

2 Channel CAN-Bus Thermocouple Interface K-Type V1.0 July 2016

Product name 2 Channel CAN-Bus Thermocouple Interface K-Type

Model number CANBUS-THERMO-2CH

Manufacturer SK Pang Electronics Ltd

Contents

Table of Contents

1.	Introduction	. 3
1.1.	Features	. 3
2.	Power and CAN Connection (J3)	. 3
	Probe Connection	
1.3.	120Ω Terminator	. 4
1.4.	LED	. 4
1.5.	Configuration Switches (SW1)	. 4
3.	CAN Data Format	. 6
	Python Example	

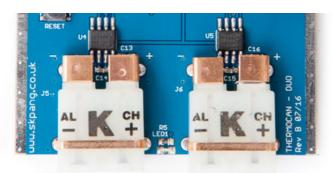
1. Introduction


This board provides a two channel CAN-Bus thermocouple K-type interface. It can read a temperature from -270 to +1250 $^{\circ}$ C depending on probe used. The CAN ID can be configured with the on board DIP switches and sample rate can be configure at 0.5 or 1 second interval.

1.1. Features

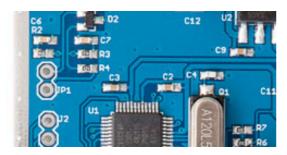
- Two channel K-type thermocouple inputs
- -270 to +1250 °C input range (probe dependent)
- 0.25 °C resolution
- 0.5 or 1 second sample rate
- 6v to 16v input voltage range
- Reverse voltage polarity protection
- Selectable CAN baudrate via dip switches. 125, 500, 1000kbps
- Selectable CAN ID via dip switches
- UART output
- SWD/JTAG header
- LED indicator

2. Power and CAN Connection (J3)


The board requires a supply voltage of 6v to 16v DC on connector J3. This connector is also the CAN data line.

J3	Function
1	CAN_L
2	CAN_H
3	GND
4	+12V

1.2. Probe Connection


The thermocouple probes is connected to J5 and J6.

Probe 1	J5
Probe 2	J6

1.3.120 Ω Terminator

There is a 120Ω fitted to the board. To use the terminator solder a 2way header pin to JP1 then insert a jumper.

1.4. LED

There is a LED fitted to the board. This is flashes every time a measurement is taken.

1.5. Configuration Switches (SW1)

The board has 8 DIP switches used for configuration

CAN Baudrate	Switch Settings				
125 kbps	SW1-1 = ON; SW1-2 = ON				
500 kbps	SW1-1 = ON; SW1-2 = OFF				
1000 kbps	SW1-1 = OFF; SW1-2 = ON				

Sample Interval	Switch Settings			
0.5 second	SW1-3 = 0N			
1.0 second	SW1-3 = 0FF			

