is made up of three coloured Light Emitting Diodes (LEDs). Each LED has
two wires; one connects to ground, and the other to pin 0, 1, or 2, on the micro:bit.

O Type the code below into mu editor, then connect your micro:bit USB cable, and click

the Flash © button to download the code onto the micro:bit.
from microbit import *
pin2.write digital (1)

O If all went well, the green LED connected to pin2 should be lit! Try changing pin2 to
pinl and the amber LED connected to pinl should now be lit.

0 Insteadofa .write digital (1) to pin2, write O to the pin, and it should turn the
LED off.

O Now click the save = button on mu editor, and save a copy of your code as
“stopbit.py”inyourmu code directory.

What our code does:

-> The LEDs each have one wire connected to ground, and one connected to a pin: 0, 1,
or 2. We switch the power from low(0) to high(1) with ourdigital write (1)

- By sending to a different pin, we turn on a different LED.

- Writing zero(0) to the pin will set it to low(0), and turn off the LED.

Step 3: Write a function to turn one LED on, and the others off

We can reduce the amount of code we need to write, by creating a function in Python®
We call the function by typing its name, and customise what it does by giving it
information in a parameter, inside the brackets ().

Q First, delete the line, pin2.write digital (1) from your code in mu editor (leave
the import line there). Now that we can turn LEDs on and off, let's make a function to
turn on an individual LED, and turn the others off.

2 https://www.w3schools.com/python/python_functions.asp

Page 3 of 12

https://www.w3schools.com/python/python_functions.asp

STOP:bit MicroPython Tutorials smalldevices

Q1 To start defining our stopBit () function, we add the following line, and add a
parameter called colour. The parameter will tell our function which colour LED to
turn on, when we later call our function.

def stopBit (colour):

O To put code in our function, we’ll indent? it four spaces (mu editor will do this for us
automatically). We indent it again to put in inside an if statement. So now our code
should look like this (Note: the new lines you need to add are always in bold):

from microbit import *

def stopBit (colour) :
if colour == “green”:
pin0.write digital (0)
pinl.write_digital(0)
pin2.write digital (1)

3 Now that our function is defined, we can call it, and tell it what colour we want Lit.
Add the next line under your function, and make sure it isn't indented, so it’s outside
of the function definition.

stopBit (“green”)

Now save your updated code in your mu_code directory again, then click on the flash
button to send it to your connected micro:bit. Only the green LED should turn on.

O We still need to add two more colours to our i f statement to let us turn on the amber
and green LEDs - can you extend your code with e1i f to add amber and - colours
to your function?

& Once your function can handle “green”, “amber”, and “red” colours, make them loop
foreverin a while loop. In your loop, make sure tell the traffic lights to wait for some
time between changes!

Q Test your code by flashing it to the micro:bit. It should cycle through green, amber,
then red, waiting about 5000 milliseconds between each. Hint: use sleep (5000) .

3 “Indent” means to move text four spaces to the right, tab will work as well in mu (although
there’s huge arguments between using tabs vs. space)

Page 4 of 12

STOP:bit MicroPython Tutorials smalldevices

What our code does:

-> Defines a function that accepts a colour parameter, which can accept 3 different

”n u

arguments; “green”,

amber”, and “red”.

-> An endless loop calls our function to change the traffic light between 3 different
states, shown in the state table below.

State Red LED Amber LED Green LED
green off off on
amber off on off
red on off off

Congratulations! You've successfully programmed a single Australian traffic light! g

Page 5 of 12

STOP:bit MicroPython Tutorials smalldevices

Project 2: Two Traffic Lights

Page 6 of 12

STOP:bit MicroPython Tutorials smalldevices

In this project, you will learn:

 Write a state table to represent the different changes between two traffic lights.

@ How to reuse our function and save time.

Q Send our light changes to another STOP:bit over radio, and write code to match our
truth table.

You will need:

O To have completed Projectl: Single Traffic Light first.

d 2 x STOP:bits and micro:bits with USB cables.
d 2 x battery packs for our micro:bits.
 Mu editor installed on your laptop.

Step 1: Extend our truth table to use 2 traffic lights

Here is our previous state table that shows 3 states with 1 traffic light

State Red LED Amber LED | Green LED
green off off on
amber off on off
red on off off

We can add another traffic light to our state table - T1 is the first traffic light and T2 is the

second traffic light. These traffic lights are arranged on different streets of an

intersection (they need to work together to make sure traffic runs smoothly).

State T1Red LED | T1 Amber |T1 Green T2 Red T2 Amber | T3 Green
LED LED LED LED LED

1 off off on on off off

2 off on off on off off

3 on off off off off on

4 on off off off on off

Page 7 of 12

STOP:bit MicroPython Tutorials smalldevices

Note: When one traffic light changes to amber, the other traffic light stays red - this
gives the traffic enough time and warning to stop, before the traffic from the other
street gets the green light to go.

Step 2: Reuse our code

We need to remove the main while loop from our previous code, so that we can make it
into a module that we can import.

