Crown Battery Manufacturing’s team of research and development engineers welcome the opportunity to discuss your technical requirements during the design and specification stage. To access this technical assistance, please contact:

Crown Battery Manufacturing’s Product Support Department
+1.419.334.7181 | sales@crownbattery.com | Fax +1.419.334.7124

PHYSICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>BCI Group Size</th>
<th>Model Description</th>
<th>Nominal Voltage</th>
<th>Length</th>
<th>Width</th>
<th>Container Height</th>
<th>Terminal Height</th>
<th>Weight</th>
<th>Cover & Container Material</th>
<th>Case to Cover Seal Method</th>
</tr>
</thead>
</table>

ELECTRICAL SPECIFICATIONS

<table>
<thead>
<tr>
<th>Ampere Hour Capacity (Ah)</th>
<th>Discharge Capacity Minutes</th>
<th>KWH (kWh)</th>
<th>Internal Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>100 Hr</td>
<td>72 Hr</td>
<td>48 Hr</td>
<td>20 Hr</td>
</tr>
<tr>
<td>295</td>
<td>280</td>
<td>270</td>
<td>260</td>
</tr>
</tbody>
</table>

CHARGING INSTRUCTIONS:

Crown Battery Manufacturing Company specifies the following standard battery charge profile for the CR-260 deep cycle battery when used in an electric vehicle service:

Phase 1: Constant Current (I1) I1 = minimum amperage available > 25 amps
Normal transition to Phase 2 at 2.37 Volts Per Cell.
Safety transition to END OF CHARGE of dV / dt < 0V / 1 hr, dt = 1 hr. (NEGATIVE SLOPE).
Timeout for Phase 1 = 10 hours.

Phase 2: Constant Voltage (U2) U2 = 2.37 VPC
Normal transition to Phase 3 at U2 = 6.0 amps or approximate.
Safety transition to END OF CHARGE of l dt/dt l < 0.4 amp / 1 hr, dt = 1 hr.

Phase 3: Constant Current (I3) I3 = 6.0 amps or approximate
Normal transition to END OF CHARGE at 115 – 118% of AH returned.

PLEASE CONTACT CROWN BATTERY MANUFACTURING COMPANY TO ADVISE THE SPECIFIC CHARGE TERMINATION METHOD USED.

Timeout for charging phases 1 - 3 at 16 hours.
Temperature compensation coefficient = +/- 3 mV / °C.
Recommended Equalization Charge: Every seven (7) days. 4 additional hours at normal finish rate of 6.0 amps.
Safety transition to END OF CHARGE at maximum voltage of 2.7 VPC.
CR-260 Commercial Deep Cycle Battery

APPLICATION RECOMMENDATIONS

<table>
<thead>
<tr>
<th>Specific Gravity</th>
<th>Operating Temperature Range</th>
<th>Self Discharge</th>
<th>Terminal Torque Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully charged battery specific gravity (100% state-of-charge) is 1.275</td>
<td>-40°F to 120°F (-40°C to 49°C). Flooded lead acid battery capacities are temperature sensitive: refer to the temperature / capacity projection chart below to identify available capacity at the application operating temperature. Application Note: Maintain a state of charge greater than 60 percent when operating flooded lead acid batteries at temperatures below 32°F (0°C).</td>
<td>Fully charged batteries that are stored at a temperature of 80°F (27°C) will self-discharge at a rate of 3.5% per week.</td>
<td>SAE / Automotive Terminal Style: 50 to 70 in-lbs / 6 to 8 Nm</td>
</tr>
<tr>
<td>Fully discharged battery specific gravity (100% depth-of-discharge) is 1.125</td>
<td>-40°F to 120°F (-40°C to 49°C). Flooded lead acid battery capacities are temperature sensitive: refer to the temperature / capacity projection chart below to identify available capacity at the application operating temperature. Application Note: Maintain a state of charge greater than 60 percent when operating flooded lead acid batteries at temperatures below 32°F (0°C).</td>
<td>Fully charged batteries that are stored at a temperature of 80°F (27°C) will self-discharge at a rate of 3.5% per week.</td>
<td>Stainless Threaded Terminal (Types C, S, Z): 100 to 120 in-lbs / 11 to 14 Nm</td>
</tr>
</tbody>
</table>

Application Note: Lead acid batteries contain corrosive battery electrolyte and generate highly flammable hydrogen gas. When working near batteries wear protective clothing, gloves, and safety glasses when handling batteries and electrolyte and always work in a well-ventilated area. Do not over-torque terminals. Over-torque can result in terminal damage, breakage, terminal meltdown or fire.

Effect of Battery Temperature on Battery Life

Lead acid batteries are electrochemical storage devices that store and release chemical energy upon demand in the form of electricity. By virtue of their design lead acid batteries are highly reactive to temperature – with the rate of chemical reactions that occur within the battery being affected by the operating temperature where the battery is used. Higher operating temperatures will result in faster chemical reactions within the battery – delivering improved discharge performance; conversely, cooler operating temperatures will result in slower internal chemistry. However, higher operating temperatures also result in shortened battery life as the increased rate of chemical reactions will accelerate the rate of deterioration of internal components.

Typical battery life is based upon a baseline operating temperature of 80°F / 27°C. Temperature increases of 15°F / 10°C over the baseline will cause the battery’s rate of internal chemical reactions to double – something that will reduce battery life due to the accelerated deterioration of internal components. Please contact Crown Battery to discuss any minimal requirements for battery life when operating batteries in temperatures greater than 80°F / 27°C.

Available Capacity at Application Operating Temperature

Effect of Battery Temperature on Battery Life

Lead acid batteries are electrochemical storage devices that store and release chemical energy upon demand in the form of electricity. By virtue of their design lead acid batteries are highly reactive to temperature – with the rate of chemical reactions that occur within the battery being affected by the operating temperature where the battery is used. Higher operating temperatures will result in faster chemical reactions within the battery – delivering improved discharge performance; conversely, cooler operating temperatures will result in slower internal chemistry. However, higher operating temperatures also result in shortened battery life as the increased rate of chemical reactions will accelerate the rate of deterioration of internal components.

Typical battery life is based upon a baseline operating temperature of 80°F / 27°C. Temperature increases of 15°F / 10°C over the baseline will cause the battery’s rate of internal chemical reactions to double – something that will reduce battery life due to the accelerated deterioration of internal components. Please contact Crown Battery to discuss any minimal requirements for battery life when operating batteries in temperatures greater than 80°F / 27°C.

The data shown are nominal and should not be construed as maximum or minimum values for specification or final design. Data for this product type may vary from that shown herein, and Crown Battery makes no warranties – expressed or implied – based upon the data shown above.

The Power Behind Performance

Crown Battery

Visit our website at www.crownbattery.com