CAN ID	Switch Settings
(decimal)	
100	SW1-4 = OFF; SW1-5 = OFF; SW1-6 = OFF; SW1-7 = OFF; SW1-8 = OFF
101	SW1-4 = ON; SW1-5 = OFF; SW1-6 = OFF; SW1-7 = OFF; SW1-8 = OFF
102	SW1-4 = OFF; SW1-5 = ON; SW1-6 = OFF; SW1-7 = OFF; SW1-8 = OFF
103	SW1-4 = ON; SW1-5 = ON; SW1-6 = OFF; SW1-7 = OFF; SW1-8 = OFF
104	SW1-4 = OFF; SW1-5 = OFF; SW1-6 = ON; SW1-7 = OFF; SW1-8 = OFF
105	SW1-4 = ON; SW1-5 = OFF; SW1-6 = ON; SW1-7 = OFF; SW1-8 = OFF
106	SW1-4 = OFF; SW1-5 = ON; SW1-6 = ON; SW1-7 = OFF; SW1-8 = OFF
107	SW1-4 = ON; SW1-5 = ON; SW1-6 = ON; SW1-7 = OFF; SW1-8 = OFF
108	SW1-4 = OFF; SW1-5 = OFF; SW1-6 = OFF; SW1-7 = ON; SW1-8 = OFF
109	SW1-4 = ON; SW1-5 = OFF; SW1-6 = 0; FF SW1-7 = ON; SW1-8 = OFF
110	SW1-4 = OFF; SW1-5 = ON; SW1-6 = OFF; SW1-7 = ON; SW1-8 = OFF
111	SW1-4 = ON; SW1-5 = ON; SW1-6 = OFF; SW1-7 = ON; SW1-8 = OFF
112	SW1-4 = OFF; SW1-5 = OFF; SW1-6 = ON; SW1-7 = ON; SW1-8 = OFF
113	SW1-4 = ON; SW1-5 = OFF; SW1-6 = OFF; SW1-7 = ON; SW1-8 = OFF
114	SW1-4 = OFF; SW1-5 = ON; SW1-6 = OFF; SW1-7 = ON; SW1-8 = OFF
115	SW1-4 = ON; SW1-5 = OFF; SW1-6 = ON; SW1-7 = ON; SW1-8 = OFF
116	SW1-4 = OFF; SW1-5 = OFF; SW1-6 = OFF; SW1-7 = OFF; SW1-8 = ON
117	SW1-4 = ON; SW1-5 = OFF; SW1-6 = OFF; SW1-7 = OFF; SW1-8 = ON
118	SW1-4 = OFF; SW1-5 = ON; SW1-6 = OFF; SW1-7 = OFF; SW1-8 = ON
119	SW1-4 = ON; SW1-5 = ON; SW1-6 = OFF; SW1-7 = OFF; SW1-8 = ON
120	SW1-4 = OFF; SW1-5 = OFF; SW1-6 = ON; SW1-7 = OFF; SW1-8 = ON
121	SW1-4 = ON; SW1-5 = OFF; SW1-6 = ON; SW1-7 = OFF; SW1-8 = ON
122	SW1-4 = OFF; SW1-5 = ON; SW1-6 = ON; SW1-7 = OFF; SW1-8 = ON
123	SW1-4 = ON; SW1-5 = ON; SW1-6 = ON; SW1-7 = OFF; SW1-8 = ON
124	SW1-4 = OFF; SW1-5 = OFF; SW1-6 = OFF; SW1-7 = ON; SW1-8 = ON
125	SW1-4 = ON; SW1-5 = OFF; SW1-6 = 0; FF SW1-7 = ON; SW1-8 = ON
126	SW1-4 = OFF; SW1-5 = ON; SW1-6 = OFF; SW1-7 = ON; SW1-8 = ON
127	SW1-4 = ON; SW1-5 = ON; SW1-6 = OFF; SW1-7 = ON; SW1-8 = ON
128	SW1-4 = OFF; SW1-5 = OFF; SW1-6 = ON; SW1-7 = ON; SW1-8 = ON
129	SW1-4 = ON; SW1-5 = OFF; SW1-6 = OFF; SW1-7 = ON; SW1-8 = ON
130	SW1-4 = OFF; SW1-5 = ON; SW1-6 = OFF; SW1-7 = ON; SW1-8 = ON
131	SW1-4 = ON; SW1-5 = OFF; SW1-6 = ON; SW1-7 = ON; SW1-8 = ON

3. CAN Data Format

CAN ID	DLC	В0	B1	B2	В3	B4	B5	В6	B7
1xx	8	Signed 1 Probe 1	6bit	Probe 1 Status		Signed 1 Probe 2	6bit	Probe 2 Status	

B2 Probe 1 Status

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	1= Probe Fault

B6 Probe 2 Status

7	6	5	4	3	2	1	0
0	0	0	0	0	0	0	1= Probe Fault

Note: The probe status bit should be check first. If bit 0 is a '1' then the temperature should be ignored.

The temperature reading is a 16bit signed number in Little Endian format. The reading also need to be converted to real temperature by multiplying it by 0.25

This will give a real temperature reading with a resolution of 0.25°C

1.6. Python Example

A python example for use with the PiCAN2 board on the Raspberry Pi is available from github.

https://github.com/skpang/ThermoCAN-Python-examples