O Launch mu editor as we did in Step 1 of the Single Traffic Light project. Click on the

load = button in mu, to load our stopbit.py script. Delete the while loop from
the bottom of the script so it looks like this:

from microbit import *

def stopBit (colour):

if colour == "green":
pinO.write digital (0)
pinl.write digital(0)
pin2.write digital (1)

elif colour == "amber":
pin0.write digital (0)
pinl.write digital(1l)
pin2.write digital (0)

elif colour == "red":
pin0.write digital(1l)
pinl.write digital (0)
pin2.write digital (0)

 Click the save button in mu, to save your script.
Congratulations, you just made a module that can be imported into other scripts!

Step 3: Copy our module onto the micro:bit

Q Connect the first micro:bit and click the Files button in mu. You'll see two boxes
open up at the bottom of mu. Find your stopbit.py module file in the right box,
and drag it to the box labelled Files on your micro:bit.|f you've already got
some code flashed on your micro:bit, you'll see amain.py file there, too.

Page 8 of 12

STOP:bit MicroPython Tutorials smalldevices

Files on your micro:bit:

stopbit.py
main. py

 Repeat the process by plugging in the second micro:bit and clicking Files again, to
drag the stopbit.py module to that micro:bit too.

Step 4: Write code for the first micro:bit

Now we can convert the new state table into our main loop on the first micro:bit.

State T1Red T1 Amber Tl Green |T2Red T2 Amber | T3 Green
LED LED LED LED LED LED

1 off off on on off off

2 off on off on off off

3 on off off off off on

4 on off off off on off

It looks like a lot of work, but don’t worry because the stopBit () functionin our
module, does most of the work for us!

 Click on New * in mu editor to open up a new tab and add the following code at the

top:

from microbit import *

from stopbit import stopBit

0 Because we just imported our stopBit () function, we don’t have to rewrite it!

Add the main while loop below that - this time we have the red and amber function
calls too (Remember: the new lines you need to add are the bolded ones)

Page 9 of 12

STOP:bit MicroPython Tutorials smalldevices

from microbit import *

from stopbit import stopBit

while True:

stopBit (“green”) # state 1
sleep(5000)

stopBit (“amber”) # state 2
sleep (2500)

stopBit (“red”) # state 3
sleep (2500)

stopBit (“red”) # state 4
sleep (2500)

Flash this to the first micro:bit and check that it cycles through the different colours.
The comments help us remember that each stopBit () call corresponds to each of
our states.

Step 5: Use radio to send signals (first micro:bit)

 We need the radio module to be able to send our signals from the first traffic light.
Under that, add import radio and code to setup the radio. If you're near other
micro:bits using radio, make sure to set a different channel.
from microbit import *
from stopbit import stopBit

import radio

radio.on()
radio.config(channel=7)

0 To send a message to the second micro:bit, use the radio.send () function.
For example, to send the message “green”: radio.send (“green”) .

In our truth table, when Traffic Light 1 has “red” lit, Traffic light 2 has “green” lit.

Looking at the state table, send the corresponding message for Traffic Light 2, under
each stopBit () function call.

The code for the first micro:bit should now look like this:

Page 10 of 12

STOP:bit MicroPython Tutorials smaiidevigocme_g

from microbit import *
from stopbit import stopBit

import radio
radio.on ()
radio.config(channel=7)

while True:
stopBit ("green") # state 1
radio.send ("red")
sleep (5000)
stopBit ("amber") # state 2
radio.send ("red")
sleep (2500)
stopBit ("red") # state 3
radio.send ("green")
sleep (2500)
stopBit ("red") # state 4
radio.send ("amber")
sleep (2500)

Save this code in your mu_code directory as t1.py and then flash it to the first
micro:bit.

Step 6: Write code to receive radio (second micro:bit)

The only difference in the second micro:bit is in the main while loop. This time, we just
need to call stopBit () whenever we receive a radio message.

 Connect the second micro:bit to your computer, and click the New button in mu
editor, to open a new tab, and copy over the code from t1.py. Now, remove
everything after the while True: linein this new tab.

The code in the new tab should look like this:

from microbit import *
from stopbit import stopBit

import radio

radio.on ()
radio.config(channel=7)

Page 11 of 12

STOP:bit MicroPython Tutorials smalldevices

while True:
Now just add three lines to receive and set the LEDs on the second micro:bit.

from microbit import *

from stopbit import stopBit

import radio
radio.on ()
radio.config(channel=7)

while True:
incoming = radio.receive ()
if incoming:
stopBit (incoming)

Save the tab with the above code in the mu_code directory, as t2.py

Flash the code onto the second micro:bit and use the Files button to drag the
stopbit.py module on.

With the STOP:bits connected to each micro:bit, you can now attach a battery pack to

each and draw a mini intersection on a piece of paper and watch the lights work
together!

Congratulations, you've just made a working set of Australian traffic lights! u u

Page 12 of 12

