“Spliced joints for cane salmon rods are not so new,” wrote John G. Lynde in his 1969 book, 34 Ways to Cast a Fly. “I had occasion to see one of Farlow’s ‘Denham Series’ spliced salmon fly rods in the hands of Major L.R. Dunne at an international casting tournament in England in 1937 as well as during many hard practice sessions which preceded the tournament.

…The advantages of spliced rods as opposed to ferrule-jointed rods are two-fold: first, the splices do not interfere with the action of the rod, insomuch as the rod behaves as one continuous length of cane; and secondly, a spliced rod will stand up to the torsion exerted by prolonged Spey casting whereas an ordinary ferrule-jointed rod will not. It stands to reason that casting should always be carried out with the splices square on to the direction of rod movement; this habit is easily acquired.”

Spliced joints are certainly not as convenient as metal ferrules but, for large salmon or steelhead Spey rods, that’s the only disadvantage. Besides the benefits mentioned above, spliced joints are a weight saver, and the problem of fitting and lapping, and stuck ferrules is forever eliminated. Transporting a spliced rod on a river is uncomplicated with the use of magnetic rod holders for your vehicle.

The scarfing block is easily made using a router or table saw. In my case, I used a router and an old countersink bit which I reground to 120 degrees using an adjustable Darex drill bit sharpener. A 12” length of oak 1x2 was cut on a slope of 25:1, and that became the guide when routing the two sides of the scarfing block (see photos). The rod section is held within the groove with a flat side up, and the entire unit is clamped tightly in a vise. Then the excess bamboo is removed and planed smooth using a .002” grooved-sole plane.
The scarf is tapered down to fifty thousandths of an inch. To calculate the length of the scarf, I took the diameter of the rod at the midway point of the scarf, subtracted .050", then multiplied by 25. For any multi-piece rod, calculate the length of each scarf and add them all to the desired total length of rod, then divide by the number of rod sections to get the finished length of each section. For example: my current project is a hollow-fluted, three-piece, double-handed rod, 12½ feet (150 inches) in length. At the 50-inch station the diameter is 0.2822", and the 100-inch diameter is 0.4235". The tip- to mid-section joint then is: .2822" - .050" x 25 = 5.805"; and the mid- to butt-section joint is: .4235" - .050" x 25 = 9.3375". The length of all finished sections then becomes 5.805" + 9.3375" + 150" / 3 = 55.047 inches.

After planing to final dimension, the strips were marked where the hollow fluting begins and ends—approximately two inches from each scarf. For a reel seat, I use a sliding band and “W” fitting so I also leave a two-inch solid section under the “W” fitting for the screws.

The joints are held together with binding cord, electrician’s tape, or other adhesive tape. It takes about one minute to assemble the rod, and half that time to undo.

When not in use, the tips can be protected with a tapered dowel lashed on with light cord.


If you have any questions, contact me at pisces45@shaw.